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1.  INTRODUCTION

The presence of sympatric species implies the exis-
tence of some degree of resource partitioning that
has reduced competition through evolutionary pro-
cesses (Roughgarden 1976). According to niche the-
ory and as a consequence of competitive exclusion,
niche divergence allows species with similar ecolog-
ical requirements to coexist (Pianka 1974, 2011). Par-

ticularly in dolphins, this divergence usually occurs
at the trophic niche level related to prey availability
resulting in different habitat use or dietary diver-
gence within the same habitat (Bearzi 2005). This
occurs even in species that form mixed groups as a
strategy to improve their foraging efficiency (Loiza -
ga de Castro et al. 2017). Therefore, identifying the
requirements of each species is the main objective of
ecological studies as a strategy for understanding the
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mechanism of coexistence and is also key to biodi-
versity conservation under a climate change scenario
(Gavrilchuk et al. 2014).

Dolphins have the potential for long-range disper-
sal in addition to occupying a wide environment
without physical barriers, which hinder direct obser-
vations of their feeding habits. Using stomach con-
tent to study food habits of marine mammals has
become common practice. Despite numerous advan-
tages of this method, it presents some disadvantages
related to biases in sampling (stranded animals) and
the temporal nature of the information (data for only
the most recent feeding events) (Pasquaud et al.
2007). In contrast, the analysis of stable isotopes is
useful to understand the trophic ecology of dolphins
through the trophic niche (Ambrose et al. 2013,
Loizaga de Castro et al. 2016, 2017 Giménez et al.
2017). Diet studies based on stable isotope analysis of
tissues provide integrated information of all assimi-
lated prey, without the need for direct observations
of marine taxa, over an extended period of time,
depending on the turnover rate of the tissue used for
the analysis (Koch 2007, Kiszka et al. 2014). In addi-
tion, this technique requires only a small piece of tis-
sue (Michener & Kaufman 2007). 

Carbon (δ13C) and nitrogen (δ15N) are the main
stable isotopes used in studies of marine mammal
trophic ecology (Newsome et al. 2010). The 13C/12C
ratio allows separation between pelagic/offshore
and benthic/inshore habitats, based on the source
of organic carbon, which may come from phyto-
plankton or macroalgae (Rubenstein & Hobson
2004, Fry 2006). These differences are also related
to other  factors that can affect δ13C values in the
marine environment, mainly dissolved CO2 concen-
tration, temperature, algal growth rate, source and
supply of in organic carbon, and cell size and geom-
etry (O’Leary 1988, Goericke & Fry 1994, Laws et
al. 1995, Popp et al. 1998). The 15N/14N ratio is an
indicator of trophic level, with the relative abun-
dance of heavy stable isotope increasing from prey
to predator due to preferential excretion of the
light stable isotope (Cabana & Rasmussen 1996).
The combination of both of these stable isotopes
allows the estimation of the isotopic niche occupied
by a species, as well as an estimate of the overlap
among intra- and interspecific isotopic niches
(Newsome et al. 2007). The isotopic niche can be
defined as an area (in δ-space) with isotopic values
(δ-values) as coordinates where the δ-space is com-
parable to the n-dimensional space that contains
the ecological niche. This approximation is based
on the assumption that the chemical composition of

a consumer is directly affected by what it consumes
and its habitat, as long as they are different in their
isotopic values (Newsome et al. 2007).

In the southwestern South Atlantic Ocean, 2 en -
demic species of small cetaceans occur in partial
sympatry along the Patagonian marine coast. The
distribution of Peale’s dolphins Lagenorhynchus aus-
tralis primarily spans 38°−56° S in the South Atlantic
Ocean, including the Falkland (Malvinas) Islands
(Heinrich & Dellabianca 2019). The species can
measure up to 218 cm in total length, and it appears
to be confined to shelf waters off southern South
America, where it inhabits different nearshore habi-
tats including open coast over shallow continental
shelf, fiords, and deep bays (de Haro & Iñíguez 1997,
Goodall et al. 1997, Lescrauwaet 1997, Brownell et
al. 1999, Dellabianca et al. 2016); but it can also be
found in the open sea up to ~300 km from the coast
(Dellabianca et al. 2016). Peale’s dolphin is associ-
ated with the kelp forest, where it can be seen swim-
ming through it or along the edge (Heinrich &
Dellabianca 2019).

Commerson’s dolphins Cephalorhynchus commer-
sonii are among the smallest dolphins (maximum
146 cm) and are found more frequently near shore
(<60 km from the coast) (Dellabianca et al. 2016).
However, this distribution may be skewed by sight-
ing effort. Several individuals have been recorded
beyond the limit of the continental shelf, about
370 km away (Pedraza 2007). The distribution of this
species covers 40°−56° S in Argentina and at the
Falkland (Malvinas) Islands (Crespo et al. 2017).
Commerson’s dolphins share the same coastal habi-
tats with Peale’s dolphins, although they usually pre-
fer areas with a wide continental shelf, wide tidal
cycles, and cool waters influenced by the Malvinas
Current (Goodall et al. 1988, Goodall 1994, Cos -
carella 2005, Loizaga de Castro et al. 2013a, Dellabi-
anca et al. 2016).

Traditional diet studies based on stomach content
analyses along the coast of Argentina have sug-
gested that Commerson’s dolphins prefer pelagic−
demersal fish in coastal habitats. Bastida et al. (1988)
reported the presence of mysids, fish (mainly pe -
lagic), squids, and crustaceans in the diet of this spe-
cies in Tierra del Fuego. In addition, stable isotope
analyses conducted in the same region are consistent
with traditional diet studies and suggest that Com-
merson’s dolphins primarily consume coastal and
pelagic fish, followed by benthopelagic species, with
a difference in the relative contribution according to
age classes (Riccialdelli et al. 2013). Moreover, based
on 9 stomach contents from central Patagonia, Koen
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Alonso (1999) found that Commerson’s dolphins feed
on pelagic fish, squids, and crustaceans. Little in -
formation is available on the diet of Peale’s dolphins
along the coast of Argentina, as few studies have
reported the dietary preferences of this species. Schi-
avini et al. (1997) found that dolphins in Tierra del
Fuego appeared to be feeding on demersal and bot-
tom prey associated with kelp forest. In Puerto
Deseado, a diet study based on 3 stomach contents
suggested that Peale’s dolphins are coastal generalist
predators, highlighting the presence of hagfish eggs
(Myxine sp.) (Iñiguez & de Haro 1994), which is
indicative of a benthic feeding strategy — as was
reported by Schiavini et al. (1997). Finally, based on
a single stomach from central Patagonia, 3 prey spe-
cies were reported including a pelagic−demersal
fish, a benthic−demersal fish, and a squid (Lichter
1992).

In order to better understand the trophic rela-
tionships between Commerson’s and Peale’s dol-
phins, the objective of this study was to assess the
habitat use and explore the isotopic niche of these
2 endemic dolphins that live in sympatry in the
Argentine Sea. We hypothesized that both species

use trophic re sources differentially, thereby avoid-
ing competition and promoting life in sympatry.
Consequently, no significant overlap in isotopic
niche was anticipated, given the expected exis-
tence of different feeding strategies between both
species.

2.  MATERIALS AND METHODS

2.1.  Study area and sample collection

Fieldwork took place on the northern coast of Golfo
San Jorge, Argentina (45° 04’ 34.5” S, 65° 38’ 37.2” W),
in a marine protected area (MPA), the Austral Patag-
onian Interjurisdictional Coastal Marine Park (Par-
que Interjurisdiccional Marino Costero Patagonia
Austral, PIMCPA; Fig. 1). This area covers a total
surface of 132 124 ha, including terrestrial and mar-
ine ecoregions. The national park protects around
180 km of marine coastline (1.8 nautical miles from
the coast) and over 55 islands, all of which are char-
acterized by the presence of numerous coves and
small bays (APN 2018).

Fig. 1. Study area detailing the marine protected area in light gray. Circles show biopsy sampling sites; the square marks the
location of a dead stranded individual. Colors represent species and feeding groups (FGs): Cephalorhynchus commersonii

(red), and Lagenorhynchus australis FG1 (yellow), FG2 (green), and FG3 (blue)



Mar Ecol Prog Ser 659: 247–259, 2021250

We collected 14 and 34 biopsy skin samples of
Commerson’s and Peale’s dolphins, respectively, in
December of 3 consecutive years (2007−2009) and
2013 in the MPA (Fig. 1). Samples were taken from
adult individuals using a pole system (Loizaga de
Castro et al. 2013b). Additionally, a single Peale’s
dolphin skin sample was obtained from an individual
found stranded dead on the coast in 2012. All sam-
ples were preserved in 20% dimethyl sulfoxide
(DMSO) solution saturated with sodium chloride
(NaCl) and stored at −20°C until analysis (Amos &
Hoelzel 1991). For the biopsy skin samples, mole -
cular sexing was performed by amplifying the
ZFX and ZFY regions following Bérubé & Palsbøll
(1996). Potential prey species were selected accord-
ing to the stomach contents and information about
the dolphins’ ecology. Stable isotope values from
white dorsal muscle of pelagic fish and mantles of
cephalopods were taken from the available litera-
ture, considering the same oceanographic region
(Forero et al. 2004, Drago et al. 2009a,b, Vales et al.
2015). For those prey without previous information,
samples were obtained from fisheries (n = 12) and
the corresponding isotopic analysis were performed
(see Section 2.2).

2.2.  Stable isotope analysis

All samples (dolphin skin and prey samples) were
lipid-extracted with 2:1 chloroform:methanol solu-
tion in successive 24 h washes (3−5 times). Skin sam-
ples were then rinsed 5 consecutive times with
deionized water to remove the solvent (to avoid the
potential influence of DMSO on the isotopic compo-
sition of samples) and lyophilized at −80°C (New-
some et al. 2018). Nitrogen and carbon ratios were
measured with approximately 0.5−0.6 mg of dried
sample using a continuous-flow isotope ratio mass
spectrometer connected to an elemental analyzer
(EA-IRMS) at the University of New Mexico Center
for Stable Isotopes. Results are reported in δ notation
in per mil units (‰) based on PeeDee Belemnite and
atmospheric N2 as internationally accepted stan-
dards for δ13C and δ15N, respectively:

δX = (Rsample / Rstandard − 1) × 1000 (1)

where R represents the relationship between heavy
and light isotope (13C/12C or 15N/14N) for samples and
standards, and X is 13C or 15N (Peterson & Fry 1987).
International isotope secondary standards given by
the International Atomic Energy Agency were used
to calibrate estimates of nitrogen and carbon at a

 precision of 0.30 and 0.20‰, respectively. The car-
bon:nitrogen ratio (C:N) from all samples was <4,
indicating effective lipid extraction (Kiszka et al.
2010).

2.3.  Data analysis

To eliminate atmospheric changes, a correction
for the Suess effect (0.022‰ yr−1) was applied to the
stable isotope values (Loizaga de Castro et al. 2016)
using as a reference the average year between the
years of sampling of potential prey (2005) following
Vales et al. (2020). Using IBM SPSS Statistics (IBM
SPSS 2017), generalized linear models (GLMs) were
performed to understand the isotopic variation (δ13C
and δ15N) for Peale’s dolphin samples from 2007 to
2012, taking into consideration sampling year, sex
(1:1 sex ratio, Durante et al. 2020), and distance to
coast as variables. For the last variable, we defined
2 different habitats according to the site where dol-
phins were sampled, dividing those samples that
were taken close to the coast (Habitat A = <200 m),
even into the small bays or coves, and those sam -
ples obtained away from the coast (Habitat B =
>200 m). All possible models were compared to the
base model (without factors) using an omnibus test.
Models were selected using the lowest value for
Akaike’s information criterion corrected for small
sample sizes (AICc) and with significance values
from the omnibus test. Also, 1-way ANOVAs fol-
lowed by a post hoc Tukey test were used to com-
pare the differences in stable isotope ratios of feed-
ing groups (FGs) and species. Prior to ANOVA, data
were tested for normality (Shapiro-Wilk) and homo -
scedasticity (Levene’s test).

To estimate the isotopic niche width for each
species and the isotopic overlap between species
and feeding groups, Bayesian standard ellipse
areas (SEAB), expressed in ‰2, were calculated
using the Stable Isotope Bayesian Ellipses in R
(SIBER) package (Jackson et al. 2011). SEAB con-
tains 95% of the data regardless of sample size
and it allows for the estimation of a range of prob-
able values for the calculated standard ellipse
(Jackson et al. 2011). Overlap in SEAB between
species/ feeding groups was estimated by using
SEA code and was used as a measure of isotopic
niche partitioning, where the proportion of overlap
between 2 SEAs is expressed as a percentage (%)
(Garcia et al. 2018).

To estimate the proportional contribution of poten-
tial prey (sources) to diets of dolphins (consumers),
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the ‘MixSIAR’ package was used (Bayesian Mixing
Models in R: Stock & Semmens 2016). MixSIAR uses
isotopic values and a trophic discrimination factor
(TDF), which is defined as the difference between
the isotope values of consumer bulk tissue (e.g. skin,
bone, muscle) and the isotope value of the average
prey consumed. The MixSIAR model allows estimat-
ing the assimilated diet of the consumer considering
uncertainty in isotopic variability (consumers and
sources), TDF, and multiple sources (Moore & Sem-
mens 2008). Particularly for the last point, when con-
sidering 2 variables (δ13C and δ15N), it is recom-
mended to use a maximum of 7 sources (Phillips et al.
2014). For this reason, and due to the lack of informa-
tion about trophic ecology in Peale’s dolphins at the
study site, their potential prey was grouped accord-
ing to ecological groups in order to define 5 sources:
decapod crustaceans, benthic fish, demersal−benthic
fish, pelagic fish, and squids. Each model was run
with 3 Markov chain Monte Carlo (MCMC) simula-
tions using 1 000 000 iterations, removing 500 000 iter-
ations as burn-in and thinning by 500. TDF values
(mean ± SE) of δ13C = 2.04 ± 0.14‰ and δ15N = 2.96 ±
0.12‰ were used, according to reported data for skin
samples of Tursiops truncatus in controlled experi-
ments with a lipid-enriched diet (Browning et al.
2014), similar to that expected for the species under
study. Gelman-Rubin and Geweke diagnostic tests
were used to assess if each MCMC chain had con-
verged on the true posterior distribution for each
variable in the model (Stock & Semmens 2016). A
mixing polygon simulation was therefore constructed
to determine if the mixing model design and TDF
used were appropriate, i.e. using a Monte Carlo sim-
ulation of mixing polygons to apply
the point-in-polygon assumption to
mixing models. This test provides a
quantitative basis for model accept-
ance or rejection based on a frequen-
tist probability that the mixing model
proposed can correctly calculate
source contributions to explain a con-
sumer’s isotopic value (Smith et al.
2013).

3.  RESULTS

3.1.  Feeding groups

Three feeding groups (FGs) of
Peale’s dolphins and 1 FG of Com-
merson’s dolphins were identified in

the central Patagonian MPA based on the δ13C and
δ15N values (Fig. 2). Stable isotope ratios of Com-
merson’s dolphins, Peale’s dolphins, and their
potential prey species are shown in Table 1 and
illustrated in Fig. 3. For Peale’s dolphins, all samples
from 2013 were grouped in a single FG (FG1) show-
ing an extreme position. Alternatively, samples
taken be tween 2007 and 2009 in addition to the
only sample of 2012 showed 2 FGs: FG2 was more
pelagic/ inshore and FG3 occupied benthic/inshore
habitat. Both species were segregated by both sta-
ble isotopes (ANOVA, δ13C: F3,47 = 153.8, p < 0.05;
δ15N: F3,47 = 15.9, p < 0.05), except for FG1 versus
Commerson’s dolphin in δ15N values (Tukey post
hoc, p = 0.74). For FG2 and FG3, the GLMs with
‘distance to coast’ as the only factor were the best
fitting models according to AICc (Table 2), and we
found significant differences in both stable isotopes
between Habitats A and B (Wald χ2 = 61.37, df = 1,
p < 0.01).

With regard to isotopic niche, Commerson’s dol-
phins showed the smallest isotopic SEAB, with an
estimated isotopic niche area of 1.61‰2, followed
by Peale’s dolphin FGs: SEAB = 2.01‰2 for FG1,
2.06‰2 for FG2, and 9.37‰2 for FG3 (Table S1 in
the Supplement at: www. int-res. com/ articles/ suppl/
m659 p247_ supp. pdf). We performed a sensibility test
(Smith et al. 2013) using the TDF reported by
Giménez et al. (2016), Caut et al. (2011), and Brown-
ing et al (2014) to choose the most appropriate to run
the models. The TDF reported by Browning was cho-
sen to run mixing models. Overlap was only observed
between Peale’s dolphin FG2 and FG3, and between
FG2 and Commerson’s dolphin (Fig. 2). The propor-

Fig. 2. δ13C and δ15N biplot illustrating the isotopic niche for Cephalorhynchus
commersonii and Lagenorhynchus australis feeding groups (FGs). Each point
represents an individual, and solid ellipses represent area at 95% (standard 

ellipse area)

https://www.int-res.com/articles/suppl/m659p247_supp.pdf
https://www.int-res.com/articles/suppl/m659p247_supp.pdf
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tional overlap between them was asymmetric and
varied from 8 to 40% (Table S2).

3.2.  Stable isotope mixing models

All data sets fit the mixing model assumptions ac -
cording to Smith et al. (2013), except for Peale’s dol-
phin FG1. Gelman-Rubin and Geweke diagnostic
tests showed a convergence of each MCMC chain on
the true posterior distribution for each variable in the
model (Table S3). The isotopic mixing models indi-
cated that continental shelf prey species contributed
the most (80.8%) to the diet of Commerson’s dol-
phins, including Argentine hake <30 cm and Ar -
gentine shortfin squid, whereas the notothenid Pa -
tagonotothen ramsayi and Argentine red shrimp
Pleoticus muelleri represented less than 10% in the
dolphins’ diet (Fig. 4A; Table S4). For Peale’s dol-
phins, the relative contribution of each potential prey
species to diet varied according to feeding groups
(Fig. 4B,C; Table S5). Pelagic resources were the
most important prey according to the model for FG2,
with a relative contribution of 41 and 28% for
‘pelagic fish’ and ‘squids,’ respectively. In contrast,

‘benthic fish’ was the potential prey with the largest
contribution (37%) for FG3, followed by ‘decapod
crustaceans’ (25%), ‘squids’ (17%), ‘pelagic fish’
(14%), and ‘demersal−benthic fish’ (7%).

4.  DISCUSSION

Many different strategies are adopted by sympatric
species to coexist in the same habitat depending on
the availability of resources as well as the plasticity
that each animal group possesses (Ruadreo et al.
2019). Trophic niche partitioning is one of the most
frequent mechanisms employed by several taxa to
minimize competition, including marine mammals
(Pinela et al. 2010, Gibbs et al. 2011, Méndez-Fer-
nandez et al. 2013, Wilson et al. 2017, Giménez et al.
2018). Through carbon and nitrogen stable isotope
analysis, we studied the habitat use of sympatric dol-
phins to understand the trophic relationship between
them. Based on the turnover rate of dolphin skin,
which is estimated between 2 and 6 mo (Caut et al.
2011, Browning et al. 2014, Giménez et al. 2016), we
report the segregation of 2 coastal small cetacean
species during the warm season in the Southern

δ13C ‰ Suess-corrected δ15N ‰ n C:N ratio Year Reference
mean ± SD δ13C (‰) mean ± SD mean ± SD

Consumers
L. australis

FG1 −16.8 ± 0.2 −16.6 ± 0.2 18.4 ± 0.4 11 3.2 2013 Present study
FG2 −14.9 ± 0.3 −14.8 ± 0.3 19.1 ± 0.5 17 3.2 2007−2009 Present study
FG3 −13.8 ± 0.4 −13.7 ± 0.4 19.9 ± 0.8 6 3.2 2007−2012 Present study

C. commersonii −15.4 ± 0.2 −15.3 ± 0.2 18.6 ± 0.3 14 3.2 2007−2009 Present study

Sources
Decapod crustaceans
Pleoticus muelleria −15.9 ± 0.4 −15.9 ± 0.4 16.7 ± 0.3 5 2.9 2010 Vales et al. (2015)

Benthic fish
Genypterus blacodes −14.7 ± 0.4 −14.7 ± 0.4 18.0 ± 0.3 5 3.1 2007 Present study

Demersal−benthic fish
Patagonotothen ramsayia −16.1 ± 0.2 −16.1 ± 0.2 18.6 ± 0.2 2 3.2 2010 Present study
Riveiroclinus eigenmani −16.7 ± 0.2 −16.7 ± 0.2 17.9 ± 0.2 8 2004 Forero et al. (2004)

Squids
Illex argentinusa −17.0 ± 0.6 −17.0 ± 0.6 13.7 ± 0.8 5 3.0 2006 Drago et al. (2009a)
Doryteuthis gahi −17.6 ± 0.4 −17.6 ± 0.4 15.7 ± 0.6 4 3.0 2007 Drago et al. (2009a)

Pelagic fish
Sprattus fueguensis −17.8 ± 0.3 −17.8 ± 0.3 17.2 ± 0.2 5 3.5 2000 Present study
Engraulis anchoíta −17.7 ± 0.1 −17.7 ± 0.1 16.4 ± 0.1 18 2004 Forero et al. (2004)
Merluccius hubbsi (<30 cm)a −17.7 ± 0.6 −17.7 ± 0.6 15.9 ± 0.5 5 3.1 2006 Drago et al. (2009b)

aPrey selected for C. commersonii mixing model

Table 1. δ13C and δ15N ratios, sample size (n), C:N ratio, and sampling date (year) of consumers (Lagenorhynchus australis feeding
groups, FGs; and Cephalorhynchus commersonii) in the PIMCPA marine protected area and their potential sources (prey species 

or group of prey species)
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Hemisphere, both in the spatial and
the trophic niche dimensions, allow-
ing their coexistence.

For Commerson’s dolphins, our re -
sults are consistent with studies of
stomach contents throughout their
distribution in Argentina, where their
diet comprises mainly pelagic fish and
squids. Particularly, the results of our
mixing models are in accordance with
the diet identified in the region by
Koen Alonso (1999); specifically, juve-
niles of Argentine hake Merluccius
hubbsi (<30 cm) and Argentine short-
fin squid Illex argentinus as main
prey. Given that both techniques offer
different diet information over differ-
ent temporal scales, with a longer
integration time for stable isotopes,
the similarity across both techniques
indicates a clear feeding preference
for these prey species. Moreover, the
smaller SEAB observed in this study
indicates less variability in prey selec-
tion among individuals, which sug-

gests that this species has a specific use of pelagic
habitats, feeding on small numbers of prey. Overall,
Commerson’s dolphins seem to occur close to the
coast (Dellabianca et al. 2016) but exploit pelagic
resources, in particular Argentine hake and Argen-
tine shortfin squid in the north of the Golfo San
Jorge.

For Peale’s dolphins, our results revealed 3 differ-
ent FGs, showing intraspecific isotopic niche parti-
tioning within a small geographic area. All FGs
showed significant differences among their mean
δ13C values. FG1 exhibited lower δ13C values, sug-
gesting an exclusively pelagic/offshore foraging
habitat. In contrast, FG3 presented higher δ13C val-
ues as evidence of more benthic/inshore foraging

Dependent Model AICc Omnibus
variable p

δ13C ‰ Distance to coast 20.02 <0.001
Year 25.17 <0.001
Sex 48.91 0.532
Distance to coast + Year + Sex 32.93 <0.001

δ15N ‰ Distance to coast 37.35 <0.001
Year 42.32 <0.001
Sex 54.07 0.467
Distance to coast + Year + Sex 48.74 <0.001

Table 2. Results from generalized linear models, with Akaike’s
information criterion corrected for small sample size (AICc) and
omnibus test p-values (α = 0.05). Best fitting models are high-

lighted in bold

Fig. 3. (A) Carbon (δ13C) and nitrogen (δ15N)
isotope ratios in skin samples of Lageno -
rhynchus australis feeding groups (FGs)
(individual values) (yellow = FG1, green =
FG2, blue = FG3), and their potential prey
after correcting for the trophic discrimina-
tion factor (mean ± SD) grouped by ecologi-
cal group. (B) Carbon (δ13C) and nitrogen
(δ15N) isotope ratios in skin samples of
Cephalorhynchus commersonii (individual
values in red) and their potential prey after
correcting for the trophic discrimination

factor (mean ± SD)
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Fig. 4. Mixing models results (MixSIAR) as proportion of (A) potential prey of Commerson’s dolphin or (B,C) potential prey 
group of Peale’s dolphin feeding groups 2 and 3

Fig. 4. continued on next page
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habitats, while FG2 showed intermediate values of
δ13C. The isotopic niche widths of all 3 FGs were
small, with some degree of overlap between FG2 and
FG3. These results suggest that Peale’s dolphins are
capable of displaying different foraging strategies
that are segregated in space. The wide isotopic niche
of FG3, in terms of SEAB, can be a consequence of
the low sample size and the spatial geometry of the
data, which in some cases, could be biasing the
model (Jackson et al. 2011). According to this, the
spatial overlap of SEAB with FG2 is not necessarily
indicative of trophic competition and can instead be
explained by overestimation of the isotopic niche.
The isotopic data indicate that there are dolphins
from FG3 that exhibit 2‰ differences between the
nitrogen isotope values; therefore, the variability in
FG3 is greater compared to the other groups, inde-
pendent of the sampling effort.

One result to be highlighted is the absence of cor-
respondence between the stable isotope signals and
the habitat where some Peale’s dolphins were sam-
pled. Unexpectedly, FG2 (more pelagic) was sam-
pled closer to the coast (<200 m), inside of coves,
whereas FG3 (benthic extreme) was sampled far
from the coast (>200 m). Considering that the

cetacean skin incorporation rate is approximately 2
to 6 mo and that they usually have a high dispersal
range, it is very unlikely that sampling of Peale’s dol-
phin skin in a specific area reflects feeding occurring
in that habitat. Therefore, the results suggest that in
spite of Peale’s dolphins frequently occurring in
coastal environments, dominated by macroalgal
forests and small bays, foraging strategies are not the
only explanation for their occurrence in these habi-
tats and other behaviors could be involved, such as
nursing (Hartman et al. 2008).

Our mixing model results represent a first approxi-
mation of the diet preference of Peale’s dolphins, and
they showed different ecological/taxonomical clus-
ters as the main prey items for FG2 and FG3. How-
ever, the dolphins could potentially be feeding on the
same prey due to partial overlap. The remaining
feeding group (FG1) could not be directly compared
with potential prey resources, due to missing poten-
tial prey species that were not included in the mod-
els. Unfortunately, information on stomach contents
for the species that provides the finest-scale resolu-
tion of prey taxa is lacking (Di Beneditto et al. 2011).
Thus, more studies based on this technique are
needed in order to obtain a more complete under-

Fig. 4. (continued)
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standing of their feeding preferences (Giménez et al.
2017). Also, it is worth taking into consideration that
all FG1 samples were collected in the same year, and
changes in the ecosystem baseline may influence the
isotopic values of predators.

Interspecific spatial overlap seems to occur in
pelagic/ offshore habitats between Commerson’s
and Peale’s dolphins (FG2). However, it is not nec-
essarily related to ecological or dietary overlap,
since different prey species can exhibit similar iso-
topic signatures (Ramírez et al. 2011, Giménez et
al. 2018). The most important resources in the Ar -
gentine Sea are Argentine hake, Argentine an -
chovy Engraulis an choita, Patagonian sprat Sprat-
tus fuegensis, Argentine shortfin squid, Patagonian
squid Doryteuthis gahi, and Argentine red shrimp
(Barón & Ré 2002, Hansen et al. 2009, Salas et al.
2011, Romero et al. 2012, Loizaga de Castro et al.
2016, 2017). All of these taxa have characteristics
in common that make them preferred prey of mar-
ine mammals, including their wide distribution and
availability, relatively small size, tendency to form
large groups of individuals, and high nutritional
value (Cousseau & Perrota 1998, Ciancio et al.
2007). In addition, within each ecological group,
they have similar isotopic composition (Table 1),
making it impossible to discriminate at the taxo-
nomic level using stable isotope analysis.

The present study revealed that both dolphin spe-
cies occur in the same habitat, but are segregated in
terms of trophic resources. In the region, Commer-
son’s dolphin is a specialist predator that has a small
trophic niche width, whereas Peale’s dolphin is a
clear example of a species that can be considered a
generalist that occupies a wide trophic niche (Bol-
nick et al. 2007). This conclusion is supported by the
high plasticity reflected in different feeding groups
within a small geographic area as was shown here,
and represents an ecological complexity not yet
described for Peale’s dolphins along the southwest-
ern Atlantic Ocean. An endemic species with hints
of high philopatry in a small geographic area
(Durante et al. 2020), that develops different strate-
gies to reduce intra- and interspecific competition,
suggests high adaptability of the species in response
to prey availability and local habitat conditions.
Therefore, future studies on the trophic ecology of
both dolphin species throughout their distribution
are recommended, where different habitats, varia-
tion in the isotopic composition of prey, and new
stomach content analysis should be considered. Fur-
thermore, it is possible that competition is not the
only selective force structuring the biological com-

munity, and predation could be also playing a role.
If this is the case, these species could be below their
population carrying capacity, with abundant feeding
resources in the Argentine Sea, and with ecological
niches allowing some degree of overlap without
competition as a primary driving force. Thus, studies
on predation in small cetacean species should be
conducted to understand its role within the marine
community structure. This information will allow a
better understanding of the ecological role in coastal
habitats and the dynamics of intra- and interspecific
trophic interactions of these species. Moreover, in a
scenario of global warming and continuous devel-
opment of commercial and local fisheries, it will also
help to determine the impact of potential threats to
top predators and implement conservation policies
that preserve them and their habitat.
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