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1.  INTRODUCTION

The behavior of marine predators is influenced by
the distribution, availability, abundance, and behav-
ior of prey (Womble et al. 2014, Goldbogen et al.

2015, Hays et al. 2016). To optimize foraging effi-
ciency, marine predators may respond to changes in
prey distribution by modifying both their horizontal
and vertical movements (Thums et al. 2011, Bestley
et al. 2015, Joy et al. 2015). Patchy spatiotemporal
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distributions of prey are related to the heterogeneous
nature of the marine environment (Boyd 1996, Sims
et al. 2008, Bestley et al. 2010). Optimal foraging the-
ory predicts predators will exploit high prey density
patches to maximize their energy efficiency, thus
maximizing their fitness (Hedenström & Alerstam
1997, Houston & McNamara 2014).

When predators forage, they frequently exhibit
area-restricted search (ARS) behavior (Kareiva &
Odell 1987, Witteveen et al. 2008, Hazen et al. 2009,
Silva et al. 2013), which is characterized by de crea -
sed speeds and increased turning rates, which
should allow them to remain in a prey patch (Jonsen
et al. 2005, Breed et al. 2009, McClintock et al. 2012).
When a predator is in an area where prey density has
fallen, they will either leave the area or switch to
alternate prey species (Murdoch 1969, Van Baalen et
al. 2001). Optimal foraging theory predicts that pred-
ators will minimize the time spent transiting between
foraging areas (Jonsen et al. 2005, McClintock et al.
2012). Elevated consistent speeds and lower turning
rates are characteristic of this transiting behavior
(Fauchald & Tveraa 2003). Based on the predicted re -
lationship between prey density and predator move-
ment patterns, ARS behavior has been used to detect
foraging areas for killer whales Orcinus orca and
other odon tocetes (e.g. Reisinger et al. 2015, Dietz et
al. 2020, Stalder et al. 2020).

Killer whales are widely distributed odontocetes
that are considered generalist top predators at the
species level. However, some populations have spe-
cialized diets (Durban & Pitman 2012, Ford & Ellis
2014) that may vary seasonally (Jourdain et al. 2020a).
Based on limited tissue samples, North Atlan tic killer
whales have been divided into 2 ecotypes; general-
ists (feeding primarily on herring Clupea ha rengus,
mackerel Scomber scombrus, and seals) and special-
ists (feeding on baleen whales) (Foote et al. 2009,
2010). Nonetheless, an ecological gradient may exist.
Specializations may only be beneficial in environ-
ments with a stable and predictable availability of
the target prey, while a more generalist strategy may
be favored under variable conditions.

Killer whales in Norwegian waters are thought to
primarily feed on Norwegian spring-spawning (NSS)
herring (Similä et al. 1996, Similä 1997, Simon et al.
2007). However, these whales have also been ob ser -
ved feeding on a wide variety of other prey types,
such as harbor seals Phoca vitulina, salmon Salmo
salar, mackerel, and lumpfish Cyclopterus lumpus,
along the Norwegian coast (Similä et al. 1996, Foote
et al. 2009, Vester & Hammerschmidt 2013, Nøttestad
et al. 2014, Vongraven & Bisther 2014, Jourdain et al.

2017, 2020b). While overwintering herring have
been identified as important prey for killer whales
(Similä et al. 1996, Similä 1997, Simon et al. 2007), it
is not known if this relationship persists after the her-
ring leave the overwintering areas for their spawning
grounds. It is plausible that the distribution of at least
some killer whales will be tightly associated with the
migration of NSS herring.

NSS herring migrate seasonally between their win-
tering, spawning, and feeding grounds (Dragesund
et al. 1997). Although the spawning grounds of NSS
herring are relatively well defined and constant, her-
ring migration pathways can change, often abruptly,
both spatially and temporally, presumably due to
shifts in the overwintering areas (Dragesund et al.
1997, Huse et al. 2010, Toresen et al. 2019). Shifts in
NSS herring overwintering areas have long been
observed (Dragesund et al. 1997, Huse et al. 2010).
Recent shifts in herring overwintering areas are
thought to be initiated when strong cohorts of her-
ring suddenly enter new fjords (Huse et al. 2010),
thus influencing where Norwegian killer whales are
feeding in the winter (Jourdain & Vongraven 2017).

In addition to seasonal horizontal movements be -
tween wintering and spawning grounds, NSS her-
ring also exhibit diel vertical migration in the water
column, where they are typically observed concen-
trating at depth during the day, then dispersing up -
ward in the water column at night between dusk and
dawn (Huse & Korneliussen 2000). This diel pattern
is assumed to be correlated with changes in light
intensity and is attributed to avoiding predation
(Huse & Korneliussen 2000), but may also be in vol -
ved in maintaining buoyancy (Blaxter & Batty 1984).

The main objective of this study was to assess if
Norwegian killer whales that feed on NSS herring in
northern Norwegian fjords during winter continue to
do so as the fish move towards more southern off-
shore spawning grounds. Unlike the majority of mar-
ine animal studies (Pendleton et al. 2020) that corre-
late predator density, distribution, or movement to
indirect proxies of prey distribution (Redfern et al.
2006, Sequeira et al. 2012, Becker et al. 2016), our
study was designed to investigate how whale move-
ments might be influenced by actual prey density
distributions. Specifically, we examined: (1) the ex -
tent to which killer whale horizontal movement
behavior is associated with NSS herring distribution
during their spawning migration, (2) if killer whale
horizontal movement behavior is associated with diel
variations in light levels, and (3) if there is individual
variation in the behavioral responses of whales to
herring density.
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2.  MATERIALS AND METHODS

2.1.  Killer whale tagging

2.1.1.  Study site

Tagging occurred between late October through
February in 2 northern Norwegian fjord systems: the
Gryllefjord area (2015−2016) and the Kvænangen
fjord area (2017−2019). This corresponds to the cur-
rent high-usage overwintering areas and time peri-
ods for NSS herring prior to their migration towards
more southerly spawning areas. Additional tag de -
ployments were conducted in central Norwegian
waters off the coast of Møre between late February
and early March 2019 (see Table 1 and Fig. 1). This
region corresponds to one of the main spawning
areas along the Norwegian coast, and the timing also
coincides with the onset of spawning.

2.1.2.  Tagging methods

Anchored tags deployed by A. Rikardsen and col-
leagues followed best practices (Andrews et al. 2019),
and data obtained from theses whales were used in
this and concurrent studies (Mul et al. 2019, 2020,
 Dietz et al. 2020, Vogel 2020). In brief, a 26 ft (~7.9 m)
open rigid inflatable boat was used to slowly ap -
proach the killer whales, and an Aerial Rocket Tag
System (ARTS launcher, LKARTS), crossbow, or Dan-
inject CO2 systems (DAN-INJECT) were used to de-
ploy either SPOT5 or SPOT6 Limpet Argos transmit-
ters (Wildlife Computers). Given that tag placement
can influence data quality (Mul et al. 2019), we aimed
for tag placement in the center of the large dorsal fin
of males (Andrews et al. 2008, Dietz et al. 2020).
Photo-IDs were made when possible and used to con-
firm that individuals were not double tagged. Fur-
thermore, only a single individual was tagged from
each group of whales on any day. Tags were an -
chored in place using 2 titanium, sub-dermal 68 mm
darts protruding from the base of the tag (Andrews et
al. 2013, Mul et al. 2019). These barbed darts pene-
trate the skin and anchor in the dense connective tis-
sue (collagen) in the center of the dorsal fin (Andrews
et al. 2008, 2019). Darts were sterilized with 70%
ethanol before deployment. Tags were programed to
transmit 14−15 times every hour for the first 45 d to
obtain high temporal resolution early in the tagging
period. In the following 35−45 d, the transmission rate
was reduced to 8−10 h−1 to extend battery life. Finally,
the transmission rate was further reduced to 55 d−1

until the tag detached from the whale or the battery
failed. A more detailed description of tag program-
ming can be found in Dietz et al. (2020).

2.1.3.  Tag data processing

Tag location data were calculated by the CLS-AR-
GOS service using their Kalman filter algorithm
(Lopez et al. 2014). All subsequent data processing
and statistical analyses were performed using ‘R’ lan-
guage (version 3.6.1, R Core Team 2019). To account
for location uncertainty and the irregular time series
of Argos positions, we used the continuous-time, cor-
related random walk (CRW) state−space model in the
R package ‘foieGras’ (Jonsen & Patterson 2019, Jon -
sen et al. 2020). Specifically, we used the CRW to esti-
mate time-regularized (3 h) intervals to predict the
most probable paths for each whale. Large gaps in
tracking data, typically observed near the beginning
or end of our tracking data sets, can be problematic
when fitting CRW models, as the lack of data may
lead to implausible predictions in these gaps. For this
reason, prior to CRW modeling and statistical analysis,
tracking data with a gap (here defined as ~18 h or
longer) were trimmed to remove the gap and prior
data, when near the start of a track, or subsequent
data, when near the end. Additionally, since our ob-
jective was to study offshore (here referred to as the
Norwegian Shelf) behaviors occurring after whales
leave fjords with overwintering herring, all predicted
whale locations were designated as being either in-
shore or on the Norwegian Shelf based on fjord
spatial data from the Fjord Catalog provided by the
Norwegian Ministry of Environment (Christensen
2020). Specifically, spatial data from Kvæ nangenfjord,
Kaldfjord, Vengsøyfjord, Ersfjord, and Sessøy fjord
were used. Based on tracking data, the final time that
each individual whale crossed a fjord barrier was
recorded. Only points after the final time crossing the
fjord barrier were used for analysis in this study.
Tracks were cut to only include points after the final
time that each whale left the inshore area (the fjords).
In this study, we only analyzed contiguous tracks with
at least 20 locations on the Norwegian Shelf.

2.2.  Herring density

2.2.1.  Observed herring density

Data from the annual acoustic-trawl herring surveys
carried out by the Norwegian Institute of Marine Re-
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search (IMR) in February 2016, 2018, and 2019 (Slotte
et al. 2016, 2018, 2019) were used to map the distribu-
tion and density of NSS herring off the Norwegian
coast during the period of their spawning migration
towards southerly spawning areas. Three vessels cov-
ered the survey area using a stratified systematic
transect design (Slotte et al. 2019), where more effort
was allocated in high-density strata (Slotte et al. 2019)
(see Fig. S1a in the Supplement at www. int-res. com/
articles/ suppl/ m665 p217_ supp .pdf). The echosounder
data were recorded using SIMRAD EK60 or EK80 and
post-processed with LSSS software (Korneliussen et
al. 2016). Acoustic signal characteristics combined
with pelagic trawl catches were used to classify and
allo cate the acoustic backscattering of fish to the
acoustic categories ‘herring’ or ‘others’ (Salthaug et al.
2020). The acoustic density values were stored by
acoustic category in nautical area scattering coefficient
(NASC) units (MacLennan et al. 2002) with a horizon-
tal resolution of 1 nautical mile and a vertical re -
solution of 10 m. If permitted by the size of the catch,
weight and length data were collected from up to 100
individuals from each haul. StoX software (Johnsen et
al. 2019) and the R-package ‘RstoX’ (Hol min et al.
2019) were used to convert to density of herring by
combing the trawl samples and NASC values for her-
ring as input (see Johnsen et al. 2019 for details).

To estimate interpolated surfaces of relative den-
sity based on the NASC-derived point values along
transects, we used integrated nested Laplace ap -
proximations (INLAs) as implemented in the ‘INLA’
package (Rue et al. 2009, Lindgren et al. 2011, Mar-
tins et al. 2013, Lindgren & Rue 2015). Here, we
assumed that the NASC-derived density values fol-
low a negative binomial distribution. To model spa-
tial point processes, INLA uses stochastic partial dif-
ferential equations and Gaussian Markov random
fields to account for autocorrelation across space
(Rue et al. 2009, Lindgren & Rue 2015). This interpo-
lated density surface is hereafter referred to as the
‘observed’ field (Fig. S1c,d). Supporting barrier mod-
els were used to account for the barrier effect caused
by the Norwegian coastline (Bakka et al. 2016, 2018,
2019). A detailed description of INLA and the barrier
model can be found in Lindgren & Rue (2015) and
Bakka et al. (2016), respectively.

2.2.2.  Simulated herring density

The observed method delivers a static distribution
of the herring density, but is limited to the surveyed
area and the specific time period. To overcome these

limitations and explore the potential of using pre-
dicted herring distributions from a model covering a
greater spatial domain with a longer time period,
we used the Norwegian ecological end - to-end mo -
del (NORWECOM.E2E). This is a fully  coupled mo -
del system consisting of a nutrient− phytoplankton−
zooplankton−detritus model for lower tro phic levels,
and individual-based models (IBMs) for the copepod
Calanus finmarchicus and mackerel Scomber scom-
brus, herring, and blue whiting Micromesistius
poutassou (Hjøllo et al. 2012, 2019, Utne et al. 2012a).
NORWECOM.E2E is one of very few bottom-up
models world-wide where IBMs for different trophic
levels are 2-way coupled and are used to simulate
food web dynamics of a large regional sea, and the
only model system of this type for the Norwegian
Sea. The model has been validated by comparison
with field data in the Nordic and Barents Seas (Sko-
gen et al. 2007, Hjøllo et al. 2012, Utne et al. 2012b,
Skaret et al. 2014). The biogeochemical component is
validated against observations of chlorophyll a meas-
urements at an observation station in the Norwegian
Sea (Skogen et al. 2007), and C. finmarchicus IBM
fields are compared to density, abundance, and the
annual production in the Norwegian Sea (Hjøllo et
al. 2012). Movements and the resulting horizontal
distribution of herring and mackerel are validated
against observed distributions in the period 1995−
2006 (Utne et al. 2012b), and for 2012, Holmin et al.
(2020) found the modeled center of gravity (64.21° N,
7.35° E) for herring winter distribution to corresponds
well with the observed center of gravity. Thus, the
model provides distributions similar to those of the
real population in the Norwegian Sea, although not
for a specific year. The NORWECOM.E2E model
con siders wind, short-wave radiation, ocean cur-
rents, salinity, temperature, water level, and sea ice,
all taken from a downscaling (10 km horizontal reso-
lution using the ROMS model) of the Norwegian
Earth System (NorESM1_ME) climate model under
an RCP4.5 emission scenario (IPCC 2013, Skogen et
al. 2018). The climate model represents the statistics
of the climate in a period, and forcing is representa-
tive of present-day climate, not of a specific year.

In this model, herring fish stocks were initiated
based on the total number of individuals of each age
class (and the corresponding weights of these age
groups) based on the 2012 analytic assessments (ICES
2017). Herring growth, feeding, spawning, and
migration patterns depend on water temperature,
prey availability, and stock density; thus, changing
environmental conditions will cause interannual
variation. With regard to this study, advantages of

https://www.int-res.com/articles/suppl/m665p217_supp.pdf
https://www.int-res.com/articles/suppl/m665p217_supp.pdf
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the NORWECOM.E2E model are that the model has
a much wider geographical range than the observed
herring method, and accounts for daily changes in
herring density distribution. Hereafter, we refer to
the daily spatial herring density surface from NOR-
WECOM.E2E as the ‘simulated’ field. Example fields
are shown in Fig. S2. The simulation can be found in
Hjøllo et al. (2019).

2.3.  Killer whale move persistence 

We inferred how killer whales alter their movement
patterns in Norwegian waters by estimating their
move persistence. Move persistence (γt) is a measure
of the autocorrelation between successive displace-
ments, accounting for variability in both speed and
heading (Jonsen et al. 2019). Values range continu-
ously between 0 and 1, where 0 designates highly
variable movement typically in a restricted area, and
1 denotes consistent and directed movement (Jonsen
et al. 2019). We selected this movement metric be-
cause it provides a continuous scale of movement be-
havior, instead of discrete and somewhat arbitrary be-
havioral states (Breed et al. 2012, Auger-Méthé et al.
2017, Eisaguirre et al. 2019, Jonsen et al. 2019) and be -
cause a continuous metric can reveal differing propen-
sities towards movement across individual whales.
Move persistence was estimated from the horizontal
location data using the ‘fit_mpm’ function in the
‘foieGras’ R package (Jonsen & Patterson 2019).

2.4.  Herring−killer whale interactions

We used mixed effects modeling (Jonsen et al.
2019) to investigate how killer whale movement
characteristics (represented by the move persistence
index, γt) may be influenced by 2 environmental vari-
ables: (1) herring density and (2) light intensity (more
specifically sun angle, which influences herring diel
vertical migration). This approach can evaluate both
individual and population-level responses to e.g.
environmental variables, and is implemented in the
‘mpmm’ R package (Jonsen 2020), based on the
approach described by Jonsen et al. (2019). Ob ser -
ved herring density values were extracted from the
INLA-generated distributions for the appropriate
year based on whale track coordinates. Only 6.4% of
all tracking locations fell outside of the INLA-inter-
polated observed field for the corresponding year,
and therefore were excluded from the analyses. Sim-
ulated herring density values were extracted from

the NORWECOM.E2E model distribution based on
both day of the year and coordinates for individual
whale track points. Sun angle values, used as a proxy
for light intensity, were calculated for each whale
location using the ‘solarpos’ function in the ‘map-
tools’ package (Bivand & Lewin-Koh 2019).

We evaluated 9 candidate models for each density
field (observed and simulated). These models re flec -
ted all possible combinations of the full model’s com-
ponents. The full model was:

logit(γt) = ρt + αt + (ρt + αt | id) (1)

where density and sun angle are denoted by ρt and
αt, respectively, and represent fixed effects. Terms in
parentheses represent random slopes, with id denot-
ing random intercepts for individual whales (see Jon-
sen et al. 2019 for details). Since the observed her-
ring density distributions covered the most limited
geographic range, only whale track location points
within the interpolated observed herring density
field were considered in each model (Fig. S3). The
models, corresponding to either observed or simu-
lated herring density, were ranked based on changes
in Akaike’s information criterion (ΔAIC) and likeli-
hood ratio (ΔLR). Individual models that failed to con-
verge were not included in the ranking.

3.  RESULTS

3.1.  Killer whale tagging

Average satellite tag longevity was 40.8 ± 25.6 d
(mean ± SD, n = 29), ranging from 3 to 105 d
(Table 1). The earliest we observed a tagged whale
definitively leaving the fjords was on 4 December
and the latest was on 25 February. In total, 1183
whale-days of data were recorded. Tag retention
after the whales left inshore waters averaged 23.2 ±
20.6 d (n = 29) d, and ranged from 2 to 65 d, with a
total of 673 whale-days of Norwegian Shelf data.
Upon exiting the northern fjords, most tagged killer
whales initially traveled southwards along the Nor-
wegian Sea Shelf towards the herring spawning
grounds (Fig. 1). Two of these whales eventually left
the spawning grounds and traveled north of Norway
(Dietz et al. 2020), into the Barents Sea (Fig. S4).

3.2.  Herring density distributions

There were substantial annual variations in the ob -
served relative herring density distributions (Fig. 2).
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The relative density scales in these figures are nor-
malized and therefore, not directly comparable in
terms of absolute density. Nonetheless, a few consis-
tently high-density concentrations, or hotspots, were
observed at similar locations in all 3 years. In 2016,
the observed relative herring density was predomi-
nantly low throughout most of the surveyed area,
with a few patches of substantially higher relative
density, whereas in 2018 and 2019, relative herring
density was generally higher and more evenly dis-
tributed throughout the entire survey area.

3.3.  Killer whale behavior

The move persistence values for all whales showed
several discrete clusters of low move persistence be -
havior (blue/purple in Fig. 2), indicative of ARS, dis-
tributed along the Norwegian coast. Transiting corri-
dors, consisting of higher move persistence (yellow/

light-green) connect these low move
persistence zones. Because move per-
sistence is a continuous index, and
whales do not behave dichotomously,
there will also be in ter mediate values
(blue-green). This might be in dicative
of intermediate types of movements
that do not correspond directly to the
extremes of this continuous index. An
example of a transiting corridor can be
observed south of Lofoten, connecting
2 notable low move persistence clus-
ters (one west of Senja and the other
along the coast of Nordland County).

3.4.  Herring−killer whale 
interactions

In 2015/2016, areas with low move
persistence for killer whales over-
lapped with patches of high herring
density (Fig. 2a). A few minor patches
of low move persistence were also ob -
served in association with locally ele-
vated patches of herring density fur-
ther south along the Nordland coast
(see Fig. 1 for specific location names).
In contrast, the 2017/2018 and 2018/
2019 seasons had multiple patches of
low killer whale move persistence
including north of Tromsø, northwest
of Lofoten, and in the south along the

Møre coast (Fig. 2b,c), which generally coincided
with elevated herring density.

Ranking the mixed effects models (Table 2) indi-
cated that the most parsimonious model, logit(γt) =
ρt + (1γt | id), included a fixed effect for density and a
random intercept term for individual whales. This
model had the best fit for explaining killer whale
move persistence using both observed herring den-
sity and simulated herring density values (see
Table 2 and Fig. 3). The move persistence of all indi-
vidual killer whales was negatively correlated with
herring density. Killer whales tended to exhibit ARS-
type movement in areas of high herring densities,
suggesting foraging behavior (Fig. 3). This model
included individual intercept terms that did improve
the fit, suggesting that there are individual differ-
ences in overall movement characteristics between
killer whales. It is worth noting that in this most par-
simonious model, light intensity (sun angle) was not
considered as an environmental covariate that influ-
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Fig. 1. Killer whale tracks on the Norwegian Shelf. The tagging sites are indi-
cated with red circles. White text indicates places referred to in the text.
Tracking data from individual whales collected over 3 field seasons are
depicted and color coded by unique tag ID numbers. Norwegian spring-
spawning (NSS) herring survey spatial extent for 2015−2016, 2017−2018, and
2018−2019 seasons are indicated by dashed lines. The inset shows the Nor-
wegian coast in a larger geographic context, with pink shading representing
general NSS herring spawning areas and blue indicating current coastal NNS 

herring overwintering areas
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enced killer whale behavior. Nonetheless, the sec-
ond ranked model logit(γt) = ρt + αt + (1γt | id) for sim-
ulated herring density was also considered based on
its ΔAIC (<2.00) and its small LR. While this model
did include sun angle as an environmental covariate,
the fitting of this model indicated that move persist-
ence did not vary with sun angle (Fig. S5). Based
both on model ranking order, as well as the response
curve of the second ranked model, it is unlikely that
sun angle influenced whale movements. Additionally,
based on the principle of parsimony, we can con-
clude that the simplest of these 2 models, logit(γt) =
ρt + (1γt | id), best describes the behavior of the
whales. Additional supplemental analysis was con-
ducted to test how variations in relative simulated
herring density data affect modeling results (Text S1,
Figs. S6−S8, and Table S1).

4.  DISCUSSION

This study describes the movement behavior pat-
terns of killer whales along the Norwegian shelf in
relation to a key food resource, NSS herring (Similä
et al. 1996, Similä 1997, Simon et al. 2007). We found
that after leaving the herring overwintering areas in
northern Norway, killer whales broadly followed the
herring migration south towards their spawning
grounds on the Norwegian Shelf. Our results suggest
that killer whales alter their behavior in response to
herring biomass distribution patterns by reducing
their speed and directionality in areas with elevated
relative herring density on the Norwegian Shelf. This
is consistent with previous studies on predator−prey
interactions (Womble et al. 2014, Goldbogen et al.
2015, Hays et al. 2016). While performing our analy-
sis, Mul et al. (2020) used much of the same 2017/
2018 and 2018/2019 tracking data and found that
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Fig. 2. Observed relative density of herring during the
month of February with killer whale move persistence (γt)
estimates overlaid, for (a) 2015/2016, (b) 2017/2018, and
(c) 2018/2019 (greyscale, where darker values indicate
higher relative herring density). Note that the relative
observed herring density scales differ. Absolute density val-
ues cannot be compared across years, but relative values
and distribution patters can. Move persistence values for the
corresponding season are superimposed over the observed
relative herring density distributions. Each point is colored
by the corresponding move persistence value γt, ranging
from yellow, indicating transiting behavior with high speeds
and consistent directionality, to dark purple indicating for-
aging behavior with reduced speeds and frequently 

changing directionality
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these Norwegian killer whales were frequently at-
tracted to herring fishing vessels, especially within
the fjords. Thus, we may consider herring fishing

boat locations as an indirect proxy of
herring density. It is worth noting that
a small number of tracks in this study
were from whales tagged in Møre and
therefore do not necessarily represent
whale movements following the spaw -
ning migrations of NSS herring. None -
theless, since these individuals also re-
mained within the high-concentration
herring areas for the majority of the
tracking period, their behavior sup-
ports the notion that herring remain a
key prey  species for killer whales out-
side of the main overwintering areas,
even though we do not know their be -
havior prior to arriving at the spaw -
ning grounds.

In our study, killer whale move per-
sistence was inversely influenced by
both observed and simulated relative
herring density. Each approach for
modeling relative herring density had
its own strengths and weaknesses.
The observed annual spatial fields
based on NASC-derived herring den-
sity was limited in geographical range
to the areas covered by the NSS her-
ring surveys in each specific year and
provided a static snapshot of herring
density distribution during their spaw -
ning migration. A strong point of this
method is that it was based on actual
acoustic and biotic herring observa-

tions. In contrast, the simulated data provided dyna -
mic predictions of variation in herring density distri-
butions across a broader geographical range, but due
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Herring density method Model formula df ΔAIC ΔLR

Observed herring density ~density + (1 | id) 6 6310.46 6298.461
~density + sun angle + (1 | id) 7 2.00 0.000
~density + (density | id) 8 4.00 0.000
~1+ (1 | id) 5 12.07 14.070
~sun angle + (1 | id) 6 14.07 14.070
~sun angle + (sun angle | id) 8 15.46 11.460

Simulated herring density ~density + (1 | id) 6 6306.46 6294.457
~density + sun angle + (1 | id) 7 1.57 −0.430
~1+ (1 | id) 5 16.08 18.080
~sun angle + (1 | id) 6 18.08 18.080
~sun angle + (sun angle | id) 8 19.46 15.460

Table 2. Model rank table. Ranked lists of models using either relative observed herring density acquired from the observed
field or models using relative simulated herring density acquired from the simulated field. Model order was based on the
change in Akaike’s information criterion (ΔAIC) and change in likelihood ratios (ΔLR). The most parsimonious models, indi-

cated in bold, show AIC (not ΔAIC) and LR (not ΔLR) values

Fig. 3. Most parsimonious model from mixed effect analysis of killer whale
move persistence and herring density. Panels display individual (blue lines)
random effects relationships and group (red line) fixed effects responses when
using either (a) relative observed herring density values or (b) relative simu-
lated herring density values. For both cases, the most parsimonious model was
(logit(γt) = ρt + (ρt | id)). Note that the relative observed and simulated density 

scales are different and not directly comparable
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to the physical forcing applied, did not represent a
specific year. The similarities in mixed effect model-
ing when using these different relative herring den-
sity estimates strongly suggest that in general, killer
whale movements along the Norwegian Shelf are
broadly associated with herring distribution during
the period between overwintering and spawning.
Since the most parsimonious model for explaining
killer whale movement behavior was the same when
each method of predicting herring density was used,
we conclude that both approaches for modeling her-
ring density capture the key elements of NSS herring
density distributions related to killer whale move-
ments. Furthermore, each of these methods validates
the use of the other in future studies.

Light intensity did not improve the fit of the models
tested, suggesting that killer whale movement char-
acteristics do not display diel variations in this
period. There are at least 3 plausible explanations for
why including light intensity did not improve model
fit. First, whale behavior might not be influenced by
variations in light intensity. This seems unlikely
because herring are known to exhibit diel vertical
migration throughout the water column, even in the
winter in northern fjords (Huse & Korneliussen 2000).
Nonetheless, the lack of relationship with sun angle
could be attributed to different propensities in diur-
nal patterns based on sex of the whales (Beck et al.
2003). In that study, male grey seals Halichoerus gry-
pus dove consistently throughout the day, whereas
females had strong diurnal diving patterns. As our
tagging protocol targeted only male killer whales,
we cannot rule out a similar sexual bias. Second, the
3 h reconstructed step intervals used in this study
might provide insufficient temporal resolution to
detect variations in whale movements caused by her-
ring diel vertical patters (Sims et al. 2008, Postleth-
waite & Dennis 2013). A third explanation may be
that vertical migrations of herring in the water col-
umn only influence the dive patterns of killer whales,
but not their horizontal movements. This explanation
is consistent with pinniped studies that have recently
questioned whether optimal foraging theory can be
explained based solely on pinniped horizontal move-
ments, and they suggest that both vertical and
 horizontal movements need to be considered since
individuals may still forage while seeming to be ex -
hibiting directed transiting behavior (Bestley et al.
2015, Carter et al. 2016). Future studies utilizing
biologging techniques that record depth data and/or
more frequent sampling rates might allow us to
address more detailed fine-scale behavioral varia-
tions, such as diel patterns in dive behavior and for-

aging intensity. Fine-scale diving behavior pattern
studies have been conducted extensively on killer
whales in other regions (e.g. Baird et al. 1998, 2008,
Reisinger et al. 2015, Wright et al. 2017, Tennessen et
al. 2019). Reisinger et al. (2015) found clear diel vari-
ations in the dive behaviors of killer whales and
related these variations to the diel vertical migration
of species which this population of Marion Island
killer whales are known or thought to prey upon. The
influence of vertical diving on the interpretation of
horizontal movement behavior has not been addressed
in cetaceans. 

After the overwintering period, when herrings
leave the fjords for their southern spring spawning
grounds, our study shows that killer whales also do
so. Most tagged whales in our study relocated south
to the NSS herring grounds, at least for an initial
period, and in most cases until tags stopped transmit-
ting. Throughout the spawning grounds, high rela-
tive herring density values were correlated with
restricted whale movement behaviors, suggesting
that the whales continue to feed on herring along the
shelf well into the spring. The fact that all killer
whales in our study responded similarly to changes
in herring density suggests that this population spe-
cialized on herring, at least for the period over which
they were tagged. This is consistent with previous
studies suggesting that Norwegian killer whales are
largely herring specialists (Similä et al. 1996, Simon
et al. 2007). However, numerous observation-based
studies have reported Norwegian killer whales for-
aging on a variety of prey types in addition to her-
ring, including other pelagic and benthic fish as well
as marine mammals (Similä et al. 1996, Foote et al.
2009, Vester & Hammerschmidt 2013, Vongraven &
Bisther 2014, Jourdain et al. 2017, 2020a,b). This is
also supported by telemetry-based studies such as
Dietz et al. (2020) which showed movements in to
areas where they likely target other prey types. Since
the whales in our study were primarily tagged in
known overwintering herring areas, and our track-
ing period occurred when Norwegian herring were
migrating to their spawning grounds and spawning,
it is possible that our study was biased towards her-
ring specialists. 

Our data are also consistent with an alternative
hypothesis, that Norwegian killer whales are oppor-
tunistic generalists (in terms of their overall annual
diet) that all respond to herring in the same way
when herring are abundant along the coast. As her-
ring move offshore after the spawning period, killer
whales may remain along the coast and switch to
other prey types (Nøttestad et al. 2014), or they may
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follow the herring migrations towards their summer
and autumn feeding grounds. The former would
 suggest a more generalist strategy, while the latter
would indicate stronger specialization towards her-
ring. This seasonal shift in feeding is consistent with
studies on Marion Island killer whales, where stable
isotope analysis indicated seasonal shifts in foraging
area for that population (Reisinger et al. 2016). One
possibility is that some fraction of the population
remains along the coast, while another follows the
herring offshore. It is also possible that whales switch
back and forth between coastal and offshore behav-
ior. This would be consistent with previous studies
that found killer whales exhibiting prey-switching
behaviors depending on seasonality and/or prey
availability (Bisther & Vongraven 2001, Krahn et al.
2008, Foote et al. 2010, de Bruyn et al. 2013, Jourdain
et al. 2017). Furthermore, genetic data suggest a sub-
stantial degree of mixing between Norwegian, Ice-
landic, and Greenlandic waters (Foote et al. 2010,
2011, 2013, Jourdain et al. 2019), while killer whales
are also observed along the Norwegian coast year-
round (Similä et al. 1996). This suggests that there
may be a mix of strategies operating simultaneously
within this population. A generalist classification of
Norwegian killer whales is consistent with recent
studies on Norwegian killer whale dietary variations
(using stable isotope analysis), where considerable
heterogeneity between individual dietary patterns
was observed (Jourdain et al. 2020a).

We noted that the population of whales tagged in
the northern fjords left those fjords over a 3 mo
period. Considering the clear relationship between
the behavior of these killer whales and herring den-
sities on the shelf, it is plausible that the heterogene-
ity observed when the whales left the fjords might
reflect heterogeneity in the timing of the herring
spawning migration. Similarly, not all herring actu-
ally enter the fjords to overwinter; some aggregate
on the shelf instead. Thus, it is plausible that whales
leaving the fjords early still associate with herring
aggregations, and are simply switching to aggrega-
tions occurring outside the fjords.

Two whales in our study (ID 60268 and 62027), de-
scribed by Dietz et al. (2020), displayed interesting
tracks that might shed light on whether Norwegian
killer whales are generalists or herring specialists.
These whales were tagged in a fjord where herring
were overwintering, exited the fjord, and traveled to-
wards the herring spawning migration, before chang-
ing course and ultimately traveling northward away
from the herring spawning grounds and to wards No-
vaya Zemlya (see Fig. S4). While we do not know

what prey these whales may have targeted after leav-
ing the southern herring spawning grounds, it is
plausible that they switched from feeding on herring
to other fish species such as capelin Mallotus villosus
or ice-associated species such as polar cod Bore-
ogadus saida, or perhaps other marine mammals. It is
worth noting that these 2 whales, prior to traversing
into the Barents Sea, showed the same pattern of de-
creased move persistence in association with high
herring density as all the other whales in the study.
This is consistent with prey-switching behavior. Our
study was designed to investigate the influence her-
ring density has on killer whale move persistence.
Future investigations to specifically evaluate prey-
switching behavior among Norwegian killer whales,
in agreement with the results of Jourdain et al.
(2020a), could entail evaluating the influence of both
proximity to known seal haulout areas, as well as her-
ring density, on killer whale move persistence.

In conclusion, the main finding of our study was that
killer whale movements are influenced by changes in
herring density distributions on the Norwegian Shelf
during the herring spawning period. Unlike most pre-
vious studies that correlate changes in marine preda-
tor behavior to indirect proxies of prey distribution
(Redfern et al. 2006, Sequeira et al. 2012, Becker et al.
2016), our study provides compelling evidence based
on whale telemetry data and herring density distribu-
tions. The use of actual prey density distributions to
examine predator−prey relationships is rare for mar-
ine studies of this kind (Pendleton et al. 2020). Based
on this approach, killer whale movement behaviors
might be useful for potentially identifying previously
unknown areas of high NSS herring density. Such lo-
cations can in turn be used to inform future herring
survey designs, and ultimately expand our under-
standing of their dynamic distribution. It is uncertain
if and how climate change, or other environmental
factors, will affect the distribution patterns of NSS
herring (Sissener & Bjørndal 2005); however, it is clear
that changes in herring distributions could influence
the distribution and behavior of killer whales. It has
been observed that herring feeding grounds have
been shifting further north with increased water tem-
peratures (ICES 2013). While it was previously docu-
mented that warming ocean temperatures positively
correlated with increasing herring density (Toresen &
Østvedt 2000), more recent studies found that that
around 2005, ocean temperatures continued to in -
crease, whereas herring density plateaued and then
began to decrease (Toresen et al. 2019), affecting both
herring abundance and migration patterns. If herring
distribution patterns continue to change, Norwegian
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killer whale distributions might also be expected to
change (Nøttestad et al. 2015, Jourdain & Vongraven
2017), particularly if they follow shifts in herring den-
sity, as demonstrated in our study. Re  gardless, our
study, conducted between 2015 and 2019, can serve
as a baseline for future comparative studies, if and
when the NSS herring distribution shifts.
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