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1.  INTRODUCTION

Animals often move between habitats at different
stages of their lives. When these habitat shifts coin-
cide with a developmental transition (for example,
between juvenile and mature stages, or pre- and
post-metamorphosis), they are referred to as ontoge-
netic habitat shifts (Stamps 1983). Such habitat tran-
sitions may occur as resource requirements change
with the onset of maturity and/or as individuals grow.
For instance, as green turtles Chelonia mydas ma -
ture, they travel to deeper zones along the Pacific

coast, where adult food is abundant (López-Mendila-
harsu et al. 2005). Another reason for moving be -
tween habitats may be to avoid or reduce conspecific
aggression or predation. For example, juvenile fishes
often live in structurally complex nursery habitats,
such as mangroves, seagrasses, corals, or macroalgae,
to avoid predation by larger conspecifics and het-
erospecifics (Nagelkerken et al. 2000, Laegdsgaard &
Johnson 2001, Unsworth et al. 2009, Evans et al.
2014). In many animals, males and females may also
maintain distinct habitats until it is time to reproduce.
Anglerfishes (Lophiiformes) are potentially one of the
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most extreme examples, where small ma les transition
from being free-swimming to being permanently
 attached to their larger female anglerfish counter -
parts to ensure reproductive opportunities when
the female spawns (Pietsch 1976). While the mecha-
nisms motivating ontogenetic shifts of individuals are
well understood in some systems, in other systems
the drivers are less clear and are likely context-
 dependent.

The timing of ontogenetic shifts can vary according
to the environment experienced by the individual.
For instance, in many marine species with bipartite
life histories, individuals will often delay metamor-
phosis until they have acquired sufficient resources
to metamorphose or until they encounter suitable
settlement habitats (Marshall & Morgan 2011). In
sequential hermaphrodites, the timing of a sex
change can be determined by the composition of the
surrounding social environment (Charnov & Bull
1989, Munday et al. 2006). For instance, in the ab -
sence of males, the largest female bluehead wrasse
Thalassoma bifasciatum in the local population will
transition into a male (Warner & Swearer 1991). The
newly transitioned male will then dominate the
harem of females, in turn increasing his reproduc-
tive output. The timing of such transitions in mor-
phology, sex, or habitat can influence the acquisi-
tion and defence of resources, and thereby survival
and reproductive success (Sergio et al. 2017). Ulti-
mately, by influencing the fitness of individuals,
environmentally dependent ontogenetic shifts im -
pact the ecological and evolutionary trajectories of
populations.

The Kermadec Islands giant limpet Scutellastra
kermadecensis is endemic to Aotearoa (New Zea -
land), and restricted to Rangitāhua (Kermadec Is -
lands). These islands are a small, isolated archipel-
ago in the southwest Pacific approximately 750 km
northeast of the North Island of Aotearoa. Kermadec
giant limpets grow to be the dominant grazers in the
low intertidal and shallow subtidal zones of Ran-
gitāhua (Creese et al. 1990, Wood & Gardner 2007).
Individuals commonly reach a shell length greater
than 130 mm and populations can reach densities of
up to 40 individuals m−2 (Cole et al. 1992). Despite
being locally abundant and resident in a large old
Marine Protected Area (Kermadec Islands Marine
Reserve), the Kermadec giant limpet is ex tremely
range-restricted, occupying only these few isolated
islands and outcrops, and therefore there has been
much interest in its population ecology and extinc-
tion risk (Fleming 1973, Schiel et al. 1986, Creese et
al. 1990, Cole et al. 1992, Wood and Gardner 2007).

Like other patellid limpets, Kermadec giant limpets
are broadcast spawners with external fertilisation
and pelagic larvae (Lindberg & Marincovich 1988,
Wood & Gardner 2007). The embryos and larvae dis-
perse in the ocean before settling to the substrate
and metamorphosing. The adults are largely seden-
tary, or faithfully homing, which is evident from the
home scars they leave on the rocky substrate (Fig. S1
in the Supplement at www. int-res. com/ articles/ suppl/
m666 p089 _ supp. pdf; Creese et al. 1990, Wood &
Gardner 2007). Kermadec giant limpets are pro -
tandrous hermaphrodites, with the unusual habit
that smaller individuals, typically male, often piggy-
back on the shells of larger, typically female, individ-
uals (Creese et al. 1990). The reasons for the piggy-
backing behaviour are unknown, but it may be that
male limpets piggy-back on larger females to ensure
mating opportunities, to avoid competition and being
bulldozed by larger limpets, and/or to graze algae
that grows on the back of larger older limpets — a
resource that would otherwise remain ungrazed.
Creese et al. (1990) showed that when Kermadec
giant limpets reach a size of 55−67 mm, they shift
microhabitats from predominantly piggy-backing to
being mostly attached to the rock surface. As Ker-
madec giant limpets of various sizes can be found
piggy-backing or rock-attached, it is unlikely that
the timing of this ontogenetic habitat shift is prede-
termined; rather, the habitat shift appears to be de -
pendent on environmental factors such as space,
food, or the social environment.

While often overlooked, the importance of the
social environment in determining individual behav-
iour, life-history outcomes, and population demogra-
phy of gastropods has been highlighted in numerous
studies (e.g. Branch 1975a,b, Schroeder 2011, Le
Cam et al. 2014, Martins et al. 2017). Hence, we
investigated whether the social environment (the
number and size of surrounding limpets) influences
the shell length — our proxy for age or life stage — at
which piggy-backing limpets transition to becoming
rock-attached. We hypothesized that if access to
algal resources was the strongest driver of piggy-
backing behaviour, the number of piggy-backing
lim pets would increase as rock availability de -
creased. Alternatively, if smaller limpets are piggy-
backing to avoid competition, to avoid bulldozing, or
to secure breeding opportunities with larger, rock-
attached females, we hypothesized that the number
of piggies (i.e. piggy-backing limpets) would in -
crease as the number and size of rock-attached
limpets increased. Furthermore, we expected that
piggies would delay the transition to being rock-
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attached with increasing host size, but would transi-
tion to being rock-attached sooner as the number
and size of piggy-backing limpets increased, reflect-
ing a situation where limpet shell habitat becomes
limiting. Deducing the consequences of population
density and size structure in this species is critically
important for understanding demographic change in
these relict populations of an extremely range-
restricted endemic species.

2.  MATERIALS AND METHODS

2.1.  Study design and population survey

The study was conducted during November 2015
at 3 locations, separated by 100s of meters around
islands and islets of the largest island in the Ran-
gitāhua archipelago, Raoul Island (Fig. 1). Nested
within each location were sites separated by 10s of
meters (Boat Cove: 8 sites; North Meyer Island:
7 sites; South Meyer Island: 6 sites), and nested
within each site were three 0.25 m2 quadrats (sepa-
rated by 1−2 m) placed on the substrate in the low
intertidal zone inhabited by Kermadec giant limpets.
For each quadrat, a photograph with the camera par-
allel to the quadrat was taken (Fig. S1). From these
photos, we collected information at 3 scales: quadrat
level, subquadrat level (3 randomly placed 0.0225 m2

quadrats within each quadrat), and individual (lim -
pet) level. Individual limpets were classified as either
limpets attached to the shells of other limpets (re -

ferred to as ‘piggies’) or limpets directly attached to
the rock surface (referred to as ‘rock-attached’). We
then further distinguished between rock-attached
limpets with piggies attached to their shells (‘hosts’)
and rock-attached limpets without limpets attached
to their shells (‘non-hosts’).

2.2.  Habitat and social environment analysis

Quadrat-level data were used to describe the social
environment surrounding the subquadrats. To quan-
tify the available rock space, we used the image
analysis software ImageJ (Schneider et al. 2012) to
randomly place 125 points within the borders of each
quadrat (Fig. S1). Points that landed on or outside the
quadrat, as well as points that landed on undefined
space inside the quadrat (blurriness and/or water),
were excluded. The proportion of available rock
space was calculated by counting the points that did
not land on limpets or home scars (Fig. S1). Then, for
each quadrat, we counted the total number of rock-
attached limpets (both hosts and non-hosts) includ-
ing home scars and the number of piggies on the
hosts. We then randomly placed three 0.0225 m2 sub-
quadrats within each quadrat using ImageJ and
counted and measured the shell length of each rock-
attached (host and non-host) and piggy limpet. For
the individual-level data, we measured the size of
10 randomly selected hosts in each quadrat, and then
we counted the number of piggies and measured the
size of all piggies. Although we were able to count all
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Fig. 1. (a) The location of Rangitāhua, the Kermadec archipelago, relative to the North Island of Aotearoa (New Zealand), indi-
cated by the dashed rectangle. (b) The location of Raoul Island relative to the other islands in the Rangitāhua archipelago. (c)
The sampling locations distributed around Raoul Island: the western side of North Meyer (NM) and South Meyer (SM) Islets, 

as well as Boat Cove (BC) on the eastern side of Raoul Island
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limpets at the subquadrat and individual levels, we
only measured limpets where the shell was oriented
parallel, or close to parallel, to the camera and where
the individual was clearly visible (i.e. not obscured
by blurriness and/or water).

2.3.  Statistical analysis

To determine whether the relationship between
shell length and the probability of a piggy transition-
ing into a rock-attached limpet varied according to
the social environment (i.e. size and number of rock-
attached limpets, as well as piggy size and number),
we used binomial generalised linear mixed models
(GLMM) with a logit link. In this analysis, the re s -
ponse variable was binary, where 1 indicated the
ind ividual was a piggy and 0 indicated the individual
was a rock-attached limpet (i.e. host or non-host).
The fixed effects were shell length, rock-attached
limpet number and size, piggy number and size,
available rock space, and the interactions between
shell length and rock-attached limpet number and
size, piggy number and size, and available rock
space. The random effects were location, site nested
within location, quadrat nested within site, and sub-
quadrat nested within quadrat (which was treated
as an observation-level random effect; Elston et al.
2001). 

To determine whether the relationships between
shell length and the proba bility of a rock-attached
limpet becoming a host varied depen ding on the social
environment, we used a binomial GLMM in which the
response variable was binary, with 1 indicating the in-
dividual was a host and 0 in dicating the individual was
a non-host. The same fixed and random factors were
used in this model as in the model for
piggy-backing behaviour.

To examine the relationship be -
tween host size and piggy number, we
used a Poisson GLMM with a log link.
The response variable was the num-
ber of piggies, the fixed effect was
host size, and the random effects were
location, site nested within location,
and quadrat nested within site. 

Lastly, to examine the relationship
be tween piggy size and host size, a
linear mixed model (LMM) was used
with piggy size as the response. The
fixed and random effects in the LMM
for piggy size were the same as in the
Poisson GLMM for piggy number.

For both the subquadrat-level data and the individ-
ual-level data, we used backward model selection
using nested log-likelihood ratio tests to determine
the significance of each term (Tables S1, S2, S4 and
S5 in the Supplement). If none of the random effects
were significant, we retained the observation-level
random effect (i.e. subquadrat) to account for any
possible overdispersion (Elston et al. 2001). To test
for overdispersion, we used a χ2 test using the sum of
the squared Pearson residuals divided by the resid-
ual degrees of freedom as the test statistic, and
degrees of freedom equal to the residual degrees of
freedom (residual degrees of freedom = 548). All
analyses were implemented in the lme4 package
(Bates et al. 2015) for R version 4.0.2 (R Core Team
2020) using RStudio (RStudio Team 2020). To deter-
mine the robustness of our parameter estimates we
assessed each model fit for all available optimisers
and compared the equivalence of the parameter esti-
mates. Lastly, to explore the influence of collinearity
among our predictor va riables on the variance of our
parameter estimates, we confirmed that the gener-
alised variance inflation factor for each parameter in
our best-supported models was less than 3 (Zuur et
al. 2010).

3.  RESULTS

At the individual level, piggy number had a posi-
tive relationship with host size, and this trend was
consistent across all locations (Fig. 2a, Table S5).
Most hosts had only one piggy (58%); however,
there were hosts with large numbers of piggies and,
in particular, one relatively small rock-attached
individual (48.5 mm shell length [SL]) that hosted 7
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Fig. 2. Relationship between host size and (a) total number of piggies and (b)
piggy size for Kermadec giant limpets at Raoul Island, Rangitāhua. Lines are 

predicted values from the linear mixed models



piggies (Fig. 2a). When piggies were present, there
was also a positive relationship be tween piggy size
and host size (Fig. 2b, Table S5). Overall, bigger
hosts were more likely to have piggies, had more
piggies (Fig. 2a), and those piggies were larger
(Fig. 2b).

At the sub-quadrat level, the relationship between
shell length and the probability of a limpet being a
piggy versus rock-attached varied depending on the
rock-attached limpet number, rock-attached limpet
mean size, and piggy mean size, but not rock space
availability or piggy number (Table S2). The shell
length at which a piggy transitioned to being rock-
attached was smaller when mean piggy size was
larger (Fig. 3a). However, when mean piggy size was
large (>55 mm SL), there was an equal probability of

a limpet being a piggy or rock-attached at all shell
lengths. When the rock-attached limpet number was
higher, the shell length at which piggies transitioned
into a rock-attached limpet was smaller than when
the rock-attached limpet number was lower (Fig. 3b).
When mean rock-attached limpet size was large, the
shell length at which piggies transitioned into rock-
attached limpets was also larger. Importantly, there
appeared to be a minimum size (indicated by the
largest SL where a zero predicted probability of an
individual being rock attached was identified) before
piggies transitioned to becoming rock-attached lim -
pets (approximately 32 mm SL; lower left of Fig. 3c).

The shell length at which rock- attached individuals
became hosts varied depending on piggy number,
host size, and piggy size (Table S2). When piggy num-

ber was higher, the shell length at
which rock- attached limpets be came a
host was smaller. However, there was
a minimum shell length for a rock-
 attached limpet to become a host (ap-
proximately 47 mm SL; Fig. 4a). When
piggies were smaller, the shell length
at which a rock-attached limpet be-
came a host was smaller (Fig. 4b). Last -
ly, when neighboring rock- attached
limpet mean size was larger, the shell
length at which rock-attached lim pets
be came hosts was also generally lar -
ger, although, in the presence of very
large rock- attached limpets (approx -
imately 100 mm SL), small rock-
 attached limpets also had a high prob-
ability of being hosts (upper left of
Fig. 4c). More typically, rock- attached
limpets became hosts at approximately
66 mm SL (Fig. 4c). Overall, the proba-
bility of a piggy transitioning into a
rock-attached lim pet did vary signifi-
cantly among subquadrats, but not lo -
cations, sites, or qua drats (Table S2).
Furthermore, the probability of a rock-
 attached limpet transitioning into a
host did not vary across any spatial
scale sampled (Table S2).

4.  DISCUSSION

The social environment played an
important role in the size at which
Kermadec giant limpets transitioned
habitats, and available rock space did
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Fig. 3. The probability of a Kermadec giant limpet piggy-backing (red) or
being rock-attached (pale yellow) for the interaction between shell length (SL)
and (a) the mean size of piggies in the surrounding environment (piggy mean
size); (b) the number of rock-attached limpets in the surrounding environment
(rock-attached number); and (c) the mean size of rock-attached limpets in the
surrounding environment (rock-attached mean size). Symbols indicate the ob -
served values for piggies (filled circles) and rock-attached limpets (open circles).
The grey triangle and bar above each panel indicates the sizes (55−67 mm) at
which Creese et al. (1990) observed a habitat shift from piggy-backing to 
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not influence piggy-backing behaviour (Table S3 in
the Supplement). Piggies on larger hosts were larger
and more densely packed, suggesting that piggies
preferentially sought out these larger hosts or they
persisted as piggies for longer when attached to
larger hosts. Furthermore, if large hosts were absent
and piggy densities were high, rock-attached limpets
became hosts at a smaller size, suggesting that these
ontogenetic shifts are socioecologically plastic. While
it is clear from our results that small Kermadec giant
limpets preferentially occupy the back of the shell of
host limpets, and that the social environment influ-
ences the timing of habitat transitions, there are sev-
eral possible explanations for these behaviours. For
ins tance, it could be that piggies are utili zing hosts to
access grazing opportunities that would otherwise go
ungrazed, to avoid bulldozing by lar ger conspecifics,

and/ or to secure breeding opportu -
nities with larger, rock-attached fe -
males. Although we cannot distin-
guish among these hypo theses with
the data in hand, below we discuss
each in turn with regard to our results
and the supporting literature.

The Kermadec giant limpet is nu me -
rically and spatially dominant in the
intertidal zone of Rangitāhua (Schiel
et al. 1986, Creese et al. 1990, Cole et
al. 1992, Wood & Gardner 2007). In
several of our subquadrats/quadrats,
more of the area was made up of Ker-
madec giant limpet backs than limpet-
free rocky substrate. Shell-forming in -
vertebrates such as lim pets are known
to be important secondary habitat
for conspecifics and other organisms
(Branch 1975a,b, Thyrring et al. 2013,
Martins et al. 2014), including algae,
which can then be consumed by graz-
ers (van Tamelen 1987, Wernberg
2010). For instance, the large shell
of the turban snail Turbo torquatus
is readily colonised by foliose algae,
which in turn attracts and supports
other grazers such as patellid limpets
(Wernberg 2010). In the case of Ran-
gitāhua, an abundance of intertidal
algae occupies the rocky in tertidal,
including the backs of the limpets
(Fig. S1). Piggy-backing Kermadec
giant limpets may simply reside on the
back of larger limpets to graze the
available resource. Our results indica-

ting that larger limpets have larger and more piggies
support this idea. However, our finding that rock
availability, and thereby the availability of algal re -
sources attached to the rock surface, was less impor-
tant than aspects of the social environment suggests
that piggy-backing behaviour is not purely resource-
driven.

Given that Kermadec giant limpets are the most
abundant macrograzer in the intertidal zone of Ran-
gitāhua (Schiel et al. 1986, Creese et al. 1990, Cole et
al. 1992, Wood & Gardner 2007), a large proportion
of the biotic interactions for individual Kermadec
giant limpets would be with conspecifics. Mobile
macrograzers such as limpets are known to nega-
tively impact newly settled larvae and recruits of
benthic marine invertebrates through bulldozing
(Day ton 1971, Ellrich et al. 2020). For example, ses-
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Fig. 4. The probability of a Kermadec giant limpet hosting a piggy (red) or
being a non-host rock-attached limpet (pale yellow) for the interaction
between shell length (SL) and (a) the number of piggies in the surrounding
environment (piggy number); (b) the mean size of piggies in the surrounding
environment (piggy mean size); and (c) the mean size of rock-attached limpets
in the surrounding environment (rock-attached mean size). Symbols indicate
the observed values for non-hosting rock-attached limpets (filled circles) and 
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sile species such as barnacles are often bulldozed by
mobile grazers such as periwinkles and limpets
(Underwood et al. 1983, Bertness 1984). Barnacles
can avoid this bulldozing effect by growing rapidly
and achieving a size refuge (Denley & Underwood
1979, Bertness 1984). Mobile species that are also
susceptible to bulldozing have behavioural respon -
ses to avoid these disturbances (Dayton 1971, Tegner
et al. 1995, Day & Branch 2002). For instance, recruits
of the South African abalone Haliotis midae avoid
being bulldozed by hiding beneath larger ur chins
and moving with their host urchin, thereby remain-
ing concealed and protected from bulldozing as well
as predators (Tegner et al. 1995, Day & Branch 2002).
The shells of larger Kermadec giant limpets offer a
substrate where smaller individuals can avoid antag-
onistic interactions with the largest individuals in the
population, and thereby provide a potential refuge
from competition, physical bulldozing, and death.
Moreover, we observed cases where small limpets
were piggy-backing on piggies, suggesting that size-
structured bulldozing among piggies might also
occur on the backs of host Kermadec giant limpets.

Resource partitioning and antagonistic interactions
are 2 mechanisms that could underlie piggy-backing
behaviours; a third mechanism is the aggregation of
males and females to maximise their reproductive
output (Pietsch 1976, Chen et al. 2018). Broadcast-
spawning marine organisms commonly form mating
aggregations to maximise fertilisation success by
reducing sperm limitation (Stanwell-Smith & Clarke
1998, Yund 2000), with males in closer proximity to
broadcast-spawning females typically having grea -
ter reproductive success (Picken & Allan 1983, Collin
et al. 2006, Marshall & Bolton 2007, Henry et al. 2010,
Suda et al. 2015, Chen et al. 2018). Creese et al.
(1990) used histology to reveal that Kermadec giant
limpets are protandrous; small limpets are typically
males, transitioning to become females at a larger
size and presumably older age. Importantly, none of
the limpets that Creese et al. (1990) could confidently
identify as female were piggies. Thus, it could be that
small male limpets preferentially piggy-back on
larger, rock-attached females to ensure they are near
eggs when they are released, allowing greater fertil-
isation success.

In accordance with studies demonstrating that lim -
pets will transition to becoming female at a smaller
size when females are rare or when male density is
high (Patella ferruginea, Rivera-Ingraham et al. 2011;
and Crepidula coquimbensi, Brante et al. 2012), we
found that limpets transitioned to being rock-
attached, and potentially transitioning to becoming

females, at a smaller size in denser piggy popula-
tions. These developmental and habitat transitions
may allow individuals to gain reproductive opportu-
nities as a female sooner when there is an abundance
of smaller males to sire offspring and to avoid male−
male competition for fertilisations (discussed in Mun-
day et al. 2006). However, although quadrats with
larger, rock-attached limpets had lower overall num-
bers of piggies, there were greater numbers of larger
piggies on each host. These results appear to support
another socially mediated behaviour: individuals
delay the transition to becoming rock-attached, and
presumably to becoming female, when they have
access to large, presumably female, hosts (e.g. also
observed in Crepidula spp. by Coe 1938 and Brante
et al. 2016). To support the hypothesis that the timing
of habitat transitions may be driven by reproductive
opportunities, we would need to establish that there
is a strong association between the timing of sex
change and the timing of the habitat transition in
Kermadec giant limpets.

Ontogenetic habitat shifts are often associated with
a transition from a life stage focused on growth and
survival to a stage focused on reproduction and
 survival (Stearns 1989). By avoiding bulldozing and
grazing the algae on the shells of host limpets, piggy-
backing may allow greater survival and growth of
small male limpets while keeping them in the imme-
diate proximity of females should they release their
eggs. The positive relationship between female size
and fecundity in animals is pervasive (Nobili &
Accordi 1997, Chaparro et al. 1999, Chaparro & Flo-
res 2002, Espinosa et al. 2006, Kasamatsu & Abe
2015), and previous studies suggest that larger
females have a disproportionately large fecundity
advantage over smaller females (Espinosa et al. 2006,
Barneche et al. 2018). Thus, piggy-backing in Ker-
madec giant limpets could be a strategy that max-
imises growth and survival, and ensures reproduc-
tive opportunities for males, while simultaneously
maximising popu lation growth by allowing the
largest individuals to be female, and ensuring
females have a reliable  supply of sperm to fertilise
their eggs when they are spawned.

Here, our focus has been on density-dependent
population processes. Of course, populations in small
isolated locations are dependent on the retention of
locally produced offspring, as there is little or no
metapopulation connectivity (Liggins et al. 2014).
Some of the variation we observed in the size struc-
ture of these limpet populations may be due to the
sporadic recruitment of limpets and the number of
recruitment seasons that have contributed to the
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population. A previous genetic study of the Ker-
madec giant limpet suggests that populations sepa-
rated by as little as 400 m can be genetically differen-
tiated, and recruiting limpets are predominantly
from the local population (Wood & Gardner 2007).
The socioecological plasticity we observed in the
timing of habitat transitions could be a mechanism to
ensure population persistence despite the inherent
stochasticity in the recruitment dynamics of Kerma -
dec giant limpet subpopulations.

The Kermadec giant limpet populations at Ran-
gitāhua are the last relict populations of the world’s
second-largest limpet (Fleming 1973). Although at
risk of extinction due to their restricted range, these
limpets are common in the lower intertidal zone of
these islands, suggesting that their life-history strate-
gies and behaviours ensure a relatively large popula-
tion size and local retention of offspring. For in -
stance, most hosts had only a single piggy; if piggies
are not close kin of their host, these behaviours may
ultimately help to maintain genetic diversity within a
small population. Furthermore, if the transition to
becoming rock-attached at a smaller size when pig-
gies are densely packed is associated with a sex
change at a smaller size (or younger age), these be -
haviours would be indicative of a mechanism to
ensure population-level reproductive output is main-
tained (Wright 1989, Warner et al. 1996, Rivera-
Ingraham et al. 2011). Nevertheless, while these
limpets appear well suited to life on small remote
islands, and although these islands are one of the
least human-modified ecosystems on our pla net
(Edgar et al. 2005), they are not immune to glo bal cli-
matic changes. External environmental factors (e.g.
illegal fishing or natural disasters) that affect popula-
tion composition, and therefore the social en -
vironment, can influence the timing of sex change
(Martins et al. 2017) and potentially ontogenetic
shifts in limpets. Given that Kermadec giant limpets
are protandrous and have a skewed gender ratio,
such changes could be detrimental to the popu lation-
level reproductive success (Martins et al. 2017) and,
ultimately, the persistence of the species. Our work
has shown that changes to the recruitment dynamics
of these limpets or to the survival of larger, typically
female limpets will trigger a cascade of interactions
affecting this already vulnerable species.
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