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1.  INTRODUCTION

Specific and precise information on the location of
animals is essential for answering ecological ques-
tions on habitat use. Inferences about habitat use
typically rely on statistical correlations of animal ob -
servations located within specific habitats given that
alternative habitats are available (Vaughan & Orme -
rod 2005, Nielson & Sawyer 2013). The affinity of an
animal for a specific habitat is often characterized by
a residency index (RI), i.e. the proportion of time or
fraction of observations spent within a particular site,
and large RI values are treated as evidence of prefer-
ential habitat use (Filous et al. 2017, Couturier et al.

2018, Gandra et al. 2018). Alternatively, preference
for a habitat can be expressed as site fidelity or the
number of times an animal is observed at a site after
a period of absence (although the terms are some-
times used interchangeably) (Switzer 1993). High
site fidelity is also viewed as evidence of preferential
habitat use (Kneebone et al. 2012, Bass et al. 2017). In
either case, inferences regarding behavioral choices
rely on interpreting observational data and correctly
appreciating the idiosyncratic nature of those data.

Importantly, animal observations are typically not
continuous measures of actual behaviors, nor even
movement. Rather, data are discrete representations
of animal locations in space and time (DeCelles & Ze-
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meckis 2014, Ogburn et al. 2017) obtained through a
variety of monitoring techniques, such as wildlife
cameras or GPS transmitters (Turchin 1998, Hulbert
2001, Beyer et al. 2010, O’Connell et al. 2011). Re -
gardless of the method, the resulting data are typi-
cally represented with a common data structure: in-
dividual identifier, date, time, location (e.g. latitude,
longitude), and perhaps covariates (e.g. temperature,
altitude, depth). This similarity in data structure oc-
curs despite the often considerable differences in the
temporal and spatial resolution and extent of sam-
pling technology. Correctly drawing ecological infer-
ences, such as residency, from these discrete data re-
quires an appreciation of how the diverse sampling
technologies represent, or ‘map’, the movement in-
formation onto a common data structure.

In the aquatic environment, there has been a grow-
ing reliance on acoustic telemetry to obtain location
observations over the last quarter century (O’Dor et
al. 1998, Lindholm 2005, Hussey et al. 2015). Acous -
tic telemetry is well suited to answering questions
regarding fish habitat utilization (Heupel et al. 2006,
Lindholm et al. 2007) across many scales of space
and time (Lowe & Bray 2006, Lindholm et al. 2010,
Bryars et al. 2012, Donaldson et al. 2014). Acoustic
telemetry uses receiver/data-loggers to detect ultra-
sonic transmitters (= acoustic tags) attached to indi-
vidual animals (Simpfendorfer et al. 2008, Donaldson
et al. 2014). Commonly, the tags report tag IDs and
sometimes additional data, such as depth and tem-
perature (Vemco 2015), but in each case the location
is inferred from the location of the receiver. Receiver
location varies among study designs. For example,
receivers can be on mobile platforms such as boats or
autonomous vehicles (Holland et al. 1985, Bellquist
et al. 2008, Shinzaki et al. 2013, Ennasr et al. 2020) so
as to log the specific locations of individual tags (i.e.
‘active’ or Lagrangian tracking). Alternatively, a re -
ceiver can be moored at a specific location to log the
passing of any tag through its detection radius (i.e.
passive telemetry; Heupel et al. 2005). Our study
focuses on data issues related to the latter study
design, i.e. passive telemetry.

Regardless of study design, logging fish movement
with acoustic telemetry has a number of technical is -
sues that affect ecological interpretations. Telemetry-
derived data are restricted to only those animals with
tags, and this is usually a small fraction of the animals
present. The detection radius of a receiver depends
on tag power output, with larger species often get-
ting larger transmitters, and consequently potentially
being detected from farther away (Donaldson et al.
2014). The topography of the area adjacent to a re -

ceiver can also be very important. For example, high
relief spur and groove topography on a Floridian
(USA) coral reef significantly impeded the ‘line of
sight’ between tagged demersal fishes and fixed
acoustic receivers deployed on the seafloor (Lind-
holm et al. 2009), making predictions about detec-
tions based only on range estimates potentially prob-
lematic. Of particular interest here, moored receivers
are limited to detecting only those tags that come
within their detection radius. Recent advances in
proprietary data-processing software have resulted
in more precise triangulation of fish position from
receivers configured in arrays (e.g. Campbell et al.
2012, Wolfe & Lowe 2015), effectively turning pas-
sive tracking receivers into an active tracking study
design. While this is an attempt to reduce the uncer-
tainty in location of the fish, deploying numerous re -
ceivers can be prohibitively expensive, and the loca-
tion data they generate are referenced to the tag
rather than the receiver and therefore become a dif-
ferent informatics problem than considered here.

Passive telemetry using moored receivers is a com-
mon study design (e.g. Carrier et al. 2018, Klinard &
Matley 2020, Williamson et al. 2021), but the data
 re presentation that results generates uncertainties
that, to our knowledge, have not previously been
addressed. For example, a tagged fish immediately
moving beyond a detection radius without returning
produces only a few observations at the start of sam-
pling; this may be evidence that the habitat is not
preferred or may be escape behavior in response
to the trauma of the tagging event. Alternatively, a
fish may move but not leave the detection area (e.g.
Alós et al. 2012), producing continuous observations
through out sampling. In this case, a high RI might be
evidence of preferred habitat, but would also be
indistinguishable from the ‘residency’ of a dead fish
(Klinard & Matley 2020). Given this, on what basis do
we interpret our observations as residency? What
expectation, or ‘null model’, can we use to test resi-
dency models when relying on categorical measures
of location (i.e. within range of a sensor or not), such
as that produced by passive telemetry?

Here, we present a null model for interpreting res-
idency from passive acoustic telemetry data. Given
that location is categorical, we cannot rely on obser-
vations of individuals to discriminate patterns of de -
tection, for example from a dead fish. Rather, we must
look at properties of the population of observations to
develop expectations of how the habitat choices of
fish are expressed within these data sets. To do this,
we simulated populations of individual fish that each
move in random walks starting at a simulated acous -
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tic receiver. These random walks represent move-
ments that are not associated with habitat as a null
model against which we then compared observations
of actual fish. We also developed an analytical ex -
pression that predicts the changing probability of
random walkers remaining within the detection ra d -
ius of an acoustic receiver over time, providing a
guide to the ecological information value of tag de -
tections. We then compared these estimates to
 published studies to evaluate how well this issue is
ad dressed in practice and provide guidance on im -
proving future studies.

2.  METHODS

2.1.  Random walk simulations

To examine how fish movement is represented by
the data generated in passive acoustic telemetry, we
used a 2-dimensional random walk simulation. Al -
though acoustic telemetry occurs within a 3-dimen-
sional marine environment, many telemetry studies
are performed with tags that do not report depth, and
in habitats that are relatively shallow compared to
the typical detection area of acoustic receivers (400−
800 m radius) (Loher et al. 2017), making a 2-dimen-
sional simulation appropriate. There are multiple ap -
proaches to specifying a random walk; here, we
modeled the random walk as a freely jointed chain
(FJC). This is a common framework for evaluating
the statistical thermodynamics of long-chain poly-
mers, and many of the statistical properties of these
random walks have been developed previously in
that context (Kuhn 1934, 1936, Treloar 1975, Lezon
2018).

In an FJC random walk, each walker has an equal,
or uniform, probability of moving in any direction at
each step, but the step lengths are all the same. The
location of a random walker at any given time (t) is
thus determined by the number (n) of randomly di-
rected steps of length (l) taken since the start of moni-
toring (t = 0) (see Table 1 and Fig. 1 for terms and defi-
nitions). Thus, an FJC random walk consists of n rigid
lengths, which at each junction point can freely rotate
in all dimensions. In the context of animal movement,
step length is not necessarily related to anatomy, gait,
or speed; step length represents the distance moved,
where the directions at the beginning and ending of a
movement are uncorrelated, and is sometimes re-
ferred to as the ‘mean free path’ (Bovet & Benhamou
1988, Beverton & Holt 1993). Across the ecological lit-
erature, there are conflicting definitions of mean free

path depending on the research question and sam-
pling approach. Here, we adopted the definition of
step length based on mean free paths from Sims et al.
(2008). They determined the frequency of step sizes
for 1 min time intervals across a diversity of marine
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Term Definition

Movement-related
t Time
n Number of randomly directed steps
r Distance of walker from the origin
L Length of each step, step size in real space
Rr Detection radius in real space
l Scaled step size, relative to detection radius, l = L/Rr

R Scaled detection radius (1 for our simulations)

Distribution-related
Standard deviation of the distribution, σ

b1 1-dimensional Kuhn’s length, 

b2 2-dimensional Kuhn’s length, 

2nl

nl

1

2 2

nl

2

2 2

Table 1. Definitions of terms for random walks. Some terms
express movement in space (see Fig. 1), others relate to the 

distribution of locations over a given time

L (or l )

Rr (or R)

n1

n2

n3
n4

n5

r t = 5

r t = 3

t = 5
= path

Fig. 1. Parameterization of tagged fish movement along a
modeled path (grey line) with reference to an acoustic
receiver. Here, 5 timesteps have lapsed (t = 5). The circle
represents the detection radius (Rr in real space or R when
scaled). The distance moved between timesteps (step
length, L) is uniform in the modeling framework and is the
distance where the directions at the beginning and end are
uncorrelated (‘mean free path’). Typically, fish do not make
straight line movements between abrupt direction changes,
but given that the locations between time steps are unde-
fined in the model, the paths are modeled here as freely
jointed chains (see Section 2). The distance of the fish from 

the origin (black dot) at any timestep is r (arrows)



Mar Ecol Prog Ser 672: 73–87, 2021

species and predicted that average distance moved
between time steps ranged from 0 to 3 body lengths
(Sims et al. 2008). Simulations performed here
adopted a minimum mean free path of 1 body length.
Consistent with this parameterization, we used a time
interval of 1 min for all simulations.

All simulated random walks began at the location
of a simulated acoustic receiver. This reflects our ex -
perience with studies where fish are often collec ted,
tagged, and released coincident with receiver de -
ploy ment. Thus, simulated receiver detection areas
were represented by a circle with the receiver at the
origin of a coordinate system (0,0), and with a detec-
tion range of radius R. Simulated random walks of
individuals, hereafter referred to as walkers, were
detected by the receiver if their distance from the ori-
gin (r) was less than the detection radius (r < R). At a
given time, any fish located at a distance greater than
the detection radius (r < R) was scored as not detected
by the simulated receiver. For these simulations, we
scaled step size relative to the receiver detection
radius, using a detection radius of R = 1 and a relative
step size of l = L/Rr— i.e. step size in real space (L)
divided by the detection radius in real space (Rr).
Three sets of simulations were performed in R (R
Core Team 2015) using relative step sizes of 0.01,
0.05, and 0.1. Each simulation modeled a population
of 100 walkers with a duration of 10 000 time steps. In
each simulation, we recorded the location of every
step and whether or not it was detected by the acous -
tic receiver at that time.

Simulations were evaluated by plotting the result-
ing pattern of tag detections for each walker, along
with intervening non-detections, in what is referred
to as an ‘at-liberty’ plot (DeCelles & Zemeckis 2014).
We also calculated the fraction of time that simulated
fish were within range of the receiver to generate an
RI for each walker, estimated by dividing the total
number of time steps that the fish was detected by the
total time steps (= 10 000). For the population of walk-
ers in each simulation, the fraction of walkers within
the detection radius was logged at each time step.

2.2.  Distinguishing random from real movements

We examined how distinguishable real-world tele -
metry data are from non-preferential movement data
in 2 ways. First, we compared simulated random
walks to a real-world telemetry data set of Atlantic
cod Gadus morhua to examine how frequently simu-
lated results reflected real observations of individual
fish. Second, we performed a systematic literature

review to estimate the probability of detecting ran-
dom walkers at the end of a study and determined if
studies ran long enough for observations of tagged
fish to be distinguishable from random movement.

Data on Atlantic cod were extracted from Lindholm
et al. (2007), and their methods will be briefly sum-
marized. Ten Atlantic cod (mean = 51.5 cm total
length; SD = 6.24) were tagged between 20 May and
2 July 2002 with data collected from May to Sep -
tember 2002 (i.e. spring to fall). Each fish was tagged
with a V8SC-1H-R256 coded transmitter (Vemco
2015) and monitored using an omni-directional, single-
channel (69 kHz) VR2 acoustic receiver (Vemco
2015). A single VR2 receiver was placed near the
center of a deep boulder reef at 60−65 m water
depth. The range of detection (Rr ) for the acoustic
tags was approximately 400 m, or a detection area of
0.5 km2. Data were collected for 95 d.

Signal detections for each fish were assigned to 1 h
time bins throughout the study period. Isolated de -
tections which were not within 59 min of another ob -
servation were removed to reduce the likelihood of
false positives in the data (Lindholm et al. 2007). The
RI of a tagged fish was calculated as the total number
of hourly time bins in which the fish was recorded,
divided by the total number of 1 h bins possible (up to
a maximum of 2280 h [= 95 d]). Benchmarks for what
constitutes a low, medium, or high degree of resi-
dency were chosen to maintain consistency with lit-
erature values (Robichaud & Rose 2004). A ‘high’ RI
was defined as those fish recorded at the receiver for
≥80% of the potential 1 h time bins, while ‘low’ resi-
dency represented those fish recorded <20% of the
potential 1 h time bins (Lindholm et al. 2007), with
intermediate values rated as ‘medium.’

For comparison, we approximated these same con-
ditions for simulated walkers. Using our time interval
of 1 min, we ran 100 simulations for 136 800 time
steps of 1 min (i.e. 95 d). Each of these 100 simula-
tions contained 10 walkers reflecting the body lengths
of the individual tagged fish. We ran 3 versions of
these simulations with varying step sizes to represent
3 different assumed movement patterns based on
potential ecology of Atlantic cod, resulting in a total
of 300 simulations. The smallest step size, 1 body
length per time t, assumes sedentary behavior, while
the larger 6 body length step size assumes cod are
more mobile; the third step size of 3 body lengths
represents an intermediate movement ecology. All
step sizes were scaled to the 400 m receiver detection
radius. To obtain comparable data, we grouped our
simulated minute by minute data into hourly bins (60
steps per bin) and calculated the number of simu-
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lated walkers in each of the 3 residency bins used by
Lindholm et al. (2007), i.e. high, medium, and low.

To assess the sensitivity of these simulations to step
size, we calculated the number of simulated walkers
within each residency bin while varying the step
sizes. Sensitivity plots were generated for all 3 resi-
dency bins using a step size of 4 body lengths as the
standard. Sensitivity simulations used 1000 walkers
per step size, with step sizes ranging from 1 to 7 body
lengths (i.e. ±75%).

To evaluate if existing telemetry study designs
have already addressed the technical limitations in
detecting preferential movement outlined here, we
performed a systematic review of the acoustic tele -
metry literature. Because the probability of detecting
randomly moving fish changes throughout a study,
we compared existing literature by calculating the
probability of detecting fish at the end of each study
duration, given the detection radius of the receivers
and relative step size of the fish. To obtain telemetry
literature, we queried the Web of Science literature
database using the search terms ‘passive acoustic
telemetry’ and ‘residency,’ ‘site fidelity,’ or ‘at liber -
ty.’ The term ‘passive’ was included to focus on stud-
ies using the fixed receiver telemetry design; despite
this, some active telemetry studies were returned
and excluded. Studies were included only if they cal-
culated an RI using location data from moored
receivers. Included studies were surveyed for study
duration (minutes), organism size (m), and reported
receiver detection radius (m). Body size (fork length)
and receiver detection radius reported in each study
were used to estimate a relative step size per 1 min
time step. At t = 0, all fish are presumed to be at the
receiver, but after some period of time, an increasing
fraction of fish will have left the detection area just
from random movement. Thus, there is some ‘burn-
in’ time, after which more fish remaining within the
detection area than predicted by random walks is
evidence of habitat preference (since fewer fish left
than chance predicts), and is also not purely a reflec-
tion of mortality since some fish do leave. For each
study, the probability of observing a given fraction of
a tagged, randomly moving population within the
detection radius of a receiver at t = study duration
was evaluated using the analytical relationship de -
veloped in Section 2.3.

2.3.  Analytical development

It is desirable to have an expression to estimate the
fraction of a population of random walkers remaining

within the detection area of an acoustic receiver at
any time after being released. Here, we derived the
probability distribution of distances of random walk-
ers from the origin as a function of time. We assumed
that all individuals are at the receiver (coordinate =
0,0) at t = 0. We then modeled the distance (r) be -
tween an individual’s position as t increases de -
termined by the number of steps taken in a 2-dimen-
sional random walk (i.e. t = n), and the starting
position at time t = 0, which is homologous to the dis-
tribution of chain end separations in a FJC polymer
chain. The probability distribution of polymer chain
end separation distances has been derived in the
past (Kuhn 1934, 1936, Treloar 1975). Those authors
derived the distribution of FJC for 3-dimensional
polymers by building from the 1-dimensional case
and generalizing to 3 dimensions. Consequently, the
derivation of the 2-dimensional case is not at hand
(Iliafar et al.; see preprint at https://arxiv.org/ftp/
arxiv/ papers/ 1305/1305.5951.pdf). Kuhn (1934) did
supply a 2-dimensional derivation of the probability
distribution of chain end separations, but for reasons
that were relevant to that context, did not collect
terms in a manner that would allow us now to track
the variance of the distribution. Therefore, we pro-
vide a brief, independent derivation of the 2-dimen-
sional case here.

For a 1-dimensional FJC random walk of a large
number of steps, the probability (P) that the end of a
chain will exist anywhere along a coordinate axis, x,
is approximated closely by the Gaussian distribution
(Kuhn 1934, 1936, Treloar 1975):

(1)

where n and l are defined as in Section 2.1 for the
random walk simulations, and here represents
the standard deviation of the distribution, σ. By col-
lecting terms, we can express this distribution in
terms of a single parameter b, called Kuhn’s length
and defined for the 1-dimensional, or univariate, case
as:

(2)

After substitution, the probability distribution for
the location of the ends of the chains in one dimen-
sion becomes:

(3)

In the 1-dimensional case, the variance is solely
dependent on the number of steps, forward and
backward, in the x direction. In 2 dimensions, the
steps of the walk have an equal probability of mov-
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ing in either the x or y direction. Thus, for a walk of n
total steps, one expects n/2 steps to be taken in each
direction. Alternatively, a single step of length l can
be decomposed into its components such that l2 = x2

+ y2, and from isotropy it follows then that on aver-
age . We can substitute for l
and gather the variables into a 2-dimensional Kuhn’s
length:

(4)

Substitution of b2 and (x2 + y2) into the 1-dimen-
sional probability distribution produces:

(5)

This is the probability distribution of chain end
locations in 2 dimensions. As in the 1-dimensional
case, the highest probability value or the most likely
location of the ends of the chain are at coordinates
(0,0), or the origin.

To get from the probability of chain end locations
to chain end separation (i.e. the distance the fish
moves from the origin), we first need to resolve the
distance moved in the x and y direction to any direc-
tion, as (x2 + y2) = r2. Resolving the probability distri-
bution in terms of distance from the origin, r, thus
becomes:

(6)

where we recognize that r can point in any direction;
thus, we need to evaluate the probability that the end
of the random walk is somewhere in a series of annu-
lar areas of radius r from the origin and dr thick.

When we collect terms, this produces the probabil-
ity distribution of chain end distances (probability
distribution function, PDF), or in this present context,
the distances of randomly moving fish from the
acoustic receiver:

(7)

As pointed out by Treloar (1975), the probability
distribution of the locations of the chain ends (Eq. 5)
can be thought of as describing the distribution of
shots at a target. The holes in the target will be dis-
tributed around the bull’s eye and the average loca-
tion is expected to be at (0,0). However, the average
distance of the holes in the target from (0,0) clearly
will be greater than 0, as not only is r independent of
direction, making all distances positive, but also
holes that are far from the origin will necessarily con-
tribute to the estimate of a non-0 average. At some
distance r to infinity, the corresponding cumulative
distribution function (CDF) of our PDF is:

                                               (8)

Rearranging the CDF and solving for the number
of steps, n, within b, allows us to estimate the time-
point at which a given fraction of the random walkers
(α) would be outside the detection area of radius r: 

(9)

Simulations were validated by comparison of the
fraction of random walkers outside the detection area
with the forecast of the fraction of the CDF(r) that
would have left the detection area as time passes
(Fig. 2).

3.  RESULTS

3.1.  Data representation in passive acoustic
telemetry

Simulations resulted in 100 paths of random walk-
ers each for small, medium, and large step sizes
(Fig. 3a−f). Random walkers left the origin and dis-
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Fig. 2. Performance of analytical solution compared to simu-
lated random walk results. For each sample of walkers, the
fraction of the population outside of the detection radius at
each time step was calculated (grey). The probability of
walkers outside the radius at time t (red line) was calculated
using the cumulative distribution function equation for a
vector of distances at time t. Random walks and an analyti-
cal solution for freely jointed chains (see Section 2) are both
based on a step size of 0.01. Simulations were run for 4000
time steps, in 20 batches of 100 individuals. The calculated
fraction of walkers outside of the telemetry radius matches
well with simulation results. The standard alpha probability 

(0.05) is represented by the horizontal blue line
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Fig. 3. Data representation of acoustic telemetry across multiple scales. (a−c) Actual tracks from 100 random walks over 10 000
steps. (d−f) 2D histograms of the distance walkers are from the origin (r) over time. (g−i) The pattern of detection (‘at-liberty
plots’) by the simulated Vemco radius (indicated by the circle in a−c) for the 100 random walkers. a, d, and g are for the small
step size simulation (1% of the detection radius); b, e, and i are medium step sizes (5% of detection radius); and h, f, and i are 

large step sizes (10% of detection radius)
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persed in all directions (x,y) randomly, with individ-
ual paths ranging from long ambits with few changes
in direction (i.e. long chain end separation) to more
clustered near the origin. At the end of 10 000 time
steps, all 3 simulations contained numerous walkers
both inside and outside of the receiver detection zone
(Fig. 3a−c). Walks of shorter steps took longer to
leave the detection zone, and there were larger num-
bers of individuals within the range of the receiver at
the end of the runs (66 walkers, shortest step length),
whereas longer-step walks left sooner, and fewer
walkers were within the detection zone at the end (6
walkers for medium steps, 1 walker for large steps).
The maximum distance of any individual in the sim-
ulations varied by step size, with distances of 2.77,
14.32, and 26.89 normalized units from the receiver
origin for small, medium, and large steps, respec-
tively (Fig. 3d−f).

At-liberty plots of these simulations showed num -
erous detections for all walkers early in the time
series regardless of step size (Fig. 3g,h). Departures
from the receiver radius varied with step size, with
the earliest departures at t = 20 for large steps, t = 76
for medium, and t = 2015 for small. In the small-step
simulation, 59% of walkers remained within the
detection radius for all 10 000 time steps. Across all
step sizes, individual walkers left the detection ra d -
ius and returned multiple times. The frequency of
returns decreased over time; however, returns still
occurred at the end of the 10 000 time steps in all sim-
ulations.

RIs across all simulations ranged from 0.002 to 1,
with those that remained within the detection radius
continuously representing 38% of all simulated walks.
The majority of small-step walkers had ‘high’ resi-
dency, with 72 out of 100 having RIs above 0.8. No
walkers in the medium and large-step simulations
had high residency. The medium-step simulation RIs
ranged from 0.009 to 0.703, while large-step RIs
ranged from 0.002 to 0.22.

3.2.  Distinguishing random from real movements

The population of tagged Atlantic cod had 2 indi-
viduals with high residency (RI > 0.8), 1 with medium
residency (0.2 < RI < 0.8), and 7 with low residency
(RI < 0.2) (Fig. 4a). Two fish were detected nearly
continuously throughout the study, whereas 2 other
fish were detected on the initial tagging date and
then never seen again, resulting in low RIs. Other
individuals had patterns of episodic detection
(Fig. 4b).

Broadly, simulated random walkers taking longer
steps move more, which is expected, but the spe-
cific relationship indicates departures from studies
of living fish (Fig. 4a). Simulations with step sizes
of 1 body length obtained high residency in nearly
all cases, with 3 simulations resulting in a single
walker in the middle residency bin with an RI <
0.8. The majority of 3 body length simulations had
medium residency, with 54% of all simulated walk-
ers in the medium residency bin and 41% with
high residency. The 3 body length simulations re -
sulted in 35 of the 100 simulations having at least 1
walker with low residency. The maximum number
of walkers with low residency in the 3 body length
simulations was 3. Out of the 6 body length simula-
tions (n = 100), 99 runs produced walkers of low
residency. Most walkers in the 6 body length sim -
ulation had medium residency, with 62% of all
walkers in the medium residency bin and 35% of
all walkers with low residency. The 6 body length
simulations had only 3% of walkers with high resi-
dency.

Regardless of assumed behavior, all cod simula-
tions resulted in the same or higher proportion of
high-residency individuals as the tagged cod (2 indi-
viduals) multiple times. The majority of the smaller-
step-size simulations resulted in an equal or greater
number of high-residency fish, with 99 of the 3 body
length simulations, and all 100 of the 1 body length
simulations, having at least 2 high-residency individ-
uals. Of the 6 body length simulations (n = 100), 3 re -
sulted in multiple high-residency fish, while an addi-
tional 25 simulations had a single high-residency
fish. In contrast, tagged cod exhibited low residency
more frequently than the simulations, with 7 low-
 residency fish. Only 5 simulations, from the 6 body
length case, resulted in 7 or more low-residency fish.
Simulations also differed from observed data in inter-
mediate residency values; only 1 cod was ever ob -
served in the middle 0.2−0.8 RI bin. In the simulated
fish, the middle RI bin contained more than 1 walker
100% of the time in both the 3 and 6 body length
 simulations.

Simulations assessing the sensitivity of estimated
residency to step size showed a strong impact of step
size on the high-residency bin (Fig. 5). As step size
decreased by 50%, the fraction of the population
with high residency changed from 18.3 to 76.9%, a
3.2-fold increase. A 50% increase in step size re -
sulted in a 150% increase in the members of the pop-
ulation in lower residency bins, going from 13.8 to
34.6%. Smaller step sizes decreased the fraction of
the population within both the medium- and low-res-
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idency bins, with the medium-residency bin the least
sensitive to changes in step sizes. Once the step size
is sufficiently large (approximately 3 body lengths),
the fraction of the population in the medium-
 residency bin remained relatively consistent over the
body sizes used for our sensitivity analysis, with 5 of
the 7 sizes assessed having over 50% of the popula-
tion within the medium-residency bin (ranging from
0 to 67.9). In contrast, the fraction of the population
within the low-residency bin increased steadily as
step size increased, moving progressively from 0 to
44.1% with over 20% increases between subsequent
body sizes.

Our literature review identified 56 papers, with
data for 65 species, ranging from turtles to sharks to
parrotfish. Of these, 21 papers did not report RIs,
while an additional 5 did not report the body size of
the fish necessary to determine step size. From the
remaining studies, 5 did not report the detection
radius of their receivers to allow for a relative step
size calculation. A total of 29 studies from this sample
met the criteria for inclusion in this review of study
duration (Table S1 in the Supplement at www. int-res.
com/ articles/ suppl/ m672 p073 _ supp. pdf).

The studies used for analysis represented 26 spe-
cies of fish ranging from 14.1 to 430 cm. Most of the
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Simulated detection pattern (6 body lengths)Cod detection pattern

1 body length
3 body lengths
6 body lengths
Cod data

Residency index

Step size

Fig. 4. Cod residency and at-
liberty detection pattern vs.
simulations. (a) Number of fish
in each residency bin (low,
medium, high) for the cod
telemetry study, and compara-
ble simulations conducted with
different step sizes. Box plots
show the median and the up-
per and lower quartiles, with
the box representing the inter
quartile range (IQR). The
whiskers show the highest or
lowest values excluding out-
liers, calculated as Q(1,3)–1.5
× IQR. The dots represent the
outliers within the data. (b) At-
liberty plot showing the pat-
tern of detection of individual
tagged cod over time. (c) At-
liberty plot for 6 body length
step size simulation over time.
Both real and simulated cod
were detec ted throughout the
study pe riod. Real cod exhib-
ited immediate departures from
the de tec tion array, which 

simulated cod did not
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qualifying studies focused on benthic or demersal
species. The smallest fish species was the annular
sea bream Diplodus annularis, while the largest was
the tiger shark Galeocerdo cuvier. Receiver detection
radius ranged from 50 to 650 m. Using a step size of 1
body length and scaling to the size of the receiver
radius, the relative step size within these studies
ranged from 0.0005 to 0.025, with the smallest step re -
presenting white seabream D. sargus, and the largest
representing the bull shark Carcharhinus leucas.

On average, there was a 47% probability that ran-
dom walkers would be indistinguishable from resi-
dent fish monitored with an acoustic receiver for the
study durations reported in the literature. Two stud-
ies, of painted comber Serranus scriba and annular
seabream, had a 100% chance of random walkers
remaining in the detection radius at the end of study
duration. If these studies are treated as outliers and
excluded, the mean probability of detecting random
walkers was 42% at the end of the published study
duration across these cases (min = 0.002, max = 0.98)
(Fig. 6). Across all studies, only 6 (20%) had less than
a 5% probability of detecting random walkers at the
end of the study duration (i.e. ~5% of the starting
population of randomly moving fish would remain
within the detection radius).

4.  DISCUSSION

Our simulations demonstrate some of the chal-
lenges that must be considered when interpreting
passive acoustic telemetry data as evidence of animal−
habitat association. In particular, randomly moving
walkers take time to leave the detection radius, so
at the beginning of studies there is a ‘burn-in’ time
period where data reflect more frequent detections
(Fig. 3). Even if individuals move directly from the
center of the detection radius toward the edge in a
straight line, there is still a minimum number of pos-
sible detections (nl = R) that would be inevitable.
When moving randomly in 2 dimensions, the result-
ing unintentional, diffusive process away from the
center of the detection zone can be very slow. With-
out addressing this directly, the rate of this diffusive
process can suggest high residency and high site
fidelity in studies of short duration relative to the
ambits of the tagged individuals.

The patterns of detection in our simulations re -
vealed a strong dependence on the relative step size
of the walker in determining the burn-in period. Not
surprisingly, walkers with large steps left the re -
ceiver radius faster than those with small steps
(Fig. 3). As RIs are calculated from the pattern of
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Fig. 5. Sensitivity of cod simulations
to changes in relative step size. Step
size is standardized to 100% at 4
body lengths, and 1000 random
walk simulations were run for each
body size. Sensitivity plotted for 3
residency calculations (high, me d -
ium, low) where high re sidency rep-
resents walkers remai n ing with in
the detection zone 80% of the time,
low represents walkers remain ing
only 20% of the time, and me dium
represents intermediate residency 

values
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detection for given the study duration, at short dura-
tions, even larger steppers can exhibit high resi-
dency. This makes it particularly important to (1)
characterize this sensitivity in detail and (2) under-
stand how the simulated step size is parameterized in
the be havior of actual fish.

4.1.  Implications for passive acoustic telemetry
studies

During the initial study period, only absence ob -
servations are distinguishable from random walks.
Clearly, no fish can leave the study area prior to satis -
fying nl > R steps (Fig. 3), but the effect extends
beyond this time interval. Although random walkers
have a small, non-zero chance of moving directly
away from the detection zone (i.e. approaching nl =
R), this is a low-probability outcome, and was not

observed in any of our simulations. However, some
monitored fish did leave the detection area immedi-
ately and did not return throughout the study period,
suggesting that the initial locations were not pre-
ferred. Therefore, absence data have a different in -
ferential value than presence data early in the study.
For walkers that remain within the detection radius
past the burn-in period, the inferential value of their
presence observations increases as the likelihood of
them remaining within R from random movement
decreases over time (Fig. 2).

As time passes, the distribution of random walkers
spreads out. One expects that at some point the dis-
tribution of random walkers will be sufficiently even
in space that the number of walkers entering the
receiver array will approximate the number leaving
the array. Simulations of random walks with medium
and long step sizes do approximate this pattern of
both a high frequency of detection and a high fre-
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Fig. 6. Probability of detecting randomly moving individuals at the end of a study. Random movements are scaled by species
and by study, with ‘relative step size’ representing 1 body length as a proportion of the study’s telemetry detection radius
(1 body length [m] / acoustic receiver radius [m]). Each dot represents a unique species–study pair. Some studies focused on
the same species, while others studied more than one species. For further details, see Table S1. Probabilities of detection
through time were estimated with Eq. (8). As the step size relative to the array increases, the probability of detecting randomly
moving individuals decreases. Two studies (blue dots) had a 100% chance of detecting randomly moving fish at the end of the 

study duration
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quency of returns (Fig. 3h,i). In the latter half of the
time series, the random walkers are leaving and re -
turning to the telemetry array with patterns that
appear on inspection similar to intentional returns
(Fig. 3b). These are patterns in at-liberty plots that
have been used to describe habitat preference (Hol-
land et al. 1993, Lowe et al. 2003, Starr et al. 2004,
Beatty et al. 2017). At this point in the study duration,
the observations of fish leaving and entering the
telemetry array will carry similar inferential value.

Finding the time when presence observations have
the same inferential value as absence observations
depends on a continuous gradient of probability and
does not provide a clear threshold. The specific val-
ues of the curve in Fig. 2 depend on the b parameter
in our analytical solution, also known as Kuhn’s
length, and the choice of alpha, i.e. the fraction of the
diffusing population remaining within the detection
area. The b parameter dramatically alters the proba-
bility of a random walker being at a given distance r.
The b parameter is a result of relative step size, l, and
study duration, n. With these parameters, one can
estimate the time when detections are unlikely for a
random process. Within the telemetry literature
examined in this study, only 20% of studies had a
random detection probability <0.05 by the end of
study duration (Fig. 6). At the end of their reported
durations, the majority of studies still had a high
probability of detecting individuals on a receiver if
they were just moving randomly, compromising their
ability to draw inferences from observations of orga -
nism presence. The shortest studies in the literature
review, 36 and 31 d, had a 0% probability of reject-
ing randomly moving walkers based on this analysis.

It should be noted that the studies reviewed here
calculated residency using the RI approach, but sev-
eral have also assessed habitat use through different
methods, such as path analysis or the calculation of
kernel utilization distributions. In all but 2 cases, res-
idency was calculated based on detections across an
array of receivers, rather than with a single, fixed
receiver (although 10 of these studies calculated sin-
gle receiver residency as well). Our comparison rep-
resents a conservative estimate of residency based
on the pattern of detection at particular locations. For
large receiver arrays, the question and the uncertain-
ties produced by the data representation change. In
such cases, there is still the uncertainty presented by
a single fish that never leaves the unique detection
radius of a single receiver, and there is the trivial
case of a fish that straight-line exits the entire array;
there is also the intermediate case of fish that move
from one receiver to the next without leaving the

array. Such movements may be directed or not, but
the distances would be larger, suggesting that ran-
dom null models would need to run longer. Returns
to previously exited detection areas carry additional
inferential value that could shorten study times. Ex -
tending these specific findings to arrays of receivers
is the subject of future work.

Here, we used an alpha of 0.05 and observed few
studies that were of sufficient duration to discriminate
random from directed movement. Our suggestion is
that studies could, if this issue is a concern, be run for
longer durations. However, an alpha of 0.05 may be
overly conservative in this context. Given the shape of
the curve in Fig. 2, a significant reduction in burn-in
time could be obtained with a relaxation of alpha to 0.1
or 0.2. Given that this condition is not a  hypothesis test
per se, but rather a criterion for eva luating study de-
sign, deciding on a critical value for broad application
will likely require a consensus emerging from an eval-
uation of more detailed studies that combine fine ani-
mal movements with simulation.

4.2.  Random vs. real movements

Movement of real animals is presumably driven by
behavioral processes rather than random draws, but
real animal movements can be successfully modeled
as random walks when sampled at specific scales and
time intervals (Beverton & Holt 1993, Turchin 1998).
This scaling is reflected in the step size (or mean free
path) and can be impacted by environmental factors
such as resource density or the presence of con-
specifics (Beverton & Holt 1993, Bartu meus et al.
2005, Powell & Mitchell 2012, Gautestad 2015). In our
simulations, the step size represents a priori the scale
where movements (= steps) are un correlated, rather
than directed movements towards a resource or goal.
At smaller scales (i.e. shorter time periods), it is quite
likely that sequences of steps have some degree of
autocorrelation, and these correlated random walks
have been fruitful models in other contexts to explore
specific behaviors, particularly in insects (e.g. Kareiva
& Shigesada 1983, McCulloch & Cain 1989, Turchin
1998). Lacking a specific behavioral hypothesis that
would apply generally to fish, the appropriate null
model formulation of the FJC is the limit as the auto-
correlation on step direction goes to zero, producing
a first-order Mar kov process and a uniform 2-dimen-
sional random walk (Kareiva & Shigesada 1983).
Were specific ecological hypotheses in hand, such as
predatory searching behaviors or the presence of di-
rectional gradients, homing behaviors, or currents,
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then null model modifications, such as autocorrelated
step directions or the addition of convective terms
(i.e. biased random walks; Black  well 1997, Codling et
al. 2008), would be reasonable extensions to explore.

In the case where the observed movement is indis-
tinguishable from random, it is not proof that the
movement of a single fish is non-directed. Indeed,
there are a number of animal−animal and animal−
environment interactions that can explain observa-
tions of sedentary behavior (Tolimieri et al. 2009,
Andrews et al. 2011, Harasti et al. 2014, Gristina et
al. 2017). In the Atlantic cod data set used here, 2 of
the 10 tagged fish remained within the receiver de -
tection radius for the entire duration of the study
(Fig. 4b). This degree of residency was observed in
nearly 100% of the short and medium step length
simulations. Only the longest step length simulation,
assuming a highly mobile movement ecology, was
distinguishable from the real cod data in this regard.
There is a similar lack of explanatory ecological pro-
cess behind the 5 Atlantic cod which left the receiver
array soon after tagging. Given the lack of specific
ecological information that might otherwise distin-
guish a random walk from behavioral choice in a
 single observation, the evidence provided by tele -
metered observations of single fish is limited to pres-
ence or absence in the data set. It is largely for this
reason that inferences of habitat associations demon-
strated with acoustic telemetry must rely on the prop-
erties of the population of observations, and likewise
the utility of the simulations and analytical results is
at the level of the sampled population rather than the
individual (Gerber et al. 2017).

Many of the species of interest in telemetry studies
inhabit relatively deep water in remote locations.
Deploying research projects in these cases is logisti-
cally challenging and often expensive. Not surpris-
ingly, therefore, telemetry studies often have small
sample sizes and are rarely represented by a large
sample population (Aarts et al. 2008). Thus, there are
questions about extending inferences to a larger
population from data that can reveal a range of be -
havioral patterns but may not be characteristic of
population-level responses (i.e. means) (Gaillard et
al. 2010, Violle et al. 2012). Methods of quantifying
habitat associations in relation to environmental vari-
ables, such as species distribution modeling, assume
data are representative of a population and hinge on
estimating the population mean (Skov et al. 2008,
Johnson et al. 2013). The simulation approach devel-
oped here provides a bridge between individual
behaviors and a mean expectation for a population-
level response. For example, the population of Atlan -

tic Cod observations re-examined above deviated
from a population of random walkers, which may add
inferential strength to the observations of those indi-
viduals that demonstrate low site fidelity. Viewing
the cod data in this context allows us to make specific
predictions for cod movement patterns at a broader
scale (Johnson et al. 1992).

4.3.  Improving data interpretation

The broader application of this study may lie less in
the specific design of new field data collection efforts
than in the qualified interpretation of the resultant
data. These findings indicate that evaluating habitat
association requires nuance when using passive
acoustic tracking. Because patterns in these data do
not record actual behavior, but rather location in an
idiosyncratic manner, a conservative approach to
data interpretation is warranted. For example, when
interpreting RIs, the early period of the study may be
indistinguishable from diffusive dispersal. Absent
other observations (i.e. visual observations) to con-
textualize early movement, detections from later por-
tions of the study period hold higher inferential value.

While acoustic telemetry technology continues to
evolve, the considerable environmental challenges
inherent in field studies will no doubt continue to
confound researchers. When investigating marine
animal behavior, it is therefore critical to carefully
design new data collection efforts and develop a
prio ri reasonable expectations for evaluating data
based both on the ecology of the animals and on the
limitations of acoustic telemetry. This study clearly
demonstrates that the pattern of detection in random
walkers is sensitive to the estimate of step size; ob -
servations of high residency in particular are dramat-
ically impacted by the step size of the organism rela-
tive to the detection zone (Fig. 3). To improve data
interpretation, researchers can develop null expecta-
tions for telemetry data given the step size of their
study organism (see Eq. 9). As this step size, or ‘mean
free path’, may not be approximated on the level of
minutes (as we have done here), researchers should
take the behavioral ecology of the target species into
account when developing step size estimates. Trans-
mitter battery size and ping rate will also influence
both the strength of a signal and the duration for
which a fish will be recorded. Attending to the inter-
action of ecology and technology via conservative
step sizes will yield higher confidence in the results
of telemetry studies, and ultimately in the application
of those results to management.
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