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1.  INTRODUCTION

Biotic interactions are involved in structuring com-
munity composition, and thus are important for the
community’s response to environmental change (Gil -
man et al. 2010, Singer et al. 2013, Chuang & Peter-

son 2016). The importance of these biotic interactions
in determining species distributions and range limits,
however, remains a topic of debate in ecological and
biogeographic arenas (Case & Taper 2000, Sexton et
al. 2009, Singer et al. 2013, Araújo & Rozenfeld 2014,
Godsoe et al. 2015).
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There is now more consensus that the sign and
magnitude of species interaction strengths can vary
with environmental context (e.g. latitudinal gradi-
ents; Bruno et al. 2003, Harley et al. 2006, Bulleri et
al. 2016). This suggests that antagonistic interactions
may influence species range contraction/expansion
(Cunningham et al. 2009, Pigot & Tobias 2013, Ettin -
ger & Hillerislambers 2017, Godsoe et al. 2017a). For
example, a shift in the direction of biotic interaction
strength in different environmental contexts has
been observed in different systems (Hacker & Gaines
1997, Singer et al. 2013), including distributional
ranges (Ettinger & Hillerislambers 2017). Further-
more, as we move from benign to stressful environ-
ments, some species may shift from being competi-
tors to facilitators (Bertness & Callaway 1994, Hacker
& Gaines 1997, Bruno et al. 2003). Thus, biotic inter-
actions can change qualitatively and quantitatively
through the distributional range of one species
(Chamberlain et al. 2014, Ettinger & Hillerislambers
2017). This change can strongly influence species
range limits (Chamberlain et al. 2014, Louthan et al.
2015), but there is still a need to develop tools to pre-
dict the effects of biotic interactions on species range
margins within different environmental contexts
(e.g. Araújo & Rozenfeld, 2014, Chamberlain et al.
2014, Godsoe et al. 2017a).

Tracking species co-occurrence or coexistence pat-
terns across latitudes can provide important clues
about the role of biotic interactions on species distri-
butions (Sexton et al. 2009, Lavergne et al. 2010,
Singer et al. 2013, Godsoe et al. 2017b). However, it
is difficult to separate the role of biotic interactions
(e.g. competition, predation, mutualism) from envi-
ronmental effects alone (Soberón 2010, Godsoe &
Harmon 2012). These environmental drivers (e.g.
temperature gradients) can act synergistically or
antagonistically on different types of biotic inter -
actions; e.g. exacerbating antagonistic effects but
driving partial compensation by commensalisms and/
or mutualisms (Singer et al. 2013). These relation-
ships are particularly important considering that the
effects of asymmetric interactions such as amen -
salism and commensalism on range margins are con -
sidered less frequently in the literature than compe-
tition or predation (e.g. Colwell & Rangel 2009,
Lavergne et al. 2010).

Species trait variations across their distribution
ranges may be a key factor influencing the impact of
biotic interaction on species range limits (Sagarin et
al. 2006). Different populations exhibit demographic
and individual trait variations across latitudes, often
captured by hypotheses such as the ‘centre abun-

dance hypothesis’ or ‘Bergmann’s rule’ (Gaston &
Blackburn 1996, Blackburn et al. 1999, Sagarin et al.
2006). These theories suggest that range edge popu-
lations possess traits that are more vulnerable to both
demographic and environmental stochasticity (Vuce -
tich & Waite 2003). However, these hypotheses may
not capture the full variation of species interactions
across their geographic distribution. How the traits of
interacting species co-vary across geographic ranges
can thus provide additional important information
that can help forecast species range shifts (Hampe &
Petit 2005, Sagarin et al. 2006, Godsoe et al. 2015,
2017b).

In this study, we examined if changes in body size
of the grazer Enoplochiton niger (chiton) at its range
margins influences the occurrence, body size, and
within-host spatial distribution of its specific com-
mensal epibiont Scurria parasitica (limpet). This
information can shed light on the variation of the
host− epibiont grazer interaction across latitudes
and the potential of this interaction to influence
population persistence of the host E. niger at its
range edge. The scurrinid limpet S. parasitica lives
exclusively on the shell or plates of several mollusk
species, including the chiton E. niger, where the
epi biont exhibits a different ecotype and presents
homing behaviour, grazing on small propagules and
spores of algae growing on its shell (Espoz et al.
2004, Asorey 2017). The epibiont limpet populations
live and feed exclusively upon chiton plates and re -
present a specific commensal (i.e. no positive effects
of S. parasitica on the chiton have been re corded).
However, S. parasitica scrape the plates of the chi-
ton while feeding, thus eroding them. Given that
S. parasitica can also re move other epi biont species
while feeding (e.g. barnacles, algae) which might
overgrow the chiton’s plates, this epibiont limpet
may also have positive effects on chiton perform-
ances. However, this interaction may become antag-
onistic at high limpet densities, with negative con-
sequences for chiton individual performances. No
studies, however, have been conducted on the
effects of the epibiont grazer on E. niger and the
potential variation in their inter actions across a lati-
tudinal context. The chiton population varies in
body size across its geographic distribution, reach-
ing larger body lengths at its range edge than in the
central populations (Ibáñez et al. 2019, 2021). If the
epibiont grazer occupancy or density increases with
host chiton size, its effects on chiton performance
could become negative at their range edge. Concur-
rently, the epibiont limpet may segregate spatially
on chiton plates to persist at a higher density at
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their poleward ends. Given the range limit of the
host chiton species has contracted in recent decades
(Rivadeneira & Fernández 2005), this range contrac-
tion raises the question of how epibiont limpet inci-
dence in the host chiton varies across the southern
range edge and what role this association plays in
the chiton’s population persistence. There is, how-
ever, scarce information in this and other latitudes
about how interactions in a grazer−grazer commen-
sal system change through biogeographic gradients,
which could shed light on how occurrences of the
epibiont grazer modify the host grazer’s perform-
ances and persistence at its distributional range
limit.

Using this grazer−grazer system, we specifically
hypothesized that (1) the probability of occurrence
(i.e. limpet presence per chiton, and/or chiton area
covered) of the epibiont grazer S. parasitica could be
higher on larger E. niger individuals, i.e. area effect
in the ‘patch-occupancy’ hypothesis (Fahrig 2013),
corresponding to the range edge populations of the
host grazer. In addition, (2) epibiont length could be
positively correlated with increased chiton size.
Finally, (3) The incidence of the epibiont limpet
S. parasitica on the host grazer may depend on its
individual micro-spatial distribution, with higher
spatial segregation (i.e. differential use of plates) of
the epibiont grazer on (a) larger than smaller chiton
individuals, and/or (b) at higher limpet density on
chiton plates.

2.  MATERIALS AND METHODS

2.1.  Study species

The chiton Enoplochiton niger is an important gra -
zer in mid-to-lower intertidal levels, exerting strong
effects on algae colonization and bare rock produc-
tion (Aguilera et al. 2015) by eating the spores and
propagules of the macroalgae (Sanhueza et al. 2008).
The epibiont Scurria parasitica is also a scraper-
grazer herbivore, foraging over the shells of species
such as Fissurella crassa, Scurria viridula, and E. ni -
ger (Espoz et al. 2004). Given that S. parasitica lives
exclusively on the shell or plates of other mollusks,
which become eroded by its grazing, this species was
considered to be parasitizing the different mollusks
by early authors (Dall 1909, Marincovich 1973). No
information, however, is available about the early
stages of S. parasitica (i.e. less than 5 mm) or if indi-
viduals settle on rocky substrata first and then
migrate to selected habitats like chiton shells as

observed in other limpet species (see Lewis & Bow-
man 1975). It seems that this species is not able to live
directly on the rocky substrata (Espoz et al. 2004), as
it is probably highly susceptible to being dislodged
by waves like other specialist epibiont limpets (e.g.
Patelloida mufria; Mapstone et al. 1984). It should be
noted that S. parasitica was previously synonymized
with S. variabilis (Espoz et al. 2004) but was recon-
sidered as a valid species name for recent studies
(Nakano & Ozawa 2006). There is a broad spectrum
of morphology and behaviour of S. parasitica inhabit-
ing different microhabitats over mollusk shells, and
individuals inhabiting the shell of E. niger are con-
sidered a specific ‘variant’ or ‘eco-phenotype’ of this
species (e.g. considered previously as ‘S. parasitica-
En’ by Espoz et al. 2004; also see Asorey 2017). Thus,
the E. niger−S. parasitica association seems to be
specialized in the form of a commensalism, with the
epibiont S. parasitica taking advantage of the host’s
body by scraping microalgae and algae propagules
growing on the chiton’s plates. There is no evidence
of S. parasitica ecotypes living directly on the rocky
substrate. Thus, the Scurria limpet and the chiton
spe cies conform to an obligate ‘epibiont−host’ grazer
system which co-occurs from 10° S in Peru to 30° S in
northern-central Chile (Espoz et al. 2004). The south-
ern range limit of the host chiton E. niger is around
30−31° S, coincident with a well-known transition
zone (subtropical−temperate) extending between 29
and 41° S, which also concentrates the polar or equa-
torial range edge of different intertidal species (Riva -
deneira & Fernández 2005, Sorte et al. 2010). There
is evidence that the range of E. niger has contracted
from 33° 02’ to 29° 41’ S as suggested by historical
records (i.e. 1949; Dall 1971). This range reduction
corresponds to ca. 285 km of range lost and a con-
traction rate of 7.7 km yr−1 (Rivadeneira & Fernández
2005, Sorte et al. 2010).

2.2.  Geographical surveys of E. niger

E. niger adult specimens were collected across 7
locations from Callao, Peru (12° S), to Coquimbo,
Chile (~30° S), with the latter location corresponding
to the poleward range edge of this species (Fig. 1a).
Thus, the surveys included 100% of E. niger’s range
distribution, from 12° S in Peru to 30−31° S in north-
ern Chile (Aguilera et al. 2015, Navarrete et al.
2020). We followed the methodology proposed by
Ibáñez et al. (2016) for the collection of specimens. In
each locality, we collected specimens of E. niger of
different sizes for 2 h. Sampling was conducted in the
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low to mid-intertidal level, considering rocky plat-
forms (flattened and inclined ones), rock pools, and
crevices. After collection, chitons (and their limpet
epibionts) were preserved individually in 96% etha -
nol. All surveys were conducted from July 2011 to
January 2015 during spring and summer (September
to March). Once in the laboratory, each specimen of
E. niger was measured with a manual calliper to
determine the chiton total length (ChTL, mm) and
width of the fourth plate (WIV, mm). With these
measurements, each chiton area was estimated as a
proxy of the available substrate, using the area equa-
tion of an ellipse: Chitonarea = (ChTL / 2) × (WIV / 2)
× π. We measured the length (LTL, mm) and width
(W, mm) of the epibiont limpet present in each chiton
using the area equation of an ellipse to estimate their
body area: Limpetarea = (LTL / 2) × (W / 2) × π.

To determine the abundance, occurrence, and
individual spatial distribution of S. parasitica on
E. niger, we counted the number of limpets found on
each specific chiton plate (from plate I to plate VIII;
Fig. 2). Identification of S. parasitica on E. niger
plates was conducted in the field and laboratory
 following the particular characteristic of this ecophe-
notype described by Espoz et al. (2004). No other
species or other S. parasitica ecophenotypes were
recorded on chiton plates. The ‘coverage proportion’
(Cp) of limpets present on each chiton was calculated
by dividing the sum of the area of all limpets by the
chiton area.

2.3.  Statistical analyses

We assessed how E. niger body size,
conspecific abundance, and geogra -
phic distribution affect S. pa ra sitica
body length, using a model com -
parison approach (Burnham & Ander-
son 2002). The model comparison
used limpet total length (LTL) as the
re sponse variable and chiton total
length (ChTL), limpet coverage pro-
portion (Cp), number of limpets (n
Limpet), position on the host chiton
plates (Plate), and geographical site
(Site) where animals were collected as
predictor variables. We used Akaike’s
information criterion for small samples
(AICc) to select the best model and a
hierarchical approach to testing the
goodness-of-fit of more complex mod-
els (i.e. including more parameters).
For the model with the lowest AICc

(i.e. the model with the best fit), we
employed Cohen’s f to quantify the effect size and
relative contribution of main effects and pairwise
interactions to the overall variation in LTL. Also, the
occupancy (presence/absence) and density of the
epibiont limpets on E. niger were evaluated using
generalized linear models (GLMs) to compare with
the chiton’s length and site, using binomial and
 Poisson error distributions, respectively. All analyses
were performed using the library ‘AICcmodavg’ for
the AIC model comparisons, ‘multcomp’ for Tukey’s
pairwise comparisons, and ‘ggplot2’ for the figure
design, all implemented in R software (R Develop-
ment Core Team 2019).
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Fig. 1. Sampling sites and body size relation between the host grazer Enoplo-
chiton niger and the epibiont Scurria parasitica along the Southeast Pacific. (a)
Localities sampled along with the latitudinal range; (b) total length distribu-

tion for chiton E. niger and limpet S. parasitica split by sampling site

Fig. 2. (a) Small chiton without limpets from Arica (18° S), (b)
medium chiton from Huasco (28° S) with 3 limpets, (c) large
chiton with 8 limpets from Coquimbo (30° S), and (d) me -
dium chiton from Antofagasta (23° S) with 2 limpets and 

with plates fully eroded



3.  RESULTS

A total of 208 individuals of Enoplochiton niger
were collected throughout their geographic range
(Fig. 1a), with body lengths ranging from 11.7−
130.5 mm ChTL (Table 1, Figs. 1b, S1A & S2A in the
Supplement at www.int-res.com/articles/suppl/ m674
p131_ supp.pdf). The shell length of the epibiont limpet
Scurria parasitica fluctuated from 3.2−23 mm (Table 1,
Figs. 3a, S1B & S2B). There was a pattern of increased
variability in the plate area covered by limpets toward
southern sites (i.e. Huasco, 28° S and Coquimbo,
29° S) (Fig. 3b). Individual epibiont limpet distribution
on the chiton plates was also variable across sites

(Fig. 3b). ChTL increased nearly monotonically from
the northern (Arica, 18° S) to the southern edge of its
geographic distribution (Co quimbo, 29° S) (Table 1,
Figs. 4a & S1A). Limpet ‘occupancy’ (i.e. presence of a
limpet on an individual chiton) and density were both
positive and sig nificantly related to ChTL (Figs. 3b &
5a,b), with significant variability among sites (Table 2,
Fig. S1). In general, larger chitons had significantly
higher limpet occupancy and density, and the propor-
tion of unoccupied chitons increased from north to
southern latitudes (Figs. 5 & S1). Post hoc pairwise
comparisons of the epibiont limpet occupancy among
sites revealed significant differences between the ex-
treme northern and southern edge localities of the E.
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Site Location ChitonsLength (mm) Area (mm2) Limpets Length (mm) Area (mm2) Cp
(n) Mean SD Mean SD (n) Mean SD Mean SD

Callao 12° 47’ S, 76° 80’ W 19 50.15 10.55 4033.64 1529.03 1 7.90 − 138.98 − 0.0199
Arica 18° 31’ S, 70° 19’ W 37 54.18 14.07 4761.20 2538.49 17 8.87 4.39 475.37 580.30 0.0675
Iquique 20° 18’ S, 70° 08’ W 24 68.13 31.63 8919.12 6121.88 25 6.43 2.97 375.97 299.49 0.0303
Antofagasta 23° 40’ S, 70° 24’ W 52 63.88 27.29 7362.68 5048.51 100 8.29 3.41 800.60 534.29 0.0742
Caldera 27° 04’ S, 70° 49’ W 28 95.99 25.47 14 145.29 6021.17 19 11.32 3.68 667.38 392.35 0.0365
Huasco 28° 24’ S, 71° 11’ W 38 99.49 16.67 15 904.43 4529.07 40 12.89 4.56 855.27 589.44 0.0498
Coquimbo 30° 06’ S, 71° 22’ W 29 89.29 22.15 13 496.55 5131.39 36 10.76 4.23 709.96 678.51 0.0440

Table 1. Summary statistics for length and area of the host chitons Enoplochiton niger and the epibiont limpet Scurria parasitica
in the different study localities. Cp: coverage proportion of all limpets present on all chitons; (–) not applicable

Fig. 3. Limpet Scurria parasitica traits, including (a) body length variation and (b) proportion of limpet occupancy on chiton 
Enoplochiton niger’s plates in the sampling sites

https://www.int-res.com/articles/suppl/m674p131_supp.pdf
https://www.int-res.com/articles/suppl/m674p131_supp.pdf


niger geographic distribution (Fig. 5c) (i.e. Arica [18° S]
vs. Huasco [28° S]: Tukey’s test, z-ratio = −3.472, p =
0.0010; Arica vs. Coquimbo [29° S]: z-ratio = −3.281, p =
0.0132). In correspondence with occupancy patterns,
densities of the epibiont limpets differed significantly
between the extreme north site (Arica) and sites lo-
cated in the southern range edge (Huasco: Tukey’s
test, z-ratio = −2.863, p = 0.04810; Coquimbo: z-ratio =
−3.377, p = 0.0095; also Antofagasta [23°S] vs. Huasco:
z-ratio = 3.221, p = 0.01610). No significant relation-
ship between LTL and ChTL was observed for the
overall localities considered (Table 3) but a significant
positive relationship between limpet Cp and ChTL
was observed (b = 9.848 ± 3.65, t-value = 2.697, p =
0.00751). Thus, the best regression model based on
AICc for the LTL (Table 3) was the one including
limpet Cp (b = 0.664 ± 0.24, t = 2.707, p = 0.00729),
limpet density per chiton, and ChTL as co-variables
(b = −34.71 ± 16, t = −2.108, p = 0.03612). LTL was pos-
itively related to Cp but only at lower or intermediate

limpet densities (Table 1, Fig. 4b), while
a negative relationship with limpet den-
sity was also found (b = −0.727 ± 0.28,
t = −2.598, p = 0.00999).

4.  DISCUSSION

The present study documented
strong variation in the association of
the epibiont limpet Scurria parasitica
and its host chiton Enoplochiton niger
along a well-defined geographic con-
text. We found that the epibiont limpet
occurrences increased with in crea sed
host body size, especially in pop u la -
tions located at the range edge mar-
gins, in concordance with a ‘patch-area
occupancy’ hypothesis. The propor-
tion of unoccupied host chitons de -
creased in the southern latitudes, sug -
gesting a range-effect in this gra zer−
grazer association. Also, epibiont lim -
pet size was smaller at higher limpet
densities, evidencing a relatively uni-
form distribution across chiton plates
and suggesting a potential role of intra-
specific competition. Al though many
factors still need to be understood to
determine if this host− epibiont system
may shift from commensalism to an
antagonistic inter action at southern
latitudes, our results provide an im -

portant basis to explore the role of obligate host−
epibiont association in determining either persist-
ence or range contraction of the host chiton popula-
tions at its poleward range edge.

4.1.  Occupancy and size patterns of 
S. parasitica on E. niger

The occupancy of S. parasitica observed on E. niger
was higher and the unoccupied proportion lower at
southern sites, corresponding to the host species’
poleward range edge (i.e. ~29−31° S). About 48% of
the chitons examined at these sites hosted between
1 and 7 S. parasitica individuals. In previous work,
Espoz (2002) recorded higher abundances of S. para-
sitica (i.e. all ecophenotypes) between 20 and 30° S
compared with northern sites. Despite chiton size ap-
pearing to be the major factor determining host oc-
currences, strong latitudinal clines in this association

Mar Ecol Prog Ser 674: 131–141, 2021136

Fig. 4. (a) Best model explaining variation in limpet epibiont total length in
relation to chiton host total length; and (b) limpet epibiont coverage proportion
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seem to be overridden by local context (e.g. preda-
tion, topography, microhabitat) (e.g. Blanchette et. al.
2008). Our results also confirm that populations of the
host chiton E. niger reached larger si zes at southern

latitudes (i.e. from Cal dera to Coquimbo ~27−30° S),
which seems to account for the higher occurrences of
S. parasitica on chiton plates at those localities (our
Hypothesis 1). In general, body size is expected to
vary according to environmental gradients, with
large sizes distributed in the higher latitudes (i.e.
Bergmann’s rule; Blackburn et al. 1999, Gaston &
Blackburn 1996). The host chiton E. niger fits well
with the expected pattern of size increase at higher
latitudes and inversely with temperature, as
predicted for the ‘temperature size rule’ (Angilletta &
Dunham 2003). In this context, the Humboldt Current
System has environmental clines in temperature and
productivity (Thiel et al. 2007), influencing composi-
tion, abundance, diversity, and body size of different
invertebrate assemblages, in cluding mollusks (Ibá -
ñez et al. 2019, Carrasco et al. 2021), crustaceans
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Fig. 5. Chiton total length distribution in relation to (a) limpet epibiont occupancy and (b) abundancy in the 6 sampling local-
ities. General linear model fit to (c) proportion of limpet occupancy, and (d) abundance by sampling localities

Variable Factor(s) df χ2 p

Occupancy ChTL 1 82.829 <0.0001
Site 5 39.888 <0.0001
ChTL × Site 5 8.543 0.1287

No. of limpets ChTL 1 72.724 <0.0001
Site 5 108.386 <0.0001
ChTL × Site 5 1.783 0.872

Table 2. General linear models examining limpet epibiont
occupancy and the number of limpets (abundance) on host
chitons, with chiton total length (ChTL; a proxy for body 

size) and geographical site (Site) as main factors
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(Thiel 2002, Rivadeneira et al. 2010), and polychaetes
(Hernández et al. 2005). Variation in environmental
conditions such as sea surface temperature (Thiel et
al. 2007) and primary productivity (as a proxy of food
availability; e.g. Wieters et al. 2003) may also explain
the latitudinal pattern in host size (see Blackburn et
al. 1999, Angilletta & Dunham 2003, Meiri et al.
2007), which have been thoroughly examined in a
concurrent study (Ibáñez et al. 2021).

Space is a limited resource for intertidal grazers
(Branch 1976, Underwood 1984, Firth & Crowe 2010,
Aguilera et al. 2013), particularly for species with low
competitive potential (Aguilera & Navarrete 2012,
Boaventura et al. 2003). Larger host size increases
the ‘habitat’ or space available for foraging in the
epibiont limpet S. parasitica, with potentially positive
effects on reproduction and growth. A similar posi-
tive effect of the host’s size (abalone Haliotis roei and
the host limpet Patella laticostata) was observed for
the epibiont limpet P. nigrosulcata (Scheibling et al.
1990). Given its morphology, the S. parasitica eco -
phe notype seems to live exclusively on mollusk
shells and has a potentially high susceptibility of
being dislodged by waves on open rocky substrata as
observed in other epibiont limpet species (e.g. Patel-
loida mufria; Mapstone et al. 1984). This suggests
that the chiton’s area (i.e. size) could be an important
resource for the epibiont limpet’s settlement and sur-
vival; however, further field and laboratory experi-
ments are still needed to corroborate this assump-
tion. In addition, we also recorded higher limpet
densities at southern sites, which could enhance the
potential for limpet interference competition (i.e. on
the chiton plates), which is common in intertidal

grazer assemblages (Branch 1976, Underwood 1984,
Boaventura et al. 2003, Firth & Crowe 2010, Aguilera
& Navarrete 2012, Aguilera et al. 2019). In this con-
text, we also evidenced individual limpet segrega-
tion on the chiton plates at southern sites (Hypoth-
esis 3b) where, despite their larger sizes, individual
limpets occupied different plates in a relatively uni-
form distribution pattern. The consequences of the
limpets’ spatial distribution on the host chiton are
unclear, and further field experiments designed to
test competition among limpets on chiton plates (e.g.
Underwood 1984), as well as analyses of chiton per-
formance and behaviour (i.e. movement and forag-
ing rates; see Chapman 2000), could be useful in this
context.

4.2.  Persistence of the range edge populations
of the host E. niger

Previous studies documented a range contraction of
southern endpoint populations of E. niger from 33° S
(Dall 1971) to 29° S (Rivadeneira & Fernández 2005),
and recent studies confirmed the range distribution
of this species spanning from Callao, Perú (12° S), to
Huentelauquén, Chile (31.38° S) (Aguilera et al. 2015,
Ibáñez et al. 2019, Navarrete et al. 2020). It seems
that direct facilitation of the limpet by large E. niger
could guarantee habitat for colonization and food
and/or reduce interspecific competition (Scheib ling
et al. 1990); however, the effects of high epibiont den-
sities and size on the individual performance of the
host chiton are not clear. Mapstone et al. (1984)
showed that the epibiont Patelloida mufria can
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Table 3. Model comparison of the logarithm of epibiont limpet total length (LTL) versus the logarithm of host chiton total length
(ChTL), epibiont coverage proportion (Cp), number of limpets (n Limpet), position on the host chiton plates (Plate), and geographi-
cal site (Site) where the animals were collected. Models include main effects and pairwise interactions; the best model is in bold. 

K: number of parameters; AICc: Akaike’s information criterion corrected for small sample sizes; wi: Akaike weight

Model K AICc ΔAICc wi LogLik

log LTL ~ log ChTL 3 243.24 108.91 0 −118.57
log LTL ~ log ChTL + Cp 5 221.15 86.82 0 −105.45
log LTL ~ log ChTL + n Limpet 5 239.73 106.38 0 −115.23
log LTL ~ log ChTL + Plate 17 235.54 101.20 0 −99.37
log LTL ~ log ChTL + Site 13 205.31 70.98 0 −88.84
log LTL ~ log ChTL + Cp + n Limpet 8 134.33 0 0.98 −58.85
log LTL ~ log ChTL + Cp + Plate 26 220.71 86.38 0 −81.01
log LTL ~ log ChTL + Cp + Site 20 182.94 48.61 0 −69.53
log LTL ~ log ChTL + n Limpet + Site 20 213.27 78.94 0 −84.69
log LTL ~ log ChTL + Plate + Site 54 236.37 102.04 0 −47.87
log LTL ~ log ChTL + Cp + n Limpet + Plate 36 153.00 18.67 0 −33.84
log LTL ~ log ChTL + n Limpet + Plate + Site 68 281.12 146.76 0 −44.63
log LTL ~ log ChTL + Cp + n Limpet + Site 28 142.71 8.38 0.01 −39.45
log LTL ~ log ChTL + Cp + n Limpet + Plate + Site 83 240.92 106.59 0 8.11
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modify the choice of habitat (e.g. pools) of their mol-
lusk host during low tide. Therefore, increases in the
densities or even size of the epibiont limpet S. parasit-
ica could directly reduce the host’s resistance to phys-
iological stress and/or foraging rates at the range
edge (Broitman et al. 2018). It is likely that the scars
related to the ‘homing’ and foraging behaviour of
S. parasitica may cause partial or complete loss of
multi-channel layers present in chiton plates’ teg -
mentum (which encompass the sensory organs called
aesthetes) and/or erode the articulamentum, de -
creasing the ability of the chiton to adhere to the sub-
strate (Schwabe 2010, Connors et al. 2012, Alvarez-
Cerrillo et al. 2017). Since we did not evaluate plate
erosion in this study, we can only speculate in this
context. On the other hand, S. parasitica can also re-
move other epibiont species such as barnacles and al-
gae while feeding, which might otherwise overgrow
the chiton’s plates, reducing its movement and/or
growth. Thus, S. parasitica may also have positive
 effects on E. niger individuals at lower densities.
Hence, if the host limpets cause negative effects on
the host chiton’s performance (e.g. due to vision dam-
age involved in movement and orientation), this
grazer− grazer system may shift from commensalism
at lower latitudes to a more antagonistic interaction
(i.e. parasitism) at their range edge (see Fig. S3). A
shift from commensalism to mutualism has been re-
ported previously in an annelid− crayfish symbiosis
system modulated by environmental fouling pressure
(Lee et al. 2009). Similar results were reported by
Travis et al. (2005), who used a patch-occupancy
model to show that positive inter actions (commensal-
ism and mutualisms) tend to dominate in harsher en-
vironmental conditions. Considering that the studies
conducted by Nakayama et al. (2020) revealed that
host utilization by the epizoic limpet Lottia tenuis-
culpta changed seasonally and differed be tween host
species and that local contexts (i.e. habitat features at
each site) can override strong latitudinal patterns
(e.g. Blanchette et al. 2008), fu ture field experimental
studies should consider both latitudinal and temporal
variation in the direction of the association between
the focal host−epibiont grazer species. Also, assess-
ment of the epibiont’s active choice of its host, as ob-
served in other systems (e.g. Mapstone et al. 1984,
Nakayama et al. 2020), could be important to disen-
tangle the limpet’s specificity to an individual host and
the epibiont’s survival potential at their range edge.

Since E. niger is a strong interactor in this system
(Aguilera et al. 2015), the extent to which geographic
variation of our epibiont−host system translates into
changes in the community structure (e.g. indirect

commensalism; Dethier & Duggins 1984) is of special
interest. Latitudinal gradients (e.g. temperature, oxy-
gen, productivity) and, to a lesser extent, biogeo-
graphic breaks can leave important signatures in
host−epibiont grazer systems. Thus, field experi-
ments conducted along a latitudinal gradient can be
useful to examine the geographic variation in both
the strength and direction of the association in a
host−epibiont system.
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