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1.  INTRODUCTION

Aquaculture is an increasingly important source of
protein production, with a rise of 527% in global aqua-
culture production from 1990 to 2018 (FAO 2020).
With over half (~52%) of the fish available for human
consumption currently originating from aqua culture
production, and an expected increase in demand on
aquaculture to provide almost 60% of the fish avail-
able for human consumption by 2030 (FAO 2020), the

global aquaculture industry will play a growing role
in food security (Pradeepkiran 2019). The annual
global salmon production has expanded to 2.25 mil-
lion t and the Scottish aquaculture industry currently
contributes about 7% to this global production,
equating to 203 881 t of Atlan tic salmon Salmo salar
in 2019, with a farm gate value of £1.07 billion
(Munro 2020). Salmon production occurs in areas
with few year-round employment options, thus it is a
vital industry for the Scottish economy.
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There are industry aspirations to expand Scottish
aquaculture, doubling production value by 2030
(Burnett 2017), although this is considered optimistic
(HIE 2017). At the same time as working toward in -
creasing production value, the Scottish salmon in -
dustry is striving towards more sustainable and
environmentally responsible production, through
the code of good practice for Scottish finfish aqua-
culture (CoGP 2015), combined with regulation.
Sustainable salmon production is hampered by a
number of issues, which need to be addressed with
management decisions incorporating the best scien-
tific inference. Important issues which the salmon
aquaculture industry must contend with, include,
but are not limited to, risks to wild fish such as the
potential for introgression from escaped fish, and
transmission of diseases and parasites within and
between farms (Murray et al. 2010, Taranger et al.
2015).

A range of pathogens can cause significant mortal-
ities of farmed salmon (Murray et al. 2016), account-
ing for about a third of all losses (Soares et al. 2011).
Since pathogens are transported by the movement of
water, more robust pathogens can be transported
over larger distances; many pathogens are best man-
aged for groups of farms at the area level (Murray &
Gubbins 2016). With this in mind, disease manage-
ment areas (DMAs) were first established in Scotland
in 2000. They are based on fixed separation distances
around active farms; originally envisaged to be
based on tidal excursions, they are in fact based on
smaller distances. Specifically, the radius for the sep-
aration distance around an active farm used to define
a DMA on mainland Scotland is 7.258 km, while on
the Shetland Islands, a radius of 3.629 km is used
(Scottish Executive 2000). These fixed separation dis-
tances are consistent with distances of epidemiologi-
cal risk for infectious salmon anaemia (ISA), that can
include both water source transmission effects, such
as the speed and dilution in seawater currents (Vike
et al. 2014), as well as other epidemiological factors
(Scottish Executive 2000). They are updated regu-
larly to include all active farms.

The industry aspirations to expand will inevitably
lead to new aquaculture sites being required and in -
creased biomass allowance being requested for sites.
As the aquaculture industry expands, the number of
potential pathogen hosts on farms will increase.
Increases in biomass and temperatures on farms ex -
plain up to 85% of the variance in mortality (Moriarty
et al. 2020). Higher biomasses are particularly com-
mon towards the end of the production cycle, which
has been shown to be a factor in the transmission of

pathogens (Salama & Murray 2011). Thus, working
to decrease the environmental stresses and pathogen
load on fish is increasingly important in order to sup-
port sustainable growth of the industry.

Particle-tracking simulation studies provide a cost-
effective method for developing a theoretical under-
standing of the movement of parasites (to identify
potential risk of infection or dispersion in the marine
environment; Kough et al. 2015) and animals (to
identify potential migratory patterns; Hinckley et al.
1996, Li et al. 2014, Chang et al. 2016). Hydro -
dynamic model outputs are used to run simulations
of virtual particles that can represent inert particles
such as plastics or parasites, or active particles such
as fish or other animals. The use of coupled hydro -
dynamic− particle-tracking simulations, also known
as bio-physical models, for parasites such as salmon
lice has increased in recent years (e.g. Asplin et al.
2004, 2011, Murray & Gillibrand 2006, Gillibrand &
Willis 2007, Amundrud & Murray 2009, Adams et al.
2012, Salama et al. 2013, 2018, Johnsen et al. 2014,
Rabe et al. 2020). These models are widely used to
calculate dispersion distance and the area of influ-
ence of salmon lice from single farms to map high-
concentration areas in larger fjord or loch systems
and to identify the exposure connectivity between
fish farms (e.g. Adams et al. 2015, 2016, Samsing et
al. 2015, 2017, Salama et al. 2016, Kragesteen et al.
2018). In Scotland, to date, bio-physical models have
not been used in the management of pathogens other
than sea lice.

Sea lice Lepeophtheirus salmonis (Krøyer, 1837)
are the most significant single pathogen of salmon,
both in terms of economic damage to farmed salmon
(equivalent to 9% of revenues, Abolofia et al. 2017)
and impact on wild salmonids (Taranger et al. 2015).
However, the longer survival in the water and more
complex behaviour of sea lice relative to other micro-
bial pathogens (Adams et al. 2016, Salama et al.
2018), such as harmful viral or bacterial microorgan-
isms, referred to collectively herein as micropatho -
gens, means that different management strategies
are required for sea lice relative to those for micro -
patho gens. Therefore, while the bio-physical models
used for sea lice are relevant and help inform the
model used here, sea lice as a pathogen is not consid-
ered further in this paper.

Micropathogens like infectious salmon anaemia
virus (ISAV) which causes the serious notifiable dis-
ease ISA are currently contained and eradicated using
DMAs. Major disruptive epidemics of ISA have
occurred in Scotland in 1998−99 and 2008−09 (Mur-
ray et al. 2010). The recommendations include advice

134



Moriarty et al.: Micropathogen modelling in Scottish aquaculture

on acceptable stocking strategies so that all sites in a
DMA are fallowed in a systematic manner to reduce
risk (Scottish Executive 2000). However, systematic
culling has never been required, except for con-
firmed sites. DMAs were specifically developed for
the eradication of ISA (Murray et al. 2006), but the
same approach would also be used for control of
infectious haematopoietic necrosis virus (IHNV),
which leads to infectious haematopoietic necrosis
(IHN), although this exotic disease has not occurred
in Scotland to date. In farmed trout, viral haemorrha -
gic septicaemia (VHS), caused by viral haemorrhagic
septicaemia virus (VHSV), is managed in a similar
way, and for marine farmed trout, a DMA approach
would be used: although VHS has occurred only in
non-salmonids and freshwater trout farms to date in
the UK (Stone et al. 2008), it has occurred in wrasse
held as lice cleaner fish on salmon farms (Munro et
al. 2015). Populations affected by these notifiable dis-
eases are subject to culling (in the case of VHS in
cleaner fish, these were culled but the salmon were
allowed to remain, as these were VHSV-negative),
and other farms within the DMA are placed under
movement restrictions until the last farm has been
depopulated either through culling or normal harvest
if the site is not itself infected. These viruses all decay
relatively rapidly in the environment (Oidtmann et
al. 2018), and so after 24 h are likely to be reduced to
low prevalence; this limits the time over which trans-
mission can occur.

The existing methodology for implementing dis-
crete DMAs (Scottish Executive 2000) adequately
de scribes the pathogen transmission from nearshore
farms. In conjunction with statutory movement re -
strictions and compulsory eradication, this methodol-
ogy has successfully contained and eradicated out-
breaks of ISA in the past (Murray et al. 2010). Here,
the efficacy of bio-physical modelling in supporting
and informing potential changes required to the cur-
rent DMA framework for an expanding industry is
assessed. We first examine the inference from bio-
physical modelling of passive particles which repre-
sent the likely trajectories of pathogens from exist-
ing farms. We assess if this differs in inference from
the current spatial management tools for disease
mitigation in Scotland which have proven effective
to date. We then assess whether there is a differ-
ence in the inference from bio-physical modelling of
passive particles and the current methodology for
hypothesised developments in more exposed areas
than are traditionally used by the industry. The as -
sessments allow us to provide recommendations for
future development of evaluating particle spread

through bio-physical modelling in relation to DMAs,
should the industry seek to change its current prac-
tices and farm in more exposed nearshore locations
or further offshore.

2.  METHODS

2.1.  Study area

Our study area covers all Scottish marine waters
and beyond, as indicated by the hydrodynamic model
mesh in the inset in Fig. 1. Salmon farm locations (n =
215) are situated on the west coast and the islands,
and, for ease of analysis, have been divided into 5 re-
gions: Shetland, Orkney, Western Isles (Eilean Siar),
Northwest and Southwest (Fig. 1). The duration of the
study was from 1 January to 31 December inclusive.
Passive particles from active salmon farms were re-
leased for the full simulation period.
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2.2.  Bio-physical model

The output from a hydrodynamic model (described
in Section 2.2.1) was used to drive a particle-tracking
application (described in Section 2.2.2). The particle-
tracking application simulates the likely trajectories
and densities of pathogens during their viable phase
from all active salmon farms in Scottish waters. This
allows for an assessment of potential connectivity
rates between salmon farms.

2.2.1.  Hydrodynamic model

The Scottish Shelf Model (SSM) is a validated
unstructured-grid, 3-dimensional, Finite-Volume
Community Ocean Model (FVCOM) implementation
(Chen et al. 2003) and was developed by Marine
Scotland Science and used in this study. The SSM
consists of a wider-domain coarser-resolution model
covering the whole of the British Isles, including the
Scottish continental shelf (inset in our Fig. 1) (Wolf et
al. 2016a) as well as a number of high-resolution sub-
models in some areas within that domain (Price et al.
2016a,b,c,d, Wolf et al. 2016b, O’Hara Murray & Gal-
lego 2017). The horizontal resolution varies between
15 m in the sub-models to about 10 km at the open
boundary, and the vertical resolution includes 10 or
20 vertical layers in the sub-models or wider domain
(Wolf et al. 2016a,b). The SSM model runs (version
2.01) for a single climatological year, representing
averaged present-day climatic conditions for 1990−
2014, with a 1993 tidal component, have been used
(De Dominicis et al. 2018). As this is an average cli-
matological year, it means that specific extreme
storm events were not included and inter-annual
variability cannot be estimated. An integrated hydro-
dynamic output file, which uses the combination of
the finer resolution of sub-models and coarser resolu-
tion of the wider model, forced the particle-tracking
model (details about the model integration can be
found in Wolf et al. 2016b and Rabe et al. 2020).

2.2.2.  Particle-tracking model

To predict the pathogen densities and trajectories,
output from the SSM was used to drive a particle-
tracking application that simulated a range of pas-
sive movements of particles from active salmon
farms. The particle-tracking application is adapted
from the Lagrangian particle-tracking model,
FVCOM I-State Configuration Model or FISCM (Liu

et al. 2015), which was developed for the FVCOM
framework. This code tracks released virtual ‘super
individuals’ (Scheffer et al. 1995). Super individuals
are used to represent many particles of a virus like
ISAV, which are forced by the SSM integrated model
outputs of current speed and direction. Using a
smaller number of super individuals with parameters
that allow random movements (e.g. horizontal diffu-
sivity) allows for a less computationally expensive
model, that still captures the variance in the general
movement of individuals rather than trying to model
every single individual in a population separately.
Particles were released from each location of interest
at a rate of 5 h−1 for the full climatological year.

The particles were tracked on a 10 min interval,
using hourly hydrodynamic model outputs, and the
particle locations saved to a file every 3 h. Hourly
hydrodynamic model outputs were interpolated
using the 4th-order Runge-Kutta method to match
the 10 min particle-tracking time step. We have as -
sumed that pathogens remain near the surface at all
times, by confining horizontal velocities between
the surface and 1 m depth. Here, the pathogen par-
ticles are passive (no directed swimming) and were
subject to advection by currents and diffusion, with
a horizontal diffusivity of 10 m2 s−1 as described and
implemented in other similar studies (i.e. Okubo
1971, Wolf et al. 2016b, Rabe et al. 2020). The SSM
integrated model has at least a 1 km resolution
around the Scottish coast, while the typical resolu-
tion within highly re solved sea lochs is around 50−
100 m. Thus, a horizontal diffusivity of 10 m2 s−1 still
allows for the more highly resolved areas to be com-
pared to the areas where the model has lower reso-
lution but further sensitivity analyses with regard to
the diffusivity term is required. Horizontal diffusiv-
ity is simulated simply by moving the particle in the
horizontal, but not in the vertical. Thus, pathogen
particles move with the currents generated from the
hydrodynamic model plus diffusion. When particles
reach solid boundaries representing coastline, they
do not cross the boundary. The FISCM settling
option was implemented here, where after the pela -
gic duration of 12, 24 or 48 h, the particles cease to
be viable and are no longer tracked. These viability
timescales were chosen to reflect likely maximum
active time for the viruses commonly seen in Scot-
land, given the average water temperatures (Oidt-
mann et al. 2018). Here we are interested in under-
standing relative infection pressure to evaluate
potential risk of infection be tween farms, thus no
farm-based abundance, reproduction or mortality
rate was applied.
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2.3.  Particle origin

To achieve our aim, which is to assess the value of
using bio-physical modelling to describe the maxi-
mum particle spread to inform the DMA framework
for an expanding industry, it is necessary to carry out
3 scenarios. First we examine the current farms, com-
paring the inference from the bio-physical model to
the DMAs. We then hypothesise on potential devel-
opments in more exposed areas than traditionally
used by the industry, and compare the inference
from the bio-physical model to the DMAs in 2 further
scenarios. These further scenarios as sume that in the
short to medium term, businesses will continue to
utilise existing infrastructure, while in the longer
term, we may see a move to farm in more exposed
areas. New technologies are likely to emerge, which
may change the types of cages and thus the transmis-
sion dynamics, so these scenarios are limited to 5
locations only within this preliminarily study.

2.3.1.  Baseline scenario: current active sites

The current DMAs are designed with nearshore−
open-pen aquaculture in mind. The methodological
process used to define these DMAs has shown that
they are robust and fit for purpose over the last 20 yr.
We explore if the inference from the bio-physical
model based on local hydrodynamics suggests that
a different connectivity may occur, that is not ac -
counted for in the current DMA framework. To do
this, we release particles from all 215 active salmon
sea water farms in 2018 (n = 9 391 200, Fig. 1) and
compare the inference from the model output to the
DMA output for the same farms.

2.3.2.  Near-future scenario: nearshore exposed sites

Aspirations towards expansion means, in the short
to medium term, businesses may look towards ex -
panding the scale of current sites by increasing bio-
mass, or they may look at farming in more exposed
waters. Here we assume that preferred sites will be
relatively close to existing sites to utilise current
infra structure. A key criterion is that any new de -
velopment will not cause existing DMAs to join. To
theorise on potential development, we have identi-
fied DMAs that have a single active farm. For this
exploration, we assume all seawater areas are suit-
able for industry expansion and will not cause
adverse environmental effects and/or that no other

planning constraints exist. We define suitable near-
shore exposed locations using 6 criteria: within a
current DMA with only 1 other site; suitably placed
so that it does not join the DMA to another DMA;
minimum distance from shore of 1.5 km; maximum
distance from shore of 3 km; minimum current
speed of 0.05 m s−1; and maximum current speed of
0.5 m s−1.

Choosing DMAs with only 1 other site assumes that
businesses may look to increase biomass on current
sites prior to developing new infrastructure. DMA
separation is an important criterion for maintaining
biosecurity on sites. Minimum and maximum dis-
tance from shore is an arbitrary definition to distin-
guish nearshore and offshore within this simulation
study. Minimum current speed is based on existing
conditions around farms, which must allow enough
flushing, while maximum current speeds must reflect
conditions that are suitable for fish swimming against
currents. Using ArcGIS version 10.6, 5 potential near   -
shore exposed site locations within existing DMAs
with only 1 active site were identified. Particles were
continuously released from these 5 hypothesised near-
shore exposed site locations at a rate of 5 h−1 for the
full climatological year (n = 218 400). We compare the
inference from the model output to the DMA output
for the same hypothesised nearshore exposed site
locations.

2.3.3.  Long-term future scenario: offshore sites

Ongoing technological innovations in response for
the need to produce more food with fewer resources
has led to pilot studies for offshore farms (e.g. Off-
Aqua; Scottish Association for Marine Science 2018,
Morro et al. 2021). As the development and imple-
mentation of new technologies and the build-up of
expertise continues, we expect to see fish farm
applications for farms further offshore in the longer
term. In previous studies assessing the locations of
offshore farms, minimum distance from shore
ranged from 0.7 to 46.3 km (mean ± SD: 9.6 ±
15.4 km), minimum water depth from 15 to 45 m
(28.9 ± 9.2 m), and minimum current speeds from
0.05 to 0.31 m s−1 (Froehlich et al. 2017). For the
purpose of this analysis, we assume that all new
farms will have an open-pen design and will need
to be placed in suitable locations for fish welfare.
Thus we define suitable offshore locations using the
5 following criteria: suitably placed so that it does
not join a DMA to another DMA; minimum distance
from shore of 3 km; maximum distance from shore of
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12 km; minimum current speed of 0.05 m s−1; and
maximum current speed of 0.5 m s−1. Using ArcGIS
version 10.6, we randomly selected 5 potential off-
shore sites out of the areas that met the above crite-
ria for this study. Particles were continuously re -
leased from these 5 hypothesised offshore site
locations at a rate of 5 h−1 for the full climatological
year (n = 218 400).

2.4.  Comparison of inference from maps

There are 2 approaches that may be used to assess
inference from the pattern produced after 12, 24 and
48 h of particle tracking, in order the compare model
output to the hypothesised DMA map for these same
farms. Mean monthly density hulls of the maximum
distance particles travelled from origin may be used.
This method subsets the data to allow the maximum
spread only be assessed, which may be less computa-
tionally expensive, and thus may be of interest to
managers; however, by subsetting the data, inference
may be lost. Here we are interested in the total spread
through various DMA locations, thus we use all parti-
cle locations after 12, 24 and 48 h of particle tracking,
in order to compare model output to the hypothesised
DMA map for these farms. This analysis was carried
out in R version 3.6.3 (R Core Team 2018) using the
equivalent spatial join tool to ArcGIS, called ‘over’
from the package ‘sp’ (Pebesma & Bivand 2005, Bi-
vand et al. 2013) in R.

Each particle location at the 3 different times was
further explored to evaluate the potential risk of in -
fection. We assessed the proportion of particles which
crossed into another DMA 12, 24 and 48 h respec-
tively to quantify risk of infections crossing from one
DMA to another, using the ‘over’ function from the
package ‘sp’ in R.

DMAs are currently based on a given radius which
infers a set distance is travelled by viable particles; it
is necessary to assess the difference in inference be -
tween modelled output and the currently accepted
DMA distance. Thus we measured the displacement
from origin for each particle after 12, 24 and 48 h for
each month. To investigate if the displacement from
origin is significantly different in different regions or
different months, we investigated the interaction
between the region and month using linear regres-
sion models fitted using the lm function in R (R Core
Team 2018). We then compared the distances trav-
elled by particles in the model to the radius within
the current DMA framework using a simple ANOVA
test in R (R Core Team 2018).

3.  RESULTS

Results are described for the 3 time frames (12, 24
and 48 h) for each of the 3 scenarios (baseline, near-
future and long-term).

3.1.  Baseline scenario: current active sites

The current DMAs have thus far proved effective
at containing and eradicating outbreaks of disease
(Murray et al. 2010); it is important to understand
how the inference from the bio-physical model ap -
proach differs from the current DMA approach to
then inform future scenario testing. Fig. 2 highlights
the numbers of DMAs in which particles are found
after 12, 24 and 48 h, using all particle locations and
the ‘over’ function in R. If particles are found in 2 or
more DMAs, there is potential for transmission across
boundaries; however, this is a maximal interpretation
of potential that does not take account of decay or
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dilution of particles whereby pathogen concentration
may drop below minimum infectious dose. This fig-
ure does not show the proportion of sites that spread
particles into the wider model domain in areas of sea
not covered by any DMA. On average over the year,
the bio-physical model inferred that in the first 12 h
of a particle’s lifespan, 76.3% of sites (n = 164/215) do
not spread particles into other DMAs and either
retain all particles in their DMA or spread to areas
outside any DMA designation (Fig. 2). Only 22.3% of
sites (n = 48/215) spread particles into a second
DMA, while <2% (n = 3/215) of sites spread particles
into a third DMA within the first 12 h of the particle’s
lifespan, irrespective of the state of the tide, as parti-
cles are released continuously (Fig. 2).

After 24 h, further spread into neighbouring DMAs
occurred from a higher proportion of sites. The num-
ber of sites in which particles are retained within a
single DMA, or spread into open water, is reduced
 after 1 d to around 52.1% (n = 112/215). In 24 h,
34.4% of sites (n = 74/215) show particles which
have the potential to spread to a second DMA, a fur-
ther 13% of sites (n = 28/215) highlight particles

which may spread through 3 DMAs, and 0.5% (n =
1/215) highlight particles that may move through 4
DMAs (Fig. 2).

After 48 h, the number of sites which retained all
particles or spread only to open water was reduced
to 31.2% (n = 67/125). Within 48 h, 24.7% of sites
(n = 53/ 215) have particles which have shown the
potential to spread to a second DMA, while a
further 31.2% of sites (n = 67/215) show particles
which may spread through 3 DMAs, with 4.7% of
sites (n = 10/ 215) suggesting particles that may
move through 4 DMAs, ~7% of sites (n = 15/215)
showing particles which may potentially spread
through 5 DMAs and finally 1.4% of sites (n =
3/215) showing particles with the potential to move
through up to 6 DMAs (Fig. 2).

This is further broken down to show the percent-
age of sites in each region that interact with multiple
DMAs (Fig. 2). The Western Isles, for example, shows
spread into a higher proportion of sites than other
regions after 48 h, which must be taken within the
context of the percentage of particles in each area,
shown in Fig. 3. This means that in 24 and 48 h
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respectively, the potential for particles to spread and
potentially impact sites within different DMAs in -
creases; however, more research is required into all
relevant epidemiological factors, such as dilution and
pathogen viability, to fully quantify the risk of dis-
ease transmission.

The proportion of particles that crossed into an -
other DMA was analysed to quantify the risk.
Fig. 3 summarises the percentage of particles in
each area listed for each region after the time
stamp given. On average, 87.03% ± 11.81% (mean
± SD) of particles were retained within the home
DMA, 12.65% ± 11.54% of the particles moved to
open water, whereas 0.31% ± 1.42% of the parti-
cles entered a different DMA. Fig. 3 further breaks
this down by region, showing that after 12 h, the
majority of particles are retained in their home
DMA; Western Isles re tained 87.4% ± 5.8%, Shet-
land Islands 87.0% ± 12.2%, Orkney 85.0% ±
15.9%, the Southwest region 86.7% ± 14.9%, and
the Northwest region 88.2% ± 8.0%. After 12 h,
the proportion of particles entering a second DMA
in any region is fairly small, ranging from 0.02% ±
0.1% in Shetland to 1.6% ± 3.5% in Orkney, with
the other regions sitting in be tween. Naturally, the
numbers of particles retained in the home DMA
de creases after 24 and 48 h respectively. After
24 h, Western Isles retained 75.4% ± 11.6%, Shet-
land Islands 83.1% ± 15.5%, Orkney 68.7% ±
24.7%, the Southwest region 75.4% ± 22.6%, and
the Northwest region 79.1% ± 19.7%. After 48 h,
Western Isles retained 44.6% ± 22.0%, Shetland
Islands 71.7% ± 21.8%, Orkney 47.2% ± 27.1%,
the Southwest region 60.0% ± 32.0%, and the
Northwest region 69.7% ± 24.7%. When the loca-
tion of particles after 24 and 48 h respectively is
considered, the proportion of particles moving out-
side their origin DMA into open water increases to
21.66% ± 18.65% and 36.68% ± 26.81% in turn,
while 1.36% ± 4.39% of the particles entered a sec-
ond DMA in 24 h and 2.68% ± 5.47% of the parti-
cles entered a second DMA in 48 h. The average
percentage moving to a third DMA in 24 h is
0.02% ± 0.12%, which increases to 0.22% ± 0.55%
in 48 h. Notably, Fig. 3 highlights the proportion of
particles that spread into open water, not shown in
Fig. 2. Particles, when leaving their home DMA in
any region, are most likely to enter open water,
and as the proportion of particles in the home
DMA decreases, the proportion of particles in
open water increases (Fig. 3). The proportion of
particles moving into the second DMA in creases
from 0.3% ± 1.4% after 12 h, to 1.4% ± 4.4% after

24 h, and 2.7% ± 5.5% after 48 h in all DMAs,
with some regional variation occurring particularly
after the longer times. The proportion of particles
reaching any further DMAs is minimal (Fig. 3).

Inference of the average displacement from origin
by particles after 12, 24 and 48 h respectively is
shown in Fig. 4. In 12 h, 95% of particles were
retained within 5.78 km of origin, the maximum dis-
tance any particle travelled in 12 h was 11.47 km,
and the minimum distance was 0.51 km. In 24 h, 95%
of the particles stayed within 11.18 km, and the
range of displacement from origin was 0.56 to
12.98 km. After 48 h, 95% of particles had travelled
less than 19.85 km, ranging from 0.57 to 23.18 km.

Table 1 summarises the average distance (±SD)
and 95th percentile of displacement from origin
across all sites in Scotland and then broken down by
each region. These values represent the average
value across all months.

There is a statistically significant difference (p <
0.01) in displacement from origin by particles from
sites in different regions and different months
(Fig. 5). Results are based on the climatological
hydrodynamic output, thus these distances represent
an ‘average’ year.

The displacement from origin by particles after the
3 viability timescales was consistently higher in the
winter months (December, January and February;
Fig. 5). The particles originating from farms in the
Orkney region tended to travel furthest on average,
followed by the particles originating from farms on
the Western Isles (Fig. 5).
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3.2.  Near-future scenario: ‘nearshore exposed sites’

The inference from the bio-physical model output
was compared to the DMA output for the hypothe-
sised nearshore exposed site locations in terms of
spread and displacement from origin. The hypothe-
sised nearshore exposed sites 1 and 2 kept particles
within their originally placed DMA, while hypothe-
sised nearshore exposed sites 3, 4 and 5 occasionally
spread particles to 2 adjacent DMAs. In 12 h, 95%
of particles were retained within 5.71 km of their ori-
gin; the maximum distance any particle travelled in
12 h was 7.64 km, and the minimum distance was
1.47 km. Table 1 summarises the average distance
(±SD) and 95th percentile of displacement from ori-
gin for all  hypothesised nearshore exposed sites for
all months, while Table A1 in the Appendix gives fur-
ther details on each site. The average displacement
from origin after 12 h for the hypothesised nearshore
exposed sites was not significantly higher than the
average displacement from origin for current active
sites.

3.3.  Long-term future scenario: ‘offshore sites’

The hypothesised offshore sites 1, 2 and 4 did not
spread particles to any current DMAs, while hypoth-
esised offshore site 3 occasionally spread into 2
nearby current DMAs, and hypothesised offshore
site 5 occasionally spread into 1 current DMA. In
12 h, 95% of particles were retained within 10.32 km
of their origin, the maximum distance any particle
travelled in 12 h was 11.55 km, and the minimum dis-
tance was 1.49 km. Table 1 summarises the distance

metrics for hypothesised offshore site across all
months, while Table A2 in the Appendix gives details
on each site. The average displacement from origin
after 12, 24 and 48 h respectively for the hypothe-
sised offshore sites was significantly higher (p < 0.01)
than the average displacement from origin for cur-
rent active sites.

4.  DISCUSSION

As computational power increases, spatial man-
agement and associated tools are considered an in -
tegral element of fish health protection in reducing
and preventing disease outbreaks (Viljugrein et al.
2009, Salama & Murray 2011, Foreman et al. 2015,
Murray & Gubbins 2016, Bravo et al. 2020). Where
other studies such as Foreman et al. (2015) or Bravo
et al. (2020) focused on specific pathogens, namely
IHNV and piscirickettsiosis respectively, we instead
ex plore the utility of bio-physical modelling to sup-
port and inform potential changes in future DMA
structure in Scotland’s aquaculture more generally.
Here, we analysed the number of sites in which
particles are retained within a single DMA for 12,
24 and 48 h respectively. The spread of particles
after 12 h is important, as many pathogens survive
a short time in the marine environment if no host is
available, whereas more robust pathogens may
survive longer. DMAs are used in the containment
and eradication of serious notifiable disease such
as ISA. Other diseases, such as pancreas disease
(PD) (Kilburn et al. 2012) caused by the salmonid
alphavirus (Weston et al. 1999), or complex gill dis-
order (No guera et al. 2019) are considered endemic
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Region                             n                                               Distance travelled (km)                                                      
                                               After 12 h                   After 24 h                       After 48 h      
                                                       Mean ± SD       95%ile              Mean ± SD       95%ile                   Mean ± SD        95%ile

Existing sites                                                                                                                                                                               
All active sites               215        2.689 ± 1.648       5.781              4.66 ± 3.010      11.184                  8.455 ± 5.896      19.949
Northwest                      53        2.652 ± 1.373       5.226              4.429 ± 2.785      10.145                  7.477 ± 5.433      15.947
Southwest                      38        2.228 ± 1.094       4.588              3.855 ± 2.152      7.746                  6.682 ± 3.879      14.879
Shetland                        64        1.959 ± 1.185       4.447              3.196 ± 1.936      7.188                  5.22 ± 3.401      11.673
Orkney                           23        4.810 ± 2.495       9.628              9.014 ± 3.782      15.749                16.795 ± 5.873      26.174
Western Isles                 37        3.158 ± 1.191       5.273              5.642 ± 2.064      9.112                12.087 ± 4.882      20.036

Hypothetical sites                                                                                                                                                                       
Nearshore exposed       5        3.017 ± 1.297       5.706              5.309 ± 2.536      11.254                  9.031 ± 3.353      14.976
Offshore                         5        4.842 ± 2.896     10.6                8.580 ± 5.538      18.894                16.174 ± 10.457      34.45

Table 1. Summary of the average distance of displacement from origin by particles for all sites, broken into each region across 
all months. n: the number of sites included; 95%ile: 95th percentile
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and are not controlled through the DMA structure
and depopulation, al though they can cause high
levels of mortality. Bacterial kidney disease, al -
though notifiable in salmon, is controlled at the
farm level through movement restrictions and is
not at the area level, since the causative pathogen,
Renibacterium sal moninarum, survives poorly in
the environment, thus transmission to neighbouring
farms is not considered as important to its epidemi-
ology (Murray et al. 2012). Other diseases like
infectious pancreatic necrosis caused by the wide-
spread pathogen infectious pancreatic necrosis
virus (IPNV) are relatively robust (Oidtmann et al.
2018), thus potentially making DMAs less effective
for their control (Murray et al. 2006). IPNV specifi-
cally has not been managed using DMAs, and is
now non-notifiable and is not subject to official
controls.

We explored the inference of the maximum spread
of particles after 12, 24 and 48 h respectively as this
allows us to better understand the area that may
potentially be impacted by notifiable diseases such
as ISA and VHS. Thus it is allowing us to be conser-
vative in our recommendations in terms of control of
these listed diseases and to provide recommenda-
tions for further research to better understand the
risk of disease spread, particularly in changing cli-
mates. In this exploratory analysis, inert particles
moved through various DMAs driven by the physical
properties of the hydrodynamic model, such as ocean
current. Thus this does not account for abundance of
a pathogen, its decay or mortality, as the maximum
spread was of interest. Nor does this account for
other epidemiological factors for which the separa-
tion of DMAs is important in containing serious noti-
fiable disease, should this occur.

The overall pattern of dispersion of particles within
the baseline scenario of the bio-physical model pro-
vided inference that the current DMAs are generally
conservative enough to reduce the spread of notifi-
able diseases to other DMAs, but not large enough to
capture the spread into the wider sea, as all 215 sites
show varying degrees of spread not captured by the
current DMA.

The sites showing particles spreading through
multiple DMAs were assessed to explore the poten-
tial risk likely to occur (Fig. 3). This highlighted that
the risk posed from all sites where particles were
found to move into a secondary DMA within 12 h is
likely to be minimal. The percentage of particles that
enter more than 3 DMAs is less than 0.001%, thus
unlikely to pose any risk of infection. The potential
risk this may cause will be dependent on how robust

the pathogen is, given various other environmental
factors such as water temperature.

We explored the inference of average displace-
ment from origin by particles after 12, 24 and 48 h
respectively in each month of the year to assess if
particles travel further on average at certain points of
the year (Fig. 5). This analysis added to the inference
gleaned from the spread discussed above by allow-
ing a comparison of average distances particle travel
from all sites and the set distance used in the current
DMA methodology, which is based on epidemiologi-
cally relevant fixed separation distances around
active farms. There is a statistically significant differ-
ence (p < 0.01) in displacement from origin by parti-
cles from sites in different regions and different
months. The winter months of December, January
and February showed consistently higher distances
travelled by particles than in other months (Fig. 5),
which relates to stronger wind forcing during these
months, as all particles stay near the surface in this
model. Greater mixing due to stronger wind may
mean that viral particles do not remain at the surface,
and thus this assumption should be challenged if
inference from bio-physical modelling is proposed as
a supporting tool in informing DMAs. Regional dif-
ferences showed the particles originating from farms
in the Orkney region tended to travel furthest on
average (Fig. 5), although particles were more likely
to end up in open water than another DMA (Fig. 3).
Particles originating from farms on the Western Isles
travelled the next furthest in distance (Fig. 5); again,
more particles ended up in open water than entered
another DMA (Fig. 3). This suggests that perhaps a
regional approach to inferring epidemiologically rel-
evant fixed separation distances for disease area
management may be more applicable, particularly if
our hypothesis of moving to more exposed areas is
correct. However, this analysis only looks at one com-
ponent of disease transmission, namely the move-
ment of particles in the coastal-oceanic zone. This
may provide a useful indirect measure of efficacy of
current biosecurity measures, but cannot conclude
on whether changes are required in DMAs, as this
would require all aspects of disease transmission be
included. The hypothesised near-future scenario
with nearshore exposed sites and long-term scenario
with offshore site locations highlighted that particles
spread further and reach larger distances in more
exposed areas. While this is not surprising, it is an
area for consideration, alongside other epidemiolog-
ical aspects of relevance for disease transmission,
when new farm locations are suggested in exposed
areas.
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4.1.  Model assumptions, limitations and
 recommendations

The hydrodynamic model output used in the study
is an average 1 yr climatology based on the 25 yr
period 1990−2014. This means that specific extreme
(e.g. storm) events were not included and inter-
 an nual variability cannot be estimated. The results
from this study will therefore represent an average
year for the above given time frame. This is appropri-
ate to management of clusters of farms that will be in
place over many years, particularly for management
of occasional large outbreaks whose coincidence
with extreme conditions is a very low probability.
There is currently no scenario of the SSM available to
simulate extreme weather conditions. This is a limi-
tation of this study, but inclusions of storm events
(e.g. 1 in 100 yr) could provide inference on particle
tracking that would suggest different results. This
should be considered prior to changing the existing
methodology or implementing a stepwise change
within the industry to offshore site locations.

The particle-tracking model uses the integrated
grid output version of the SSM, which combines the
coarser- and finer-resolution model outputs. How-
ever, this is a very computationally expensive exer-
cise, which required high-powered computing re -
sources, thus is not something that is easily repeated,
and particle-tracking runs were performed offline.

For the pathogen behaviour in the particle-tracking
simulations, a number of assumptions and simplifica-
tions were made, such as the pattern and duration of
spawning and length of the pelagic duration and
 settlement window. No mortality was built into the
particle-tracking model, due to the differences be-
tween various pathogens in specific environmental
conditions. Thus, all particles ‘survive’ the duration of
the simulations, although to quantify survivorship
correctly, we would have also needed an estimate of
numbers of viral particles released, which was not
available. The number of particles released from each
area aims to replicate the movement of a potential
patho gen from a site, in order to understand the
 spatial extent of pathogens shedding from farm
sources only. Therefore it does not reflect an absolute
number of a given pathogen and the rate at which the
particles are released does not reflect the quantitative
temporal distribution of a pathogen’s reproduction.
Horizontal diffusivity of 10 m2 s−1 was specified within
this analysis. This parameter will require testing, vali-
dation and a sensitivity analysis prior to changing the
current DMA methodology, as this level of diffusivity
may impact inference of particle behaviour, by sug-

gesting more or less random movement than seen in
nature by virus particles. All particles were released
on the surface in this study; in previous studies with
particles representing viruses, there was little differ-
ence between particles released at the surface, mid-
depth and bottom (Wolf et al. 2016b); however, this
is another area representing model uncertainty. We
recommend a full sensitivity analysis on key model
parameters such as horizontal diffusivity, minimum
number of particles released and timing required to
capture physical parameters of importance, such as
current velocity, and also epidemiological factors
prior to considering whether changes are required
for the current methodology of assigning DMAs.

Empirical data which tracks virus particles in water
is not practical to collect; however, the observational
data from active farm sites shows that the current
DMAs are effective, in that they were effective as
part of the programme of bringing ISA under control
and then eradication when it first occurred in Scot-
land in 1998 and in the containment and eradication
of a second occurrence in 2008, and used to contain
and eradicate VHS in 2012; thus any changes to
DMA structure must follow a conservative approach
and should treat the current epidemiological zone as
a minimum acceptable area. This needs to be consid-
ered if bio-physical models are to be used in driving
area-based management changes for pathogen con-
trol in Scottish waters.

The near-future and long-term scenarios are lim-
ited to 5 locations only, thus this first look does not
provide a definitive statistical analysis. New tech-
nologies are likely to emerge through various indus-
try innovations, which may change the types of cages
and thus the transmission dynamics from sites. Fur-
ther work is required to fully evaluate the transmis-
sion dynamics from offshore farms within future
 climate scenarios. This requires additional under-
standing of potential offshore cage types and logis-
tics, which is outside the remit of the current work.

4.2.  Conclusions

Diversifying impact mitigation for pathogen control
in marine environments involves increasing host re-
silience to disease, reducing pathogen abundance
and managing environmental factors that facilitate
disease. Here we have shown the current DMA
methodology is robust for the movement of particles
from farms in nearshore, relatively sheltered areas,
building on previous research (e.g. Murray et al.
2006, Salama & Murray 2013, Murray & Gubbins
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2016). This work highlights the need to fully investi-
gate if changes are required to the current DMA
structure if the industry seeks to develop in offshore
areas where pathogens are likely to have an in -
creased spread, as in this analysis, the particles tend
to spread further on average from more exposed ar-
eas. We do not consider all relevant epidemiological
factors for disease transmission in Scottish waters;
thus this bio-physical modelling exercise is a first step
which helps to investigate if there is an in creased risk
associated with offshore farms in terms of pathogens.
This work may be useful in assessing potential new
offshore farm locations in the context of particles
which may be pushed to nearby nearshore sites.
Thus, if the industry plans to develop  further off -
shore, then it may be prudent to further investigate
the epidemiologically relevant fixed separation dis-
tance radius required for DMAs on these farms.
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Appendix.

Table A1. Summary of the average distance of displacement from origin by particles for each hypothesised nearshore exposed 
site across all months. 95%ile: 95th percentile

Table A2. Summary of the average distance of displacement from origin by particles for each hypothesised offshore site across 
all months. 95%ile: 95th percentile
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Hypothesised site name                                                   Distance travelled (km)                                                       
                                               After 12 h                   After 24 h                       After 48 h      
                                                       Mean ± SD       95%ile              Mean ± SD       95%ile                   Mean ± SD        95%ile

All nearshore exposed sites       3.017 ± 1.297       5.706              5.309 ± 2.536      11.254                 9.031 ± 3.353      14.976
Nearshore Exposed 1                  2.149 ± 0.326       2.643              3.778 ± 0.770      5.086                 7.431 ± 2.181      10.310
Nearshore Exposed 2                  2.608 ± 0.882       3.898              5.056 ± 1.977      8.436                 8.435 ± 2.383      10.524
Nearshore Exposed 3                  4.342 ± 1.714       7.286              7.647 ± 3.326      13.186                 10.33 ± 2.184      13.975
Nearshore Exposed 4                  2.067 ± 0.234       2.456              3.342 ± 0.567      4.207                 5.333 ± 0.662      5.995
Nearshore Exposed 5                  3.921 ± 0.589       4.785              6.726 ± 1.898      9.503                 13.627 ± 1.364      14.976

Hypothesised site name                                                   Distance travelled (km)                                                       
                                               After 12 h                   After 24 h                       After 48 h      
                                                       Mean ± SD       95%ile              Mean ± SD       95%ile                   Mean ± SD        95%ile

All offshore sites                         4.842 ± 2.896       10.6              8.580 ± 5.538     18.894               16.174 ± 10.457     34.45
Offshore 1                                   5.743 ± 0.574   6.527          9.502 ± 1.943     12.355                 17.780 ± 1.937     19.589
Offshore 2                                     2.04 ± 0.16     2.296          3.508 ± 0.331     4.085                 5.679 ± 0.509     6.571
Offshore 3                                   4.526 ± 1.306       6.4              7.754 ± 2.985     12.042                 13.289 ± 1.144     14.108
Offshore 4                                   2.238 ± 0.564   3.103          4.223 ± 1.305     6.148                 9.405 ± 2.531     13.062
Offshore 5                                     9.665 ± 1.53     11.861          17.911 ± 2.138     21.067                 34.717 ± 3.893     41.458
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