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1.  INTRODUCTION 

To start with the obvious: A model can never out-
compete the precision of a single observation (and if 
it did, how would we know?). If you deploy your gear 

in the sea and catch 128 fish, that is your sample. If 
bottom oxygen is measured to be 1.28 mg l−1, oxygen 
deficiency is undoubtedly an issue, and within the 
uncertainty of the instrument, a model is not going to 
be more correct. On the other hand, what is the effi-
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ciency of your trawl? Is oxygen deficiency a local 
problem? A model might miss the exact value, but it 
might be able to tell you to look for the oxygen mini-
mum further to the south, and that the oxygen level 
was even lower yesterday. A well-constructed model 
can also make suggestions on what major processes 
drive changes in time and space, so the answer 
whether to observe or to model (or both) is not 
straightforward. In fact, it depends on many factors, 
including the question asked, the skills of the 
observer, and what data sources are available to give 
an informed answer. 

However, the questions asked in science are sel-
dom only the request for a representation of a point 
measurement. Following Lynch et al. (2009), it can 
instead be stated as such: in science, observations 
are made on the premise that natural truth is observ-
able and understandable. Both observations and 
models are approximations of the truth. Neither 
method is perfect, as both are separated from truth 
by errors (εo and εm, respectively) of fundamentally 
different origin (Fig. 1). It is not the case that obser-
vations are truth. Observations are an incomplete 
sampling in time and space, and much of the truth 
goes unobserved. Additionally, the method of obser-
vation is necessarily imperfect and inserts a wedge 
between observations and truth. The only thing we 
can know with some certainty is the mismatch 
between models and observations, δ = εo − εm. How-
ever, δ = 0 does not imply that the error is 0, only that 
models and observations agree. By combining mod-
els and observations, a prediction can be made 
where the error εp is ideally smaller than the other 
errors (Fig. 1), but the error is still an unknown. This 
concept is well accepted theoretically but rarely 
applied in practice. It is still common that models are 
distrusted or discarded when their results do not 
match observations, not only by observational scien-

tists, but also by modelers and decision makers. True 
values of models are often disguised due to the ap -
parent mismatches between models and observations 
and improper model interpretations. A renewed dia-
logue is needed to balance our views and to enhance 
partnerships between models and observations. 

2.  WHAT IS A MODEL? 

In science, a model is a simplified (although pos-
sibly still complex) representation of an idea, an 
object, a process, or a system that is used to de -
scribe and explain a phenomenon. Models are cen-
tral to what scientists do, both in their research as well 
as when communicating their explanations (https://
www.sciencelearn.org.nz/resources/575-scientific-
modelling). A scientific model is also a way to system-
atically arrange and utilize the information from obser-
vations. Thereby, we can draw conclusions and gain 
mechanistic understanding that would be difficult to 
achieve without the model. Models are diverse 
(Levins 1966, Janssen et al. 2015). Here we will focus 
on mechanistic marine ecosystem models (MMEMs). 
These are usually spatially resolved simulation mod-
els aiming to replicate a real marine ecosystem, 
using some sort of numerical time-stepping. Loehle 
(1983) distinguished between theoretical and predic-
tive models. MMEMs should be both. They should be 
based on a sound theory, enhance our process 
understanding, and ideally be able to predict the 
dynamics of a modeled ecosystem. 

There are simple and complex models. Doak & 
Mills (1994) and Beissinger & Westphal (1998) 
claimed that models should be as simple as possible, 
while DeAngelis & Mooij (2003) argued for mecha-
nistically rich models that are less subject to error 
propagation than simple models in which mecha-

nisms are often aggregated into vari-
ables that are difficult to relate to 
observations. In addition, mechanisti-
cally rich models are often necessary 
to test between alternative hypo -
theses. In applied science, models of 
intermediate complexity are gaining 
growing popularity for balancing 
model complexity and uncertainty, 
e.g. being in a ‘sweet spot’ (Walters 
1986, Plagányi et al. 2014, Collie et al. 
2016). All MMEMs are observations 
in a virtual space. Dependent on 
model structure, it is possible to gen-
erate data on variables that are diffi-

Fig. 1. Left: Conceptual diagram of truth, observations (o) and models (m) with 
associated departures from each other. Note the distinction between error (ε) 
and mismatch (δ). Right: Same as left panel but adding prediction and pre-
diction error (εp). Redrawn from Lynch et al. (2009; used with permission)
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cult or impossible to observe in the real space. Fur-
thermore, models are the only tool that can be used 
to study the sensitivity and variability of state vari-
ables in what-if scenarios. As such, MMEMs provide 
great support to management beyond observations 
(Hyder et al. 2015). 

3.  WHAT IS AN OBSERVATION? 

We understand an observation as a piece of infor-
mation from a natural system either received through 
our senses or recorded using scientific tools or instru-
ments. In marine science, observations and data are 
often misleadingly used as synonyms, even though 
data include any piece of (quality assured) informa-
tion. In most cases, a scientific instrument does not 
directly measure the quantity of interest, but rather 
something that has been shown to be directly related 
to it (e.g. fluorescence and chlorophyll). Observa-
tions might also be models in themselves, where the 
measured quantity is a result of either empirically or 
semi-analytically derived algorithms such as sus-
pended particulate matter from optical or acoustic 
sensors (Fettweis et al. 2019). Pre-designed sampling 
strategies need to be accounted for, as the sampling 
site, timing, frequency, and depth are generally con-
strained by budgetary, logistical, and scientific needs 
(e.g. Zingone et al. 2015), and as such, already con-
stitute the observational setup’s prior conditions im -
pacting the outcome of the sampling. To fill spatial and 
temporal gaps, missing values are often substituted 
using a mathematical model (e.g. Lauvset et al. 2016). 

Observations are discrete pieces of information in 
space and time, and the process of putting these to-
gether to describe and explain a phenomenon or sys-
tem is also a model, a model that is based on the inter-
pretation of all information available to the ob server 
or scientist. Scientists use the available observations 
to represent an idea, an object, a process, or a system 
that cannot be experienced directly, to form a concep-
tual model before reporting the findings. In this way, 
observations and their interpretation together also 
form a model, and as scientists belong to different 
schools, their interpretations of observational evi-
dence thereby represent a large variety in models. 

4.  ARE MODELS BETTER THAN OBSERVATIONS? 

Despite the growing number of observation activi-
ties, oceanic observations are still scarce in time and 
space. Diversification of equipment substantially ad -

vances our ability to observe and measure oceanic 
processes, and standard protocols of observational 
methods (e.g. Dickson et al. 2007) ensure that obser-
vations can be compared across different platforms, 
times, and areas. The effort required to obtain a sin-
gle observation is often substantial, and many obser-
vations (e.g. of fish and macrobenthos) are often 
affected by the sampling gear. Thus, availability and 
quality of observations differ in time and space, as 
well as for different ecosystem components. Follow-
ing Oreskes et al. (1994), observations give an in -
complete access to a natural phenomenon, while 
MMEMs offer an incomplete representation or para-
meterization of processes and components of a natu-
ral system. Models will almost always include a basic 
spatial and temporal resolution on which they oper-
ate, while observations often are a compromise be -
tween spatial and temporal resolution (e.g. Mills et al. 
2003, Petersen 2014, Sheehan et al. 2018, Goni et al. 
2019, Zhao et al. 2019). In a highly variable natural 
system, if observations are focused on single stations 
or transects with high temporal resolution, it is often 
difficult to scale them up to longer periods and larger 
areas. Here MMEMs, with a much higher spatial and 
temporal resolution, can provide the larger-scale pic-
ture, even if they do not include all processes in the 
oceans with the same degree of detail. Merging ob -
servations and machine learning gives an opportu-
nity to further improve models and their parameteri-
zation (e.g. Mattei et al. 2018), but there is a need for 
standard protocols for models to assess quality and to 
better enable cross-model intercomparison. 

MMEMs can project into the future and inform 
about the past. As observations are limited to events 
that have already taken place, hindcast modeling pro-
vides an essential piece of the puzzle to understand 
the present. Hindcast was long the preferred modeling 
mode, but nowcast/forecast and future projections/
predictions are now used widely, e.g. to assess and pre-
dict ’good environmental status,’ as re quested by The 
European Union’s Marine Strategy Framework Direc-
tive (https://ec.europa.eu/environment/marine/eu-
coast-and-marine-policy/marine-strategy-framework-
directive/index_en.htm). MMEMs are probably the 
best available tool to project and understand the 
consequences of anthropogenic and climate-driven 
changes for marine ecosystems (e.g. Piroddi et al. 
2015, van Leeuwen et al. 2016), but models should be 
used carefully and communicated wisely. Beckage 
et al. (2011) stated that high unpredictability in bio-
logical systems effectively prevents the ability of any 
model to predict the future of ecosystems, and 
Planque (2016) argued that numerical models might 
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be of limited use to project the future state of marine 
ecosystems because stochasticity and chaos limit pre-
dictability. Naturally, the future states of marine eco-
systems are unknown, and long-term projections are 
subject to large uncertainties. Regardless, scenario-
based future projections based on the best available 
current understanding, can still be useful. The projec-
tions resulting from different scenarios and modeling 
approaches then represent potential realities with 
associated uncertainties. Through ensemble model-
ing, more potential realities are generated, which to-
gether may be closer to the truth (Araújo & New 2007, 
Skogen et al. 2014). The joint scientific effort underly-
ing the Intergovernmental Panel on Climate Change 
(IPCC) is a good example of the usefulness of future 
projections which has likely been a determining 
factor of bringing climate action to the international 
political agenda (IPCC 2014). Decisions about the fu-
ture are made in the present, and model predictions 
with their inherent uncertainties (particularly when 
future states depend on change in human behavior, 
e.g. future agreements to reduce greenhouse gas 
emissions) are therefore our best, and in some cases, 
only source of information to help these decisions. 
The potential consequences from rejecting future pro-
jections based on such arguments might therefore be 
severe. 

MMEMs can estimate what is hard or even impos-
sible to measure. Direct field experiments with 
chemical tracers are unfeasible in many ways, but 
stable isotope techniques can be used. However, 
MMEMs are the most efficient way to trace river 
nutrients that are advected and modified by biogeo-
chemical processes (Menesguen et al. 2006, Painting 
et al. 2013, Radtke & Maar 2016, Lenhart & Große 
2018) and can be used in support of management 
decisions (e.g. Lenhart et al. 2010). Monitoring pro-
grams are often focused on measuring concentra-
tions (e.g. nutrients, plankton biomass) rather than 
food web fluxes. The only rate that is routinely meas-
ured is primary production, but even that comes with 
a high degree of uncertainty. Research cruises pro-
vide sporadic data on e.g. copepod egg production, 
grazing, growth, and sedimentation rates. However, 
it is not possible to measure all fluxes in a food web, 
and models are required to realistically resolve the 
emergence of trophic responses in the plankton com-
munity (Sailley et al. 2015, Maar et al. 2018). MMEMs 
can, for instance, be used to evaluate plankton feed-
ing strategies and how this affects nutrient cycles 
(Sailley et al. 2015), to estimate (organic) carbon 
budgets and sequestration (Wakelin et al. 2012, 
Ducklow et al. 2015, Polimene et al. 2016), the con-

trolling factors for productivity (Stock & Dunne 
2010), or cascading effects in the planktonic food 
web due to changes in mortality at higher trophic 
levels (Maar et al. 2018). 

What we observe in natural systems is the inte-
grated effect or outcome of all processes acting at 
various temporal and spatial scales, and these are 
difficult or near impossible to disentangle. Observa-
tions are good at directly measuring state variables, 
e.g. abundance and biomass at a particular time 
and place, but a full investigation of system-wide 
cause−effect relationships purely from observations 
is almost impossible if not combined with a modeling 
analysis. MMEMs allow for a consistent and com-
plete analysis of processes and feedback loops, and 
for testing hypotheses on the causality for the 
observed co-variability in a broader sense between 
ecosystem components. MMEMs can describe a set 
of key system parameters and variables inside the 
simulated domain and time, including all related 
state variables as well as fluxes of matter and energy. 
Therefore, a growing number of studies use both 
observations and models to analyze the drivers of a 
given system (Tett et al. 2013, Marshall et al. 2016). 

The quality of observations is often uncertain, and 
so is their representativeness. Sandvik et al. (2016) 
analyzed temperature at the fixed coastal station at 
Ingøy (71° N, 24° E) with a high-resolution model and 
concluded that an acceptable deviation (εo − εm) was 
0.6°C, while Skakala & Smyth (2016) used satellite 
observations of sea surface temperature and chloro-
phyll to calculate representative measurement areas 
for in situ networks. Some 50% of the spatial vari-
ance in the prey for larval fish occurs at the meter 
scale, thus extreme care should be taken when using 
zooplankton observations (Young et al. 2009). Repre-
sentation error is probably the most important term 
in a full analysis of uncertainties, and a better under-
standing of the representation error is the key to 
more carefully characterizing the truth that we seek 
from the integration of models and observations. 
Models also have representation errors due to the 
model resolution and unresolved processes, but the 
common assumption that model limitations dominate 
over observational uncertainty (εm > εo) persists, and 
the role of observational reference limitations are 
therefore often seen as minor.  

There are several other systematic errors that are 
hard to account for but are important to be aware of. 
The operation of an instrument might be straightfor-
ward, but the level of complexity in operation also 
provides an indication of the uncertainty, as more 
complex procedures allow for more unintentional 
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mistakes. Equipment is prone to be lost or cannot be 
used at sea under rough or extreme conditions, thus 
observations are often biased towards calm sea con-
ditions. Long-term observational time series are rare 
gems in marine science, yet they invariably contain 
equipment changes that often complicate interpreta-
tion. Providing a hard surface in a fluid medium is 
often enough to attract unwanted plants and animals, 
leading to biofouling and thereby potentially com-
promising the observations. Observations are often 
pre-processed before use, and even inter-annual vari-
ability might not be preserved after interpolation 
(Rufino et al. 2019). Particles (like plankton) rarely 
constitute continuous fields but rather establish 
patchy patterns with strong gradients due to variable 
and turbulent currents (Mackas et al. 1985, Richard-
son et al. 2000, Martin 2003). Observations of such 
quantities will strongly depend on whether a patch is 
hit or not, and the representativeness will be a func-
tion of the sampling technique and spatiotemporal 
resolution (Omori & Hamner 1982). 

MMEMs can contribute to the efficient design and 
optimization of observing systems, and observing 
system simulation experiments (OSSEs) (e.g. Arnold 
& Dey 1986) have been successfully used to optimize 
monitoring programs and design observational net-
works (Fu et al. 2011, Majkut et al. 2014, Charria et 
al. 2016, De Mey-Frémaux et al. 2019, García-García 
et al. 2019), and to analyze forecasts with or without 
assimilating virtual observations (Oke & O’Kane 2011). 
McGillicuddy et al. (2001) used an OSSE approach to 
assess the synopticity of observations, e.g. by correct-
ing the station positions for advection from a circula-
tion model. Such efforts will increase the value of 
observations and enable new applications by con-
necting and synthesizing sparse observations. 

5.  CONCLUDING REMARKS 

Both MMEMs and observations are approxima-
tions of an underlying truth, and while both have 
strengths and weaknesses, jointly they provide a bet-
ter representation of the truth. Depending on the 
model and type of observation, one may be closer to 
the truth than the other. MMEMs are designed based 
on our process understanding and typically have 
their best performance skills at certain spatial and/or 
temporal scales. One of the important advantages of 
simulated data is their potential to be disentangled to 
investigate which driving mechanisms led to the sim-
ulated response, and thereby advance our under-
standing of the natural system. Observations, on the 

other hand, are snapshots providing information on 
status, but they cannot inform about the spatial and 
temporal scales at which the most important drivers 
act. 

According to the philosopher Karl Popper's basic 
scientific principle no theory is completely correct, 
but if it can be shown both to be falsifiable and sup-
ported by evidence that shows it is true, it can be 
accepted as truth (Popper 1934). The consequence of 
this is that no number of positive outcomes at the 
level of experimental testing can confirm a scientific 
theory, but a single counterexample is logically deci-
sive. If we consider a mechanistic ecosystem model 
as a scientific hypothesis, this im plies that we can 
never prove it through validation, and no matter how 
well it performs, users may focus on its mismatches 
with observations. Because such a model is not rep-
resenting the full reality, there will always be mis-
matches. The question is whether those mismatches 
are relevant in view of the model objective, as robust 
comparisons of observations and models require a 
like-with-like approach using ap propriate diagnos-
tics from model simulations to facilitate such compar-
isons (Cowtan et al. 2015). 

One of the main criticisms of Popper’s principle is 
that falsifiability is very strict in its definitions and 
does not consider the contributions of sciences that 
are observational and descriptive. The rationale 
behind this is that in observational research, the 
experimenter has no control over the composition of 
the control groups and cannot randomize the alloca-
tion of subjects. In addition, the difficulty in isolating 
what the independent variables are, makes it chal-
lenging to identify cause and effect relationships. A 
paradox is therefore that the principle used to fal-
sify one theory (models) is used in favor of another 
theory (observations) that the same principle states 
as pseudoscience. 

Both MMEMs and observations are continuously 
improved in terms of resolution, precision, and accu-
racy, and tools that are integrating them are being 
developed. Going forward, it should not be models or 
observations, but rather models and observations. 
Using them together generates synergy and allows 
us to support science better and thereby increase our 
knowledge and understanding of marine ecosystems 
to disclose the truth. 
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