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1.  INTRODUCTION 

As the food web or ecosystem approach becomes 
more widely used in fisheries management (Öster -
blom et al. 2010, Möllmann et al. 2014), it is important 
to assess the various impacts of lower trophic levels 
(LTLs) on higher trophic level (HTL) model results 

and the uncertainties associated with it. HTL models 
are designed to describe and predict the effects of 
fishing, climate and other anthropogenic pressures on 
natural resources to provide decision support to 
nature management (Peck et al. 2018). The HTL mod-
els may include planktivorous fish, pisci vorous fish 
and/or benthivorous fish, of which many undergo 
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onto genetic diet shifts depending on the choice of 
age-, stage- or size-structure in the models (Shin et 
al. 2010). Since different fish species and life stages 
rely on specific sections of the planktonic prey size-
spectrum (Munk 1992), (mis-)matches in time and 
space with suitable prey may influence the growth 
and survival of fish during their lifetime (Frederiksen 
et al. 2007, Huebert et al. 2018). In addition, climate 
change and other natural and anthro po genic stressors 
have been shown to induce changes in the spatial−
temporal dynamics of plankton (Li et al. 2009, Mackas 
et al. 2012, Maar et al. 2013, Holt et al. 2016). This fur-
ther emphasizes the need to understand the uncer-
tainties associated with the choice of the prey field on 
HTL models, especially as these types of models are 
likely to be used in scenario studies on climate change 
(Olsen et al. 2018). 

Some of the most advanced spatially and tempo-
rally explicit HTL models consider several fish 
species and predation interactions (e.g. OSMOSE, 
Travers et al. 2009; NORWECOM.E2E, Hjøllo et al. 
2012), but also require plankton input as a potential 
food source for these fish (Travers et al. 2007, Hjøllo 
et al. 2012, Utne et al. 2012, Daewel et al. 2014). This 
plankton input is mostly obtained from LTL models, 
often called ‘Nutrient−Plankton−Zooplankton−Detri-
tus’ (NPZD) models or biophysical models, which 
typically include 3D hydrodynamics, temperature, 
nutrient fluxes and phyto- and zooplankton func-
tional groups (Lenhart et al. 2010, Sailley et al. 2013, 
Maar et al. 2018). The phyto- and zooplankton fields 
calculated by these LTL models thus form the basic 
resources for the HTL food web (Travers et al. 2009, 
Gurkan et al. 2013, Radtke et al. 2013, Daewel et al. 
2019). However, these fields can substantially differ 
from each other, and the spatially explicit HTL model 
might respond to the choice of the LTL forcing field. 
Still, the sensitivity of HTL models to different plank-
ton prey fields obtained from various LTL models 
has, to our knowledge, not yet been investigated. 

Effects of LTL dynamics on higher trophic food 
webs have been addressed in modelling studies, often 
with models integrating all levels including zoo -
plankton. Some are spatially explicit (see Rose et al. 
2010 for references); others are not (e.g. Araújo et al. 
2008, Niiranen et al. 2013, Heneghan et al. 2020). 
While scenarios with varying levels of productivity 
show the importance of zooplankton for fish biomass, 
the variance in time and space does not change in 
these studies because the underlying assumptions or 
LTL models remain the same. However, earlier 
studies emphasized the specific relevance of spatio-
temporal patterns in zooplankton prey fields espe-

cially for the survival of fish early life stages (e.g. 
Beaugrand & Kirby 2010, Daewel et al. 2011). Differ-
ent LTL models covering the same region, even 
though they are validated for the same system, exhibit 
differences in spatio-temporal dynamics as well as 
absolute values of LTL production, as they presume 
different assumptions about the planktonic food web 
and the environmental forcing conditions (Maar et al. 
2018). Plankton fields from different models represent 
a range of realistic outcomes in the respective eco -
system, but the variance may have consequences for 
subsequent estimates in higher trophic levels, which 
thus far has not been addressed. In the present study, 
we hypothesize that differences in LTL patterns and 
magnitude translate into differences in HTL biomass 
and spatial and temporal patterns. To test this hypoth-
esis, we used prey fields received from 5 different LTL 
models (Delft3D-WAQ, ECOHAM, Pätsch & Kühn 
2008; ECOSMO, Daewel & Schrum 2013; HBM-ER-
GOM, Maar et al. 2011, Maar et al. 2016; and NOR-
WECOM, Skogen et al. 1995, Skogen & Søiland 1998) 
to force the temporally and spatially explicit HTL 
model OSMOSE in a setup for the North Sea (see Fig.
1). The plankton fields provided were divided into 
size bins and then used as time- and spatially explicit 
prey fields in the OSMOSE model. The HTL model 
was run with an invariant mode setup (domain, 
spatial resolution, year and time step) to al low a clear 
analysis of the forcing impacts of the different LTL 
models. The resultant HTL biomass and spatial distri-
butions are analysed for each LTL model and com-
pared for zooplanktivorous fish, flatfish and piscivo-
rous/benthivorous fish (hereafter called pre dators). 
Sensitivity analyses were performed with the aim of 
understanding the role of zooplankton size categories 
and the magnitude of the zooplankton biomass, by 
varying size classes and total biomass in each LTL 
model while maintaining each model's unique spatial 
and temporal pattern. 

2.  MATERIALS AND METHODS  

2.1.  LTL models 

Five different LTL models were chosen to pro -
vide prey fields for the HTL model (Delft3D-WAQ, 
ECOHAM, ECOSMO, HBM-ERGOM and NOR WE -
COM; Fig. 1). While data from ECOHAM, HBM-
ERGOM and NORWECOM were provided as 2 groups 
of phytoplankton and 2 groups of zooplankton, ECO -
SMO results were combined into one group of each, 
and Delft3D-WAQ provided 4 groups of phytoplankton 
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and one group of zooplankton (Table 1). A description 
of these models (except for ECOHAM), their setup con-
figuration and their planktonic food web was provided 
in Maar et al. (2018) as well as in the associated refer-
ences given in Section 1. ECOHAM is de scribed in de-
tail in Lor kowski et al. (2012). All LTL model results 
were provided as bi-weekly averages of the year 2004 
to eliminate inter-annual variability. The reason for us-
ing 2004 is that at the time of this study, that was the 
only calendar year all 5 models had in common. Fur-
ther, according to the annual North Atlantic Oscillation 
(NAO) index of 0.2, 2004 could be considered to be a 
normal year without ex treme events (https://www.
cpc.ncep.noaa.gov). Long-term differences in interan-
nual variability of the LTL models were not considered. 
The LTL model results were interpolated to the OS-
MOSE model grid of 1/9 ICES grid cell (20 km longi-
tude and 18.5 km latitude) and integrated with depth 
(0 m to bottom). The LTL fields were re duced to the 
largest spatial domain the LTL models had in common: 
the central to southern North Sea (Fig. 2). 

Because foraging in the HTL model is based on rel-
ative size ranges of predator and prey, assumed size 

ranges of the plankton groups were included for the 
input to OSMOSE (Table 2). Non-diatoms from ECO-
HAM were given the same size range as flagellates. 
For the single groups of phyto- and zooplankton from 
ECOSMO, the minimum and maximum values from 
the other groups were used. Plankton bio mass from 
the LTL models was provided in gram carbon (gC) 
converted to the standard unit of g wet-weight (gWW) 
required in OSMOSE, using the factors 6.625 molC 
molN−1 for phytoplankton, 5 molC molN−1 for zooplank-
ton, 12 gC molC−1, 0.45 gC (g dry-weight [gDW])−1 and 
5.38 gWW gDW−1 (Brey et al. 2010). 

Biomass of macro-invertebrates (deposit feeders, 
meio  fauna and suspension feeders) was obtained 
from a previous setup using results from the 
ERSEM model (Butenschön et al. 2016) and applied 
to all simulations because it was not a standard 
output in the considered LTL models (Fig. S1 in 
the Supplement at www.int-res.com/articles/suppl/
m680p079_supp.pdf. For macro-invertebrates, con-
versions were made assuming mgC to corre -
spond to ash-free dry weight, and assuming that 
the benthos groups defined in ERSEM consist of 
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Model                            Phytoplankton                                                                        Zooplankton 
 
Delft3D-WAQ               Flagellates, diatoms, Phaeocystis, dinoflagellates               Bulk zooplankton 
ECOHAM                     Non-diatoms, diatoms                                                            Microzooplankton and mesozooplankton 
ECOSMO                      Phytoplankton                                                                        Bulk zooplankton 
HBM-ERGOM              Flagellates, diatoms                                                               Microzooplankton and mesozooplankton 
NORWECOM               Flagellates, diatoms                                                               Microzooplankton and mesozooplankton

Table 1. Lower trophic level models used and the available plankton functional groups

LTL models
Generation of

prey fields HTL model

Same domain

Same model grid

Same year 

Bi weekly

Timesteps

Plankton size-bins

OSMOSE food
web model

30 years spin up

10 years run

Biomass of

• Zooplanktivores
• Flatfish

• Predators

DELFT3D-WAQ

ECOHAM

ECOSMO

HBM ERGOM

NORWECOM

Fig. 1. Conceptual diagram of the model approach. Five lower trophic level (LTL) models are providing 3D plankton fields that 
are modified so that the spatial and temporal format of the prey fields is the same as that of the input to the higher trophic level 
(HTL) food web model OSMOSE. The HTL model estimates spatial-resolved biomass of zooplanktivores, flatfish and predators

https://www.int-res.com/articles/suppl/m680p079_supp.pdf
https://www.int-res.com/articles/suppl/m680p079_supp.pdf
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equal percentages of polychaetes, crustaceans, 
gastro pods and bi valves, we arrive at an average 
conversion of 10.5 gWW gC−1 (Ricciardi & Bourget 
1998). Size ranges were assigned to allow for size-
dependent predation (Table 2). 

2.2.  HTL model 

The HTL model we used is 
OSMOSE, developed by e.g. Shin et 
al. (2004) and Travers et al. (2009) and 
here parameterized for the North Sea 
(Texts S1 & S2). A brief description of 
the OSMOSE model and the assump-
tions are given in the following sec-
tions. The model is size-based and 
spatially explicit, and multiple species 
can be incorporated (Tables S1 & S2). 
Each species consists of super-individ-
uals, and within each super-individual 
all individuals are considered physi-
cally identical, of the same age and in 
the same spatial location. 

For each time step, super-individu-
als move randomly on the grid with a 
distance of 1 grid cell per time step. 
However, movement is bounded by 
 presence−absence maps that force 
size classes to specific regions, such as 
nursery areas. After reaching a size 

threshold, a super-individual is randomly placed on 
the appropriate map for its species and size, after 
which a random walk with one grid cell per time step 
starts again. The presence−absence maps were con-
structed using 20 yr International Bottom Trawl Sur-
vey (IBTS) and Beam Trawl Survey (BTS) data 
(obtained from the ICES Datras database, period 
1985−2005) for the North Sea. Differences in distri-
butions of size classes were visually assessed based 
on the present−absence maps. ‘Present’ was defined 
as more than 2 individuals of a size class present in 
an ICES rectangle during the 20 yr period. Spatial 
differences in abundance arise mechanistically 
through spatially explicit resource availability, pre-
dation by other fish and fishing mortality. 

At each time step, grid cells are addressed in a ran-
dom order and the super-individuals present are 
listed. These super-individuals are addressed ran-
domly to prevent an a priori feeding order from af -
fecting the results. Foraging is based on co-occurrence 
of predator and prey in time and space. Prey 
suitability is based on the relative sizes of predator 
and prey, bounded by a minimum and maximum ratio 
(Table S3). An accessibility matrix is used to ex clude 
prey from the diet in case of unrealistic predator to 
prey size ratios; for example, to exclude herring con-
suming infauna (Table S4). 

After consuming prey biomass upon satiation or 
until prey run out, the predation efficiency, ξi, is cal-
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                                          Minimum size   Maximum size  
                                                  (μm)                    (μm) 
 
Plankton 
Flagellates/non-diatoms            2                         10 
Diatoms                                       8                         14 
Microzooplankton                     10                       100 
Mesozooplankton                     125                     1600 
Phytoplankton bulk                    2                         14 
Zooplankton bulk                      10                      1600 

Macro-invertebrates 
Meiobenthos                               1                          5 
Deposit feeders                           1                         10 
Suspension feeders                    1                         30

Table 2. Size ranges per plankton group estimated as equiv-
alent spherical diameter. The ranges are agreed upon by all 
authors and based on literature (Hansen et al. 1997, Tonnes-
son et al. 2005, Daewel et al. 2008). Because the classes of 
suspension feeders, deposit feeders and meiobenthos are 
based on their foraging mode in the ERSEM model and not 
on size, different size ranges were chosen arbitrarily to dis-
criminate between benthic food sources allowing for size- 

dependent foraging in the HTL model

Fig. 2. North Sea bathymetry and its position within the North Atlantic Ocean 
(small insert). Blue rectangle: the domain common to all 5 LTL models, thus  

used for the OSMOSE simulations
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culated as the amount of food eaten divided by the 
available food corresponding to predator satiety. If 
more than one prey type is available, predation is 
uni formly distributed according to relative abun-
dance. Satiation is set to a maximum ingestion rate of 
3.5 g of food g−1 predator body mass yr−1 (Shin et al. 
2004, Travers et al. 2009). The total prey biomass con-
sumed (PB) is used to assess the predation efficiency. 
Prey consists of fish (conspecifics or other species), 
which are dynamically modelled, and resources used 
as forcing function, namely phyto- and zooplankton 
and macro-invertebrates. Densities of the forced re-
sources are spatially explicit and vary in time using 
time steps of 14 d and result from LTL models. 

Based on the consumption efficiency, an individual 
may grow, maintain itself or starve. If predation is 
sufficient (i.e. ξi > ξcrit), individuals grow. The value of 
ξcrit represents a species-independent predation effi-
ciency of ξcrit = 0.57 (Shin & Cury 2004). The mini-
mum growth is zero if no food is consumed. The real-
ized growth is bounded by the maximum and 
minimum growth and is a function of food intake (fol-
lowing Travers et al. 2009) (Table 3). The maximum 
attainable growth increment per time step is based 
on the von Bertalanffy growth curve (von Bertalanffy 

1957) and the individual’s length. A hypothetical age 
is set based on the current individual length. The 
potential maximum length at the next time step is 
then the length at the hypothetical age + the time 
step. This assumption allows individuals that by 
chance move from a food-poor cell to a food-rich cell 
to catch up in size to individuals of similar age that by 
chance encountered more profitable circumstances. 

If predation is insufficient (i.e. ξi < ξcrit), individuals 
suffer from starvation mortality, which increases lin-
early with decreasing predation efficiency (Table 3). 
Besides starvation mortality, individuals suffer pre-
dation mortality from other model individuals, from 
additional background mortality and fishing mortal-
ity (Table S5). The additional background mortality 
is species-specific and includes mortality from other 
predators such as birds and mammals, diseases and 
parasites based on stock assessment (ICES 2002). 
Fishing mortality is species-specific and size-depen-
dent and varies seasonally. Fishing pressure is mod-
elled spatially explicitly, based on the effort distribu-
tion of the otter trawl, demersal fleet, industrial fleet 
and herring fleet (Jennings et al. 1999). 

Species-specific maturation size, the size at which 
50% of the population is mature, was based on IBTS 
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Process                                                                  Equation                                             Details 
 
Predation                                                         Predation (P) of biomass (B) per super-

individual i, consuming prey j, per grid 
cell, depending on the species specific 
minimum (Lmin) and maximum (Lmax) 
size ratio. Maximum intake rate (r) = 
3.5 g g −1 yr−1 

 
Growth                        Growth, ΔL 
                                                                                                                                                         ξi,t is the consumption efficiency 
                                                                                                                                                         ξcrit is the maintenance cost 
 
Reproduction                                                                              Fecundity (N) per species summed 

over biomass (B) of mature individuals 
weighted by spawning seasonality (α) 
and sex ratio 1. ϕ is the fecundity 
parameter in eggs g−1 

 
Additional background                                         e–Madd                                               Species-specific constant; values 
 mortality                                                                                                                         provided in Table S1 
 
Starvation mortality                                              1 – eMi,t                                              Mmax = 1 
                                                                                  with                                                 ξi,t is the consumption efficiency 
                                                                                                ξcrit is the maintenance cost 
 
 
Fishing mortality                                              e β ·F if L > LF                                          Species specific fishing mortality (F) 

weighted by seasonality (β)

PBi,j,t = Bj,t �
r �Bi,t

�Bj,t
if

Li

Lmax
< Lj < Li

Lmin

�Li,t = 0 if �i,t < �crit

�Li,t =
2�L

1– �crit
(�i – �crit )  if �i,t > �crit

�
�
�

��

N0 = � � � � 1
2
� BL,t

L>Lmat
�

Mi,t =
Mmax

�crit
� �i,t + Mmax

Table 3. OSMOSE model equations. A super-individual is indicated by i  and its state at time t. Prey (super-individuals) are  
indicated by j. See also Travers et al. (2009)
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and BTS data (Blanchard et al. 2014). Annual fecun-
dity parameters are based on the literature, as is the 
species-specific spawning period. Spawning has a 
seasonal cycle, and hence the total annual fecundity 
is spread out over the year based on the spawning pe-
riod (Table S2). Per time step, the biomass of mature 
individuals is multiplied with fecundity and seasonal 
scalar to obtain the total reproduction per species at 
time step t (N0). These new individuals are split over a 
fixed number of 500 super-individuals per time step. 
Each super-individual is then randomly distributed 
onto the appropriate presence−absence map. 

The focus of the present study was to investigate 
the effects on the OSMOSE HTL model fish biomass 
when using different LTL model results as input. The 
HTL model results will therefore be compared on a 
group level and not on a species level. We grouped 
the fish species into functional types: ‘predators’ (cod, 
grey gurnard, haddock, saithe and whiting), ‘flatfish’ 
(dab, plaice and sole) and ‘zooplanktivores’ (herring, 
sandeel, Norway pout and sprat). Further, it is be -
yond the scope of this study to validate the used HTL 
model against measured species biomasses, espe-
cially as data on fish biomass are sparse and do not 
cover the required temporal and spatial scale. How-
ever, OSMOSE has already been successfully ap plied 
in other regions (Travers et al. 2009, Halouani et al. 
2016, Fu et al. 2017). Because we only have 1 
calendar year of LTL input (2004), the prey input from 
that year was repeated 40 times to create a time 
series for OSMOSE. The first 30 yr are for spin-up 
and the following 10 yr were used to generate the re-
sults. This step is necessary due to differences in life -
span of the fish species modelled. We calculated the 
annual mean (±SD) of biomass over these 10 years. 
Biomass values were normalized using the mean of 
the specific model, so a value of 1 equals the mean. 

2.3.  Sensitivity study 

The sensitivity of HTL biomass to the provided 
plankton prey fields was tested for (1) zooplankton 
size bins and (2) the amount of total zooplankton bio-
mass. In the first sensitivity study, we evaluated the 
effect of different size classes on the HTL model re -
sults. To do this we first adjusted the annual average 
of zooplankton biomass to the same level (10 gWW 
m−2) by multiplying biomass with a LTL model-
specific conversion factor (conversion = 10 gWW m−2 / 
annual mean gWW m−2) and then providing the prey 
fields as the original zooplankton groups or as 1 bulk 
zooplankton group for each of the LTL models. For 

the models with both micro- and mesozooplankton 
(ECOHAM, HBM-ERGOM and NORWECOM), the 
groups were pooled (but no change in total biomass) 
to obtain 1 bulk zooplankton group with the same 
size range for all models (Table 2). Of the results of 
this sensitivity study, we show only the zooplankti-
vores in the main document because that group has 
the strongest response to changes in zooplankton. 
The results for biomass of flatfish and predators can 
be found in the Supplement. This sensitivity analysis 
was also done with the original size bins, presented 
in the Supplement. 

In the second set of sensitivity runs, we investi-
gated the functional response of HTL to the amount 
of food in the different models. Accordingly, we 
changed the total amount of zooplankton by the 
respective factor to achieve a range from 2−18 gWW 
m−2 of the annual mean for each model. We used 1 
zooplankton group for all models (sensitivity study 
no. 1) to remove potential effects from different size 
bins, while the phytoplankton biomass remained 
 un changed. 

Finally, we wanted to explore whether the differ-
ent HTL responses across the models could be 
explained by differences in spatial−seasonal patterns 
in zooplankton biomass. We therefore calculated the 
coefficient of variation (CV, %) of the spatial and sea-
sonal means of zooplankton as: 

                                                      (1) 

The spatial CV was estimated from the annual mean 
and SD for the whole area. The seasonal CV was esti-
mated from the mean and SD from the bi-weekly 
data averaged over the model domain. A low CV re -
flects a more evenly distributed zooplankton biomass 
in space or time and vice versa. 

The seasonal correlation of zooplankton biomass 
(bi-weekly data averaged for the model domain) 
across models was evaluated using multiple linear 
regression analysis (Spearman) with a significance 
level of 0.05. 

3.  RESULTS 

3.1.  Prey fields 

Fig. 3 a shows annual means of total plankton, phy-
toplankton and zooplankton biomass for the study 
area for the 5 different LTL models. The numbers in -
clude diatoms and autotrophic flagellates/non-diatoms 
or micro- and mesozooplankton (Table 1). The phyto-

CV = SD
mean

�100
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plankton biomass across the models varied between 
19 and 28 gWW m−2, with the highest value for ECO-
HAM and similar values for the other models 
(Fig. 3a). Zooplankton biomass varied between 4 and 
18 gWW m−2, with NORWECOM and ECOHAM de-
livering 2−5 times higher input zooplankton biomass 
than the other models (Fig. 3a). Total plankton bio-
mass was highest for ECOHAM and lowest for 
Delft3D-WAQ and HBM-ERGOM. The contribution 
of mesozooplankton to total zooplankton biomass 
was 38, 84 and 41% for ECOHAM, HBM-
ERGOM and NORWECOM, respectively 
(Fig. 3a). For the seasonal patterns, total 
zooplankton biomass was normalised by 
the annual mean for each model to allow 
more  direct comparison across models 
(Fig. 3b). The timing of the spring bloom 
had a maximum around Week 20−22 for all 
models except Delft3D-WAQ, which had a 
later maximum in Week 28 and another 
in Week 38. ECOHAM also had a weak 

 signal of a second maximum around Week 40. The 
seasonal patterns were significantly correlated across 
all models, with the highest correlations be tween 
ECOSMO and NORWECOM (R2 = 0.91) and lowest 
between Delft3D-WAQ and HBM-ERGOM (R2 = 0.48) 
(Table 4). The spatial pattern of annual zooplankton 
bio mass (normalised) showed generally higher values 
in the southern part and along the coastline with the 
strongest spatial gradients for Delft3D-WAQ, ECO -
SMO and NORWECOM (Fig. 4). Macro-invertebrate 
data showed the highest bio mass of deposition feed-
ers along the eastern coastline and northern part of 
the model domain and the highest meiofauna bio -
mass in the southern part, whereas suspension feed-
ers had a patchier distribution (Fig. S1). 

3.2.  HTL model results 

The input from the 5 different LTL models pro-
duced similar relative contributions of the 3 HTL 
groups to total biomass but more than 5-fold differ-
ence in total fish biomass (Fig. 5). Zooplanktivores 
were the dominant group for all LTL model inputs, 
with 75−82% of total HTL biomass. The biomasses of 
predators and flatfish were on average 14−22 and 3−
4%, respectively, of total adult HTL biomass across 
LTL model inputs (Fig. 5). Hence, predator biomass 
was always higher than that of flatfish. Total adult 
bio mass of HTL was highest for prey fields from 
ECOHAM (273 kt wet weight (ktWW) and lowest 
for prey fields from Delft3D-WAQ (50 ktWW), while 
prey fields from the 3 remaining models gave more 
similar results (153−205 ktWW). Both the total bio-
mass and the individual biomass for each HTL 
group increased with increasing zooplankton bio -
mass (Fig. 6). For ECOHAM and NORWECOM with 
similarly high levels of zooplankton biomass, the 
biomass of zooplanktivores was, nevertheless, 33% 
higher in ECOHAM. Flatfish, which mainly feed on 
benthic prey items, showed a similar but weaker re -
sponse with increasing zooplankton biomass due to 
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                       ECOHAM   ECOSMO   HBM-ERGOM   NORWECOM 
 
Delft3D-WAQ     0.73             0.74                 0.48                    0.87 
ECOHAM                               0.66                 0.67                    0.82 
ECOSMO                                                       0.78                    0.91 
HBM-ERGOM                                                                           0.79

Table 4. Seasonal correlation of zooplankton patterns across lower trophic 
level models (Fig. 3b) showing R2 values from regression statistics (n = 26,  

p < 0.05)

Week of the year

Fig. 3. (a) Annual means (±SD) of total plankton, phyto-
plankton and zooplankton biomass and (b) seasonal devel-
opment of total zooplankton biomass (normalised by the 
mean of each model) for the 5 LTL models within the HTL 
model domain. The biomass of meso- and microzooplank-
ton contributing to total zooplankton are given below and 
above the horizontal line, respectively, indicated in (a) for  

the 3 models with 2 zooplankton groups
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Fig. 4. Normalised annual means of total zooplankton biomass (normalised by the mean of each model) for the 5 LTL models  
(a) DELFT-3D, (b) ECOHAM, (c) ECOSMO, (d) HBM-ERGOM and (e) NORWECOM

Fig. 5. Relative (%) adult HTL 
group biomass composition for 
each of the 5 LTL model inputs 
(a) Delft3D-WAQ, (b) ECO-
HAM, (c) ECOSMO, (d) HBM-
ERGOM and (e) NORWECOM. 
Mean (±SD) total adult HTL bio-
mass is indicated as ktWW for 
the last 10 yr (last time steps)

Fig. 6. Means (±SD) of the last 10 yr of the adult HTL 
biomass for total HTL and zooplanktivores (spheres, left 
axis), and flatfish and predators (triangles, right axis) 
versus annual mean zooplankton biomass from each 
LTL model. LTL model order from left to right based 
on mean zooplankton biomass: Delft3D-WAQ, HBM- 

ERGOM, ECOSMO, NORWECOM and ECOHAM
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their short but crucial dependence on zooplankton 
during early life stages. There was also a positive 
linear correlation between predator biomass and its 
fish prey (zooplanktivores and flatfish) bio mass across 
models (n = 5, R2 = 0.87, p < 0.05). 

The spatial distribution of simulated HTL adult bio -
mass of the zooplanktivores, flatfish and predators 
showed overall similar patterns between the differ-
ent LTL models (Fig. 7). Zooplanktivore biomass was 
concentrated in the southern areas and de creased 
northwards for all LTL model inputs. ECOHAM 
showed the highest total zooplanktivore biomass 
(Fig. 6), which reflected that the zooplankton was 
widely distributed throughout most of the study area 
(Fig. 4). Flatfish biomass produced from all the LTL 
model inputs had an even stronger south−northward 
gradient than zooplanktivores, with lowest biomass 
levels for Delft3D-WAQ and HBM-ERGOM (Fig. 7). 
Predators were distributed all over the study area for 
all LTL models, with core areas found either in the 
north-eastern part of the area or in the English Chan-
nel outlet. 

3.3.  Sensitivity study results 

The first sensitivity study revealed that the zoo-
planktivores responded strongly to different prey 
sizes, i.e. whether the zooplankton prey fields were 
adjusted to the same annual mean of 10 gWW m−2 
and provided as micro- and mesozooplankton or as 1 
bulk group (Fig. 8a). Especially in ECOHAM and 
NORWECOM with a high share of microzooplankton, 
the resultant zooplanktivore biomass was substan-
tially increased when the zooplankton was made 
available as 1 group with a wider size range. The sec-
ond sensitivity study, using a single zooplankton size 
bin for all models, showed a positive, linear response 
of HTL biomass to increasing zooplankton biomass 
for all LTL models (Figs. 8b & S2). In ECOHAM, zoo-
planktivores exhibited the strongest response to in -
creasing zooplankton biomass and was up to 3 times 
higher than for Delft3D-WAQ. The relative biomass 
contributions of the fish groups did not change with 
increasing zooplankton biomass (Fig. S3). 

The spatial and seasonal variability of zooplankton 
biomass expressed as the CV (Eq. 1) was found to be 
important for the resultant zooplanktivore biomass 
(Fig. 8c) and fish biomass in general (data not shown). 
A low CV, reflecting a more even distribution of prey, 
was found to give a higher zooplanktivore biomass 
and vice versa, despite equal zooplankton biomass 
(using 1 size bin for each LTL model). The spatial and 

seasonal CV were lowest for ECOHAM (20 and 51%) 
and highest for Delft3D-WAQ (96 and 106%). The CV 
of the spatial and seasonal patterns were similar for 
Delft3D-WAQ and ECOSMO (92−106%), whereas 
NORWECOM showed lower spatial (38%) than sea-
sonal (90%) variability. Zooplanktivore biomass did 
not differ much between NORWECOM and HBM-
ERGOM, and seasonal CVs were alike (90%) while 
spatial CVs differed (38% NORWECOM and 70% 
HBM-ERGOM). 

4.  DISCUSSION 

4.1.  General findings 

In the present study, we explored the sensitivity of a 
modelled fish community to spatially–temporally 
varying zooplankton prey fields provided by 5 LTL 
models. This is, to our knowledge, the first attempt to 
exa mine the relevance of differences in plankton 
dyna mics for the performance of a spatially explicit 
fish model in an ensemble-like manner. We found 
that fish group composition was similar across zoo-
plankton prey fields, despite spatial and temporal dif-
ferences in zooplankton model input. There were 
large differences in absolute fish biomass correspond-
ing to differences in zooplankton biomass input. 

4.2.  Characteristics of the LTL models 

The zooplankton biomass provided to the HTL mo -
del varied by a factor of up to 5 between the models 
(Fig. 6). In addition, the applied LTL models showed 
differences in their spatial−seasonal patterns (Fig. 8c) 
that can affect the trophic match−mismatch and out-
come of the HTL model. Delft3D-WAQ showed e.g. 
very strong spatial gradients, with highest values in 
the coastal waters, but with lower zooplankton bio-
mass in the open waters compared to the other LTL 
models (Figs. 4 & 8c). ECOHAM and NORWECOM 
showed the overall highest zooplankton biomass, but 
their spatial−seasonal patterns were very different 
(Figs. 3b, 4 & 8c), with ECOHAM having a smoother 
spatial and seasonal variability (Figs. 3c & 8c). LTL 
models are often based on similar principles yet differ 
in model assumptions, the underlying hydrodynamics, 
their resolutions in space and time, the external forc-
ing conditions and choices and description of func-
tional groups, and hence they can lead to substantially 
different results (Skogen & Moll 2005, Lenhart et al. 
2010, Sailley et al. 2013, Maar et al. 2018). Most stud-
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Fig. 7. Spatial distribution of annual means of HTL biomass (zooplanktivores, flatfish and predators; last time step) based on  
prey fields from 5 LTL models
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ies found high variability across LTL model results but 
concluded that ensemble modelling can be used to re-
duce uncertainty in model projections and estimate a 
range of possible outcomes (Niiranen et al. 2013, 
Queirós et al. 2016, Maar et al. 2018). 

Continuous Plankton Recorder (CPR) data from the 
period 1990−2000 showed a mesozooplankton bio-
mass of 3−4 gWW m−2 (0−20 m) in the southern North 

Sea (Pitois & Fox 2006). Other reported values were 
6 gWW m−2 from May−September in the central part 
(Fransz et al. 1991) and 16 gWW m−2 for the whole 
North Sea including the northern part (outside our 
model domain) with a high Calanus finmarchicus 
abundance (Fransz et al. 1991, Mackinson & Daska -
lov 2007). The reported range is similar to our model 
results of 4−9 gWW m−2 for the mesozooplankton bio-
mass in the 3 models with 2 zooplankton groups and 
total zooplankton biomass in the models with 1 zoo-
plankton group (Fig. 3a). CPR data show that zoo-
plankton biomass generally starts to in crease in 
March (Weeks 9−12) and peaks in May−August 
(Weeks 18−39), after which it gradually declines to 
winter values (Pitois et al. 2012). This pattern is con-
sistent with the modelled seasonality of zooplankton 
biomass (Fig. 3b). It should be noted that it is difficult 
to directly compare modelled an nual zooplankton 
biomass with (scarce) observations because sampling 
often occurs in peak biomass periods and at different 
years, locations and depths (Skogen et al. 2021, 
Hjøllo et al. 2021, both this Theme Section). Zoo-
plankton biomass is most often calibrated against 
measured mesozooplankton biomass e.g. from CPR 
data and ICES data because there is no coherent data 
set for microzooplankton in the North Sea. Microzoo-
plankton plays different roles (e.g. feeding mode, size 
range) in the models and can therefore have different 
biomasses relative to that of mesozooplankton (Maar 
et al. 2018). Hence, the highest uncertainty probably 
lies within the estimation of microzooplankton bio-
mass, as previously highlighted (Sailley et al. 2013, 
Maar et al. 2018). However, the differences between 
the LTL models were suited to test a range of realistic 
prey patterns in the HTL sensitivity study. 

4.3.  Bottom-up control of HTL biomass 

Total HTL biomass responded positively to increas-
ing zooplankton biomass, indicating bottom-up con-
trol of the food web (Figs. 6 & 8b). This bottom-up 
regulation of plankton to fish biomass fits well within 
general food web theory (Ware & Thomson 2005, 
Woll rab et al. 2012, Heath et al. 2014), where 
changes in nutrient or food availability lead to similar 
responses for each trophic level, as observed for zoo-
planktivores, flatfish and predators (Fig. 6). Further, 
bottom-up control has previously been demonstrated 
for the North Sea (Heath 2005), although occasional 
top-down control may occur (Daewel et al. 2014). 

Zooplanktivores showed the strongest response to 
increasing zooplankton biomass among the HTL 
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* *

Fig. 8. Sensitivity studies of zooplanktivore biomass re-
sponses to (a) zooplankton biomass (adjusted to the same 
annual mean of 10 gWW m−2 for all LTL models) distributed 
across the original size bins (Table 2) or as 1 common size 
bin; * indicates the 2 models with a single zooplankton size 
bin; (b) zooplanktivore biomass as a function of increasing 
zooplankton biomass using 1 size bin for all LTL models; and 
(c) spatial variability (large symbols) and seasonal variability 
(small symbols) of zooplankton biomass expressed as the co-
efficient of variation (CV) using 1 zooplankton size bin ad-
justed to the same annual mean (10 gWW m−2) for all 5 LTL 
models. Zooplanktivore biomass corresponds to the biomass  

indicated by the grey bars in (a)
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(Fig. 6), due to the lifetime dependence on zooplank-
ton as food. The zooplankton biomass was similar for 
ECOHAM and NORWECOM, but the resultant bio-
mass of zooplanktivores from ECOHAM was 33% 
higher than for NORWECOM. The 2 models had the 
same share of meso- and microzooplankton, so in this 
case different size bins could not be the reason for 
the difference in zooplanktivore biomass. Instead, 
the more evenly spatial−seasonal distribution of zoo-
plankton in ECOHAM compared to NORWECOM 
could explain the observed difference (Fig. 8c). Zoo-
planktivore biomass appears to be sensitive to spatial 
and temporal variation in LTL input. A higher CV, i.e. 
greater spatial and temporal differences, resulted in 
lower biomass. Since the movement behaviour of 
HTL in the OSMOSE model is random, i.e. not influ-
enced by food density, a wider distribution of food 
will increase the chances for a predator−prey match 
and cause a higher overall biomass of zooplankti-
vores in the modelled area (Fig. 7). However, the as-
sumption of random migration might not be realistic 
for all HTL species and has been shown to result in 
comparably low fish biomass growth when directly 
compared to reactive movement strategies (Humston 
et al. 2004). The OSMOSE model could benefit from 
further investigations of this topic. 

Flatfish biomass responded to a lesser extent to in-
creasing zooplankton biomass, and its spatial distri-
bution coincided mainly with that of its main prey, the 
macro-invertebrates and especially meiobenthos 
(Fig. S1). Since the macro-invertebrate field roughly 
matches that of the ICES fishmap data for sole/plaice/
dab (https://data.ices.dk/), so does the flatfish biomass 
re sulting from the various runs. Biomass of the preda-
tors increased with increasing prey biomass (zoo-
planktivores and flatfish) and was therefore also 
highest in ECOHAM relative to other LTL models 
(Fig. 6). 

Overall zooplanktivore biomass was found to be 
sensitive to the provided zooplankton groups (meso-, 
micro- or bulk zooplankton) due to differences in the 
size range each group represents (Fig. 8a). The HTL 
will outgrow the smallest zooplankton first and then 
only rely on the mesozooplankton due to the preda-
tor/prey size-ratios applied in the model (Table S3). 
However, when the zooplankton are provided as 1 
group with a wider size bin, the HTL can exploit them 
more efficiently, and especially over a longer time pe-
riod, as differences in seasonality be tween the differ-
ent zooplankton groups are levelled out. A sensitivity 
study with the original size bins (Figs. S4 & S5) shows 
the same pattern for each model compared to using a 
single size bin. Results differ in total fish biomass 

driven by differences in meso-zooplankton biomass, 
not total zooplankton biomass. Therefore, the present 
study suggests that it is important to consider size bins 
in the zooplankton field when coupling to HTL 
models (Daewel et al. 2008, Huebert et al. 2018). The 
use of a size-spectrum for zooplankton, instead of 
groups with a given size range, can further improve 
the assumption of size-based foraging and will affect 
the HTL results (Huebert et al. 2018). A size-spectrum 
approach or modelling specific zooplankton species 
may also allow inclusion of prey preference in ways 
other than size-based predation. For a more mecha-
nistic approach, this could include species preference, 
caloric content or catchability differences. Overall, 
our findings confirm that zooplankton is an influential 
link in the trophic transfer between LTL and HTL 
(Munk 1997, Heath 2007, Daewel et al. 2014). 

4.4.  HTL group composition and spatial patterns 
are similar across models 

The HTL group composition and overall spatial pat-
terns (Figs. 5 & 7) were similar despite the spatial and 
temporal differences between the LTL model inputs 
and differences in absolute biomass (Figs. 3b, 4 & 8c). 
The dominance of zooplanktivores over pre da tors 
and predators over flatfish is in agreement with pre-
vious studies in the North Sea (Greenstreet et al. 
1997, Heath 2005). The efficient transfer of energy 
from zooplankton to zooplanktivores for all LTL in -
puts suggests that no strong phenological trophic 
mis-matches occur in our simulations. On the con-
trary, the differences in spatial and temporal scales 
between LTL models fade out at higher trophic levels 
when considering the relative group composition. A 
possible explanation for this may stem from the wider 
spatial and temporal scales relevant for HTL species 
when compared to the LTL food web, i.e. fish have 
longer longevity and swim longer distances than 
their plankton prey. Also, most fish species only rely 
on zooplankton for a relatively short period of time 
during their lifespan; thus, plankton is not the only 
food source even though it plays a crucial role during 
critical life stages of fish (Bochdansky et al. 2008). As 
the fish grow larger, they will start feeding on other 
resources, such as benthic organisms and other fish, 
which has a stronger effect on the overall stock bio-
mass. Other compensatory mechanisms that dampen 
food web responses to differences in plankton prey 
fields in clude loss of energy due to respiration and 
metabolic costs, cannibalism, predation and other 
types of mortality (McCann et al. 1998b, Andersen & 
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Pedersen 2010), which are included in OSMOSE 
through the growth curve, feeding and use of back-
ground mortality. The observed dampening of the 
trophodynamics in relative group composition when 
using different prey fields is in agreement with previ-
ous findings of weak food web responses to changes 
in bottom-up or top-down forcing (McCann et al. 
1998a, Pace et al. 1999, Shurin et al. 2002, Andersen 
& Pedersen 2010, Bossier et al. 2018). Overall, the 
similar responses of the HTL spatial biomass distribu-
tion and feeding group composition across LTL model 
inputs suggest high confidence in the fish community 
model results, which is important for model accep-
tance by stakeholders and for the implementation of 
model re sults into management actions (Niiranen et 
al. 2013, Peck et al. 2018). 

4.5.  Model caveats and experiences from  
this process 

The present study offers a number of lessons on 
linking HTL food web models to LTL models. Our ap -
proach only considered 1-way coupling and not feed-
back processes from HTL to LTL. This lack of feed-
back could give a bias in the estimates of available 
food and hence growth of HTL (Travers et al. 2007). 
We found a linear food response of fish biomass to in-
creasing zooplankton biomass in the sensitivity runs 
(Fig. 8b) be cause there is no feedback from HTL to 
planktonic prey (no food depletion) inhibiting top-
down control. Al though within a time step food avail-
ability de creases due to consumption, food is replen-
ished in each time step as if no consumption occurred. 
Two-way coupling or intermediate solutions may alter 
the HTL response to increased prey fields (Rose et al. 
2010). Food-based movement of the HTL in combina-
tion with a 2-way coupling of LTL and HTL could 
dampen the linear increase of HTL biomass with in -
creasing zooplankton. Travers et al. (2009) compared 
1-way and 2-way coupling for OSMOSE parameter-
ized for the Benguela system and found changes in 
the food web pathways and relative contribution of 
fish groups. Directional movement to high-value food 
patches may lead to local food reduction, dampening 
spatial variation in prey fields. This in turn may lead 
to a more even distribution of fish. Even though all 
employed LTL models include a general zooplankton 
mortality component that implicitly takes predation 
from HTL into account, a more dynamic predation 
mortality element would result in differences in 
zooplankton seasonality and biomass composition 
(Travers et al. 2009, Maar et al. 2014, Daewel et al. 

2019). We would recommend a 2-way coupling for 
ecosystems especially with clear top-down controls of 
HTLs on the zooplankton. 

Another experience from the LTL and HTL coupling 
is related to the model domain. In a first set of experi-
ments (results not shown), the LTL results from the 
model covering only the southern and central part of 
the North Sea (Delft3D-WAQ) were extrapolated to 
the larger spatial domains of the other models that in-
clude the northern part of the North Sea with the Nor-
wegian Trench. However, this approach severely un-
derestimated the biomass levels of both LTL and HTL 
compared to the results from the other LTL models 
(data not shown). In our final approach, therefore, we 
used the same smaller spatial domain of all LTL mod-
els, which must always match (or be greater than) the 
HTL domain. The drawback of this approach is that 
the HTL domain is now limited to the central-
southern North Sea, which does not fully cover the bi-
ological domain of all the HTL species. This could 
have an impact on total biomass; for ex ample of 
boreal round fish. This limitation has been one of the 
reasons why the model domain of the newer version 
of the Delft3D-WAQ North Sea model has been ex-
tended to include a much wider area (Zijl et al. 2018). 

The presented approach of combining LTL models 
and an HTL model did not take into account differ-
ences in the macro-invertebrates between the ap plied 
models because this group is typically not considered 
in standard NPZD-type models. Instead, data on 
macro-invertebrates was delivered from the ERSEM 
model and is thus not consistent with the LTL 
plankton fields provided by the different models. 
Even though they are the main food source for flatfish 
and form a large part of the diet of predators, explor-
ing the role of macro-invertebrates for HTL models 
was beyond the scope of this study. We used LTL from 
the same year as input to the HTL model al though 
there is year-to-year variability in zooplankton bio-
mass levels and distributions (Pitois & Fox 2006). 
However, this variability is in the same range as the 
high spatial−temporal variability in the LTL prey 
fields from the same year which we used  (Fig. 8c); 
thus, we can assume that data from more years would 
likely not change the overall conclusions. The HTL 
model used a size-based approach for zooplankton 
predation because the LTL models simulate only 
plankton functional types and not species diversity. 
As it is well known that the  predator−prey size ratio is 
very important for fish predation (Munk 1992, 1997, 
Daewel et al. 2008), we believe that this approach is 
valid. However, due to the missing information, other 
factors like prey quality and selectivity cannot be con-
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sidered in our modelling approach, although they 
could influence the energy transfer into and within 
the food web (Mitra & Flynn 2006). Climate change 
effects were not considered in this paper. Previously 
performed climate scenarios for the North Sea ecosys-
tem agree that the overall productivity of the ecosys-
tem will be reduced under high-emission scenarios as 
a consequence of changed stratification and circula-
tion and the associated reduction in nutrient inflow 
(Holt et al. 2016, Mathis et al. 2019). In addition, Vil-
larino et al. (2015) showed that species may shift 
northward and that the spring bloom may advance 
under climate change conditions across the North At-
lantic region, and such changes are likely to occur in 
the North Sea (Helaouët et al. 2011, Mackas et al. 
2012, Maar et al. 2013). It depends on fish species’ tol-
erance ranges and spatial and temporal overlap if and 
under which conditions changes in zooplankton may 
affect fish (Beaugrand et al. 2003). In addition, climate 
change will affect fish directly and indirectly through 
changes in temperature, depending on fish size and 
species (Wang et al. 2020), and for example through 
phenological changes in spawning place and timing 
as well as larval drift (Lacroix et al. 2018, van de Wolf-
shaar et al. 2021). Feeding an HTL model with LTL 
climate scenarios is not sufficient to study full system 
effects. Coupling of LTL and HTL models to study the 
effects of climate change must therefore en compass 
possible responses at lower as well as higher trophic 
levels. In addition, we did not vary fishing mortality in 
combination with the different zooplankton fields. 
Varying fishing pressure may lead to direct effects on 
target species and indirect ef fects on target and non-
target species due to changes in competitive and 
predatory interactions (Travers et al. 2010), while cli-
mate change may affect long-lived species less than 
short-lived species (Field et al. 2006). To allow for cas-
cading effects of top-down and bottom-up control 
would require a 2-way coupling of LTL and HTL. Fur-
ther, non-linear effects are expected due to the com-
plexity of the model, largely because the fish are 
modelled fully size-structured, allowing for (size-de-
pendent) changes be tween predator−prey and com-
petitive interactions. Varying both zooplankton bio-
mass and anthropogenic pressures would be a logical 
next step to study the interplay between bottom-up 
and top-down effects on the food web. 

4.6.  Conclusions 

This study demonstrated that, overall, the esti-
mated fish biomass levels are clearly and positively 

linked to the provided zooplankton biomass, indicat-
ing bottom-up control of the North Sea food web. In 
addition, fish biomass also increased when the prey 
fields were more evenly distributed on spatial−sea-
sonal scales. Surprisingly, the differences in spatial 
and seasonal patterns in the prey fields resulting 
from the various LTL models did not translate into 
corresponding differences in fish group composition 
or spatial patterns. This suggests that strong spatial 
or temporal mismatches between fish and their prey 
are less apparent in the modelled studied area, while 
minor differences in the general pattern of zooplank-
ton dynamics fade out at higher trophic levels 
(acknowledging aforementioned assumptions and 
caveats). However, the sensitivity studies also high-
lighted the relevance of providing different zoo-
plankton functional groups since fish depend on dif-
ferent prey sizes during their development. When 
using HTL models to address relative effects of, for 
example, management strategies such as large-scale 
windparks and mariculture, our results indicate that 
a high degree of similarity is expected when using 
inputs from different LTL models. However, absolute 
biomass values and spatial differences depend on 
the LTL model input field chosen, and therefore dif-
ferences in absolute biomass are to be expected. 
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