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1.  INTRODUCTION 

The Canary Islands are located in the Atlantic bio-
geographical region of Macaronesia, which also in -
cludes the archipelagos of the Azores, Madeira, 
Savage Islands and Cape Verde (Masseti 2010). The 
Canary archipelago lies in a transition zone between 
cool, nutrient-rich waters of the coastal upwelling re -
gime and warmer, oligotrophic waters from the open 

ocean (Barton et al. 1998). These oceanographic fea-
tures make the area a suitable habitat for the coexis-
tence of both tropical and temperate-water tunas, 
which are traditionally exploited by local fisheries 
(Delgado de Molina 2020). 

The Atlantic bluefin tuna (ABFT) Thunnus thynnus 
is one of the most profitable commercial fish species 
worldwide, and has been subjected to strong fishing 
pressure in the East Atlantic Ocean and the Medi -
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terranean Sea (Fromentin & Powers 2005). Historical 
catch records show that ABFT occur year round in 
the Canary Islands, with the exception of the spawn-
ing season (June−July), when catches are anecdotal 
(Delgado de Molina et al. 2014). By contrast, ABFT 
seem to be most abundant in this Atlantic region dur-
ing the months preceding the spawning migration 
(February−April). These observations are supported 
by electronic tag data, which have documented the 
occurrence of ABFT around the Canary archipelago 
over winter and spring months (Block et al. 2005, 
Horton et al. 2020). 

Traditional studies on the trophic biology of ABFT 
are based on stomach content analysis (SCA), which 
provides information on prey consumed hours be -
fore capture (Estrada et al. 2005, Logan et al. 2011). 
Stable isotope analysis (SIA) proves useful to comple-
ment gut analyses, as it gives an integrated measure 
of the assimilated prey at different time scales, 
depending on the tissue analyzed. Thus, tissues with 
fast turnover rates (e.g. liver) provide information 
about the trophic ecology of organisms over days to 
weeks, whereas tissues with slow turnover rate (e.g. 
muscle) integrate information from several months 
to a year (Graham et al. 2010, Madigan et al. 2012). 
Overall, stable carbon ratios (δ13C) are useful to 
trace sources of organic matter into food webs 
(DeNiro & Epstein 1978, Peterson & Fry 1987, Fry 
2006), whereas nitrogen stable isotope ratios (δ15N) 
are often used to estimate the trophic position of con-
sumers (DeNiro & Epstein 1981, Minagawa & Wada 
1984, Post 2002). 

ABFT feeding habits have been widely studied in 
the North Atlantic Ocean and Mediterranean Sea 
(Crane 1936, Karakulak et al. 2009, Butler et al. 
2010, Logan et al. 2011, Battaglia et al. 2013, Me -
dina et al.  2015, Olafsdottir et al. 2016, Sorell et 
al. 2017, Varela et al. 2014, 2019). Previous studies 
concluded that ABFT feed on a wide variety of 
pelagic and mesopelagic prey including fish, cepha -
lopods and crustaceans. However, little is known 
about ABFT feeding habits in the Canary Islands 
(Mourente et al. 2015, Druon et al. 2016). Based on 
fatty acid analysis, Mourente et al. (2015) suggested 
that ABFT feed actively during their stay in the 
Canary Islands. Druon et al. (2016) predicted this 
area to be an un favorable feeding habitat in sum-
mer (July−September). The present study was con -
ducted to assess the potential use of Ca narian 
waters as a foraging habitat for ABFT in spring. 
Furthermore, we aimed to identify feeding patterns 
of ABFT around the Canary Islands by combining 
SCA and SIA. 

2.  MATERIALS AND METHODS 

2.1.  Sampling and SCA 

ABFT (n = 114) were caught by baitboat in Ca -
narian waters (Fig. 1) in March 2016−2018. The fish 
were measured to the nearest cm (straight fork 
length, SFL) (Table 1). Stomachs and small pieces of 
liver and muscle taken from the head were collected 
from each individual. The samples were preserved 
at −20°C. 

After thawing, stomachs were dissected and prey 
items were identified to the lowest possible taxon. 
They were then grouped into taxonomic categories 
and their wet weight was recorded to the nearest 
0.01 g. Partially digested prey were identified to the 
level of species from hard part morphology, either 
fish otoliths (Härkönen 1986, Campana 2004) or 
cephalopod beaks (Clarke 1986). 

2.2.  SIA 

A total of 104 muscle and liver samples were 
thawed and rinsed with distilled water. All samples 
were then freeze-dried and ground with mortar and 
pestle. Each sample was then divided into 2 sub -
samples. One subsample was analyzed for δ15N, 
whereas the other was lipid-extracted prior to δ13C 
analysis (Varela et al. 2012, 2013). Bulk and lipid-
extracted samples (0.9−1.1 mg) were placed in tin 
capsules and analyzed through a gas flow system 
using a Thermo Finnigan Flash EA1112 elemental 
analyzer coupled to a Thermo Finnigan Delta Plus 
isotope ratio mass spectrometer (Varela et al. 2015). 
All carbon and nitrogen isotope data are reported 
in  δ notation according to the following equation: 
δX = [(Rsample/Rstandard) − 1] × 1000, where X is 13C or 
15N and R is the ratio 13C/12C or 15N/14N (Peterson & 
Fry 1987). Standard materials are Vienna Pee Dee 
belemnite for carbon and atmospheric N2 for nitro-
gen and expressed as parts per thousand (‰) relative 
to standards (Peterson & Fry 1987). Precision of either 
C or N isotopic determinations was ±0.15‰. 

2.3.  Data analysis 

The dietary contribution of each prey category was 
evaluated using 3 indices (Varela et al. 2017a): fre-
quency of occurrence (%Oi = 100 × number of stom-
achs with prey i / number of stomachs with food), 
percent by weight (%Wi = weight of prey i / total 
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weight of all prey) and alimentary index expressed 
as a percentage (%AIi = [(%Wi ×%Oi) / (∑%Wi ×%Oi)] 
× 100) (Kawakami & Vazzoler 1980). 

Cumulative prey curves (CPCs) were used to 
determine if the number of stomachs was enough for 
ABFT diet description (Ferry & Cailliet 1996). CPCs 
were generated using the package ‘vegan’ (Oksanen 
et al. 2010) in R (R Core Team 2020). To determine 
whether the curve reached an asymptote, the slope 
of the straight line drawn from the 4 endpoints was 
compared to a line of 0 slope (horizontal asymptote) 
by a t-test (Preti et al. 2012). 

The consumption rate was estimated from the 
equation: 

                                 r =                              (1) 

where r is the estimated feeding rate measured in 
grams per hour,  is the mean weight of prey item i 
in the stomach, and Ai is the average time (in hours) 
required to evacuate the average proportion of prey i 
in the stomach (Olson & Mullen 1986). Here, we used 
Ai values estimated by Olson & Boggs (1986) for yel-
lowfin tuna Thunnus albacares. Considering that r 
represents the consumption rate per hour, and ABFT 

feed at day and nighttime (Battaglia et al. 2013, Me -
dina et al. 2015), the daily meal (DM) was estimated 
as r × 24 h. Daily ration (DR), expressed as a percent-
age, was calculated by dividing DM by the body 
mass (BM). BM was estimated using the equation: 
BM = 0.00003508 × SFL2.87549667 (Rodríguez-Marín et 
al. 2015). 

To test for differences in diet composition and sta-
ble isotope data among years, we used permutational 
multivariate analysis of variance (PERMANOVA). 
‘Year’ was considered as a fixed factor with 3 levels 
(2016, 2017 and 2018). For SCA data, the PERM-
ANOVA was based on a Euclidean distance similarity 
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Fig. 1. Sampling area (dotted ellipse) in the Canary Islands where Atlantic bluefin tuna stomach samples were collected

Year       Straight fork          n    Stomachs      Empty  
             length (cm)                containing  stomachs 
                 Range   Mean ± SD           prey (%)         (%) 
 
2016        202−252    229 ± 12     27        66.7            33.3 
2017        197−260    234 ± 11     41        82.9            17.1 
2018        211−270    244 ± 13     46        78.3            21.7 

Overall   197–270    237 ± 14    114       77.2            22.8

Table 1. Data summary of the Atlantic bluefin tuna sampled  
in this study; n: number of samples
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matrix calculated from total prey weight after per-
forming a fourth-root transformation. To test for dif -
 ferences in the isotopic variables, the PERMANOVA 
was also based on a Euclidean distance similarity 
matrix after performing log (δ15N) and log (δ13C + 50) 
transformations (Varela et al. 2020a). Pairwise PERM-
ANOVA was used to test for differences between 
years. The homogeneity of multivariate dispersion 
was tested by PERMDISP (Anderson 2006). The mul-
tivariate analyses were conducted with the software 
PRIMER v6.1.13 & PERMANOVA + v1.0.3 statistical 
package (PRIMER-E). 

Isotopic niche widths were estimated by stable iso-
tope Bayesian ellipses in R (SIBER; Jackson et al. 
2011), which produces corrected standard ellipse 
areas (SEAC, containing 40% of the data) in a 
δ13C−δ15N bi-plot space. Bayesian SEA (SEAB) was 
also calculated using 10 000 posterior draws. Addi-
tionally, the isotopic niche for each year was esti-
mated using an R package for estimating isotopic 
niche size and overlap (package ‘rKIN’, Eckrich et al. 
2020) via kernel utilization density (KUD, 40% con-
tour), which is less sensitive to extreme values. Both 
SEAC overlap and KUD overlap between years were 
calculated as the proportion of the non-overlapping 
area, i.e. overlap area divided by the sum of the areas 
of 2 ellipses minus the overlap area. 

3.  RESULTS 

3.1.  SCA 

The mean (±SD) SFL of the sampled fish was 237 ± 
14 cm (Table 1). CPCs suggested that the stomach 
sample size was not large enough to describe the diet 

completely in any of the years and in the overall sam-
ple including the 3 years (t-test, p < 0.05) (Fig. 2). 
These data may be biased because several prey ap -
peared only in 1 stomach. In fact, when prey taxa 
were ranked by importance, we found that the diet 
was mainly composed of snipefish (Macroramphosus 
sp.) (%W = 72.6, %O = 73.9 and %AI = 96.3) (Table 2). 
Of the 114 stomachs analyzed, the percentage of 
empty stomachs was 22.8% (n = 26), while the re -
maining 77.2% (n = 88) had at least 1 prey item 
(Table 1). A total of 17 prey categories were found, 
belonging to Teleostei (10), Cephalopoda (3), Crusta -
cea (2), Thaliacea (1) and Aves (1). In addition to nat-
ural prey, plastic items were also observed in 16.7% 
(n = 19) of the stomachs. Overall, fishes were the 
most important prey group in terms of W, O and AI 
(91.1, 94.3 and 99.8%, respectively), with the other 
groups being poorly represented. Among the prey 
species, snipefish was the major dietary component 
in all years (%AI = 85.16, 98.82 and 89.93 in 2016, 
2017 and 2018, respectively) (Table 2). PERMANOVA 
did not reveal shifts in diet composition among years 
(p > 0.05). The highest values of DM and DR were 
found in 2017 (Table 2). 

3.2.  SIA 

Muscle and liver isotopic data (mean ± SD) are 
shown in Table 3. δ15N values ranged from 10.8 to 
14.8‰ for muscle and from 7.9 to 14.4‰ for liver. 
δ13C varied between −19.9 and −17.6‰ for muscle 
and between −19.7 and −17.1‰ for liver. PERM-
ANOVA detected inter-annual isotopic differences 
only in liver tissues (p = 0.001). Pair-wise PERM-
ANOVA comparisons revealed significant differ-
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Fig. 2. Cumulative prey curves for Atlantic bluefin tuna stomach samples in (A) 2016, (B) 2017, (C) 2018 and (D) overall stomach 
sample (all 3 years combined). Grey shading: 95% CI
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ences between 2016 and 2018 (p = 0.001), and be -
tween 2017 and 2018 (p = 0.001). PERMDISP an alysis 
showed no significant differences (p = 0.076), indica-
ting that the differences obtained with PERMANOVA 
were not due to multivariate dispersion. 

The isotopic niche width and overlap estimated 
from liver and muscle isotopic data by SIBER and 
KUD methods are shown in Table 4 and in Figs. 3 & 
4. The largest niche width was observed in 2017. 
SIBER and KUD overlap estimated from liver data 
was evident only between 2016 and 2017. Consider-
able overlaps were also estimated from muscle data 
between 2016 and 2018, and between 2017 and 2018. 

4.  DISCUSSION 

The proportion of non-empty stomachs found in 
ABFT from the Canary Islands (77.2%) was similar to 
that previously reported in North Carolina (78.6%), 
Gulf of Maine (82.5%), Strait of Gibraltar (SoG) 
(72.0%), Iceland (85.9%) and Gulf of Saint Lawrence 
(GSL) (75.4%), which are oceanic regions serving as 
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                                                               2016                                2017                              2018                              Overall        
                                                   %W     %O     %AI        %W     %O    %AI       %W      %O    %AI        %W      %O      %AI 
 
Fishes                                        95.49   83.33    99.37       99.68   97.06  99.95      78.77    97.22  99.23        91.1      94.3     99.83 
Trachurus picturatus                 2.28   11.11     0.63        2.27   14.71   0.46       0.79     2.78   0.05         1.7      9.09    0.28 
Scomber colias                          11.71   33.33     9.74        3.09   14.71   0.63       8.07    25.00   4.50        6.14    22.7      2.50 
Macroramphosus sp.                55.82   61.11    85.16       93.78   76.47  98.82      51.82    77.78  89.93        72.6      73.9     96.34 
Scomberesox saurus                16.95    5.56     2.35                                                                                     2.22    1.14    0.05 
Sardinella sp.                             7.23    5.56     1.00        0.10    2.94   0.00                                                   1          2.27    0.04 
Lepidopus caudatus                                                          0.44    2.94   0.02                                              0.21    1.14    0.00 
Lagocephalus sp.                                                                                                    10.61     5.56   1.31        4.09    2.27    0.17 
Boops boops                                                                                                            6.34    19.44   2.75        2.44    7.95    0.35 
Diretmidae                                 1.49   11.11     0.41                                             1.13     5.56   0.14        0.63    4.55    0.05 
Unidentified fishes                                                                                                  0.02     2.78   0.00        0.01    1.14    0.00 

Cephalopods                             4.01   11.11     0.56        0.00    2.94   0.00       0.04     5.56   0.00        0.54    5.68    0.04 
Histioteuthis sp.                         0.05    5.56     0.01                                                                                     0.01    1.14    0.00 
Unidentified cephalopods        3.95    5.56     0.55        0.00    2.94   0.00                                              0.52    2.27    0.02 
Octopoda                                                                                                                 0.04     5.56   0.01        0.02    2.27    0.00 

Crustaceans                                                                      0.04    8.82   0.00                                              0.02    5.68    0.00 
Decapoda larvae (megalopae)                                          0.00    2.94   0.00                                                   0          1.14    0.00 
Caridea                                                                               0.04    5.88   0.00                                              0.02    2.27    0.00 

Thaliaceans                               0.51   11.11     0.07        0.28   17.65   0.05                                               0.2      9.09    0.02 
Salpidae                                     0.51   11.11     0.14        0.28   17.65   0.07                                               0.2      9.09    0.03 

Aves                                                                                                                        21.19     2.78   0.76        8.17    1.14    0.11 
Calonectris borealis                                                                                               21.19     2.78   1.31        8.17    1.14    0.17 

DM (g d−1)                                            487.21                            1284.63                          685.54                             854.03 
DR (BM d−1)                                      0.23 ± 0.04                      0.57 ± 0.10                    0.26 ± 0.04                      0.37 ± 0.07

Table 2. Results of stomach content analysis and consumption rate of Atlantic bluefin tuna sampled in 2016, 2017 and 2018.  
%W: percent weight; %O: percent occurrence; %AI: alimentary index; DM: daily meal; DR: daily ration; BM: body mass

                       2016 (n = 27)   2017 (n = 41)   2018 (n = 46) 
 
δ15N  Muscle    12.0 ± 0.6         12.4 ± 0.9         12.4 ± 0.8 
       Liver      10.3 ± 0.5         10.3 ± 1.1          9.2 ± 0.6 

δ13C  Muscle     −18.7 ± 0.4          −18.9 ± 0.4          −18.7 ± 0.4 
       Liver       −18.7 ± 0.4          −18.7 ± 0.4          −18.4 ± 0.3

Table 3. Muscle and liver δ15N and δ13C values (mean ± SD) 
of Atlantic bluefin tuna sampled in 2016, 2017 and 2018; n:  

number of samples analyzed per year

Group         SEAC           KUD            SEAC                   KUD 
                                                        overlap               overlap 
 
Muscle 
2016 (1)        0.66         0.45       1 vs 2 (0.26)       1 vs 2 (0.23) 
2017 (2)        1.10         1.12       1 vs 3 (0.46)       1 vs 3 (0.41) 
2018 (3)        0.95         0.99       2 vs 3 (0.49)       2 vs 3 (0.33) 

Liver 
2016 (1)        0.73         0.80       1 vs 2 (0.49)       1 vs 2 (0.49) 
2017 (2)        1.43         0.94       1 vs 3 (0.00)       1 vs 3 (0.00) 
2018 (3)        0.67         0.77       2 vs 3 (0.07)       2 vs 3 (0.05)

Table 4. Isotopic niche widths and overlaps estimated using 
the corrected standard ellipse area (SEAC, an ellipse that con-
tains 40% of the data regardless of sample size) and kernel  

utilization density (KUD, 40% contour)
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ABFT feeding grounds (Butler et al. 2010, Logan et 
al. 2015, Olafsdottir et al. 2016, Varela et al. 2020a,b). 
While the Canary Islands area was predicted to be 
unfavorable to large ABFT feeding in summer 
(July−September) (Druon et al. 2016), our observa-

tions show that adult ABFT use this habitat as a feed-
ing ground in spring. 

SCA showed that the diet of ABFT caught around 
the Canary Islands consisted almost exclusively of 
fishes. Within the fish prey group, all feeding indices 
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Fig. 3. δ13C and δ15N bi-plots of (A) muscle and (B) liver samples of Atlantic bluefin tuna (ABFT) collected in 2016, 2017 and 
2018. Isotopic niche widths were estimated using the corrected standard ellipse area (SEAC, an ellipse that contains 40% of 
the data regardless of sample size; unfilled ellipses) and kernel utilization density (KUD, 40% contour; shaded areas). Also 
depicted are the δ13C and δ15N values (mean ± SD) previously reported by Varela et al. (2020a,b) for ABFT caught in the Strait  

of Gibraltar (SoG) and Gulf of Saint Lawrence (GSL)

Fig. 4. Bayesian standard ellipse area (SEAB, in ‰2) estimated from Atlantic bluefin tuna (A) muscle and (B) liver isotopic data 
in the 3 sampling years (2016, 2017 and 2018). Black circles are mode for the total area and grey boxes represent 50 (dark grey),  

75 (medium gray) and 95% credible intervals (light grey) produced from 105 Bayesian iterations of SEA
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indicated that the snipefish was the predominant 
prey species. These results were to be expected, since 
an ichthyoplankton survey carried out around the 
Canary Islands during early spring in 2021 revealed 
a high abundance of snipefish early life stages (R. 
Laiz-Carrión pers. comm.). Snipefish are zooplank-
ton feeders that may largely prey on fish eggs and 
larvae, causing an important impact on the recruit-
ment of other fish species (Lopes et al. 2006). There-
fore, the high predation of ABFT on snipefish may 
regulate the abundance of this small bentho-pelagic 
fish. 

Romero et al. (2021a) also reported that snipefish 
was the most important prey by number (%N = 35.8) 
of skipjack tuna Katsuwonus pelamis caught in a 
nearby area (Madeira Islands) during 2016−2018. In 
the Macaronesia region, the snipefish represents an 
important dietary component not only for tunas but 
also for sharks, gadids, congrids and rays (Clarke et 
al. 1996, Morato et al. 1999, 2003). For instance, 
Clarke et al. (1996) reported snipefish to be the sec-
ond most important prey by number (%N = 34.4%) 
for blue shark Prionace glauca, and Morato et al. 
(1999) found that this prey was a key dietary compo-
nent for forkbeard Phycis phycis and conger eel Con-
ger conger (index of relative importance, IRI = 881.8 
and 555.8, respectively). Moreover, Morato et al. 
(2003) reported the family Macroramphosidae to be 
the main taxon in the diet of thornback ray Raja 
clavata and tope shark Galeorhinus galeus (% IRI = 
34.0 and 93.25, respectively). Macroramphosus spp. 
have a higher caloric content than common ABFT 
prey such as Atlantic saury Scomberesox saurus or 
blue jack mackerel Trachurus picturatus (Martins et 
al. 2004), and occur at high densities in shallow waters 
during daytime (Miyazaki et al. 2004), representing 
an im portant energetic resource for predators. 

It is worth noting the finding of a bird (Cory’s shear -
water Calonectris borealis) in 1 of the ABFT stom-
achs analyzed in this study (previously reported by 
García-Barcelona et al. 2019). The snipefish is an 
important dietary component of Cory’s shearwater 
in  the Macaronesia region (Granadeiro et al. 1998, 
Xavier et al. 2011, Romero et al. 2021b). Therefore, 
this bird may have been swallowed by an ABFT dur-
ing an accidental encounter as they were feeding on 
the same snipe fish school. 

Plastic items were present in more than 16% of the 
stomachs analyzed. Overall, this plastic debris con-
sisted of food and candy wrappers, probably from 
nearby beaches. Plastic items could be ingested dur-
ing predation on snipefish in shallow waters. These 
data are consistent with those reported by Karakulak 

et al. (2009) and Romeo et al. (2015), who also found 
a high presence of plastics (%O = 17.0 and 18.2, 
respectively) in stomachs of top predators, including 
ABFT, caught in the Mediterranean Sea. 

Our estimates of DR (0.23−0.57% BM d−1) are 
lower than those reported for smaller-sized ABFT 
(SFL = 135 ± 15 cm) sampled in the SoG (2.52−20.88% 
BM d−1) (Sorell et al. 2017, Varela et al. 2020b). These 
differences may be due to younger fish requiring 
more energy relative to body mass (NRC 1978). A 
similar observation was made for long tail tuna Thun-
nus tonggol (Griffiths et al. 2007), common dolphin-
fish Coryphaena hippurus (Varela et al. 2017b) and 
broadbill swordfish Xiphias gladius (Zambrano-
Zambrano et al. 2019). DR values were also lower 
than those reported by Varela et al. (2020a) in the 
GSL (1.02−1.73% BM d−1). Such differences may be 
related to the consumed prey types, which show dif-
ferent evacuation rates. Thus, while Varela et al. 
(2020a) reported that Atlantic herring Clupea haren-
gus and Atlantic mackerel Scomber scombrus were 
the main prey species in the GSL, the present study 
shows that the diet of ABFT from the Canary Islands 
was primarily composed of snipefish, which are 
probably more easily digested and evacuated faster. 

Consistently with SCA, PERMANOVA analysis of 
muscle isotopic data, as well as SIBER and KUD over-
laps, showed that ABFT may exploit similar prey spe-
cies in each of the 3 sampling years. In contrast, the 
analyses of liver isotopic data suggested a dietary 
shift in 2018. Considering that the lowest δ15N values 
were found in the liver samples collected in 2018, this 
dietary shift may be attributed to recent ingestion of 
organisms with low δ15N values, which probably 
occupied low trophic levels (Jennings et al. 2002). 
The lowest δ15N values found in 2018 may be linked 
to the marine heat waves recorded in 2017, which 
caused blooms of the cyanobacterium Trichodes -
mium (Tassin 2018). This organism, which is located 
at the food-web baseline, is known to fix atmospheric 
nitrogen, leading to decreased δ15N values in marine 
ecosystems (McClelland et al. 2003). The differences 
in stable isotope values found between tissues may 
be related to different turnover rates (MacNeil et al. 
2005). Thus, muscle, which has a slower turnover rate, 
might reflect isotopic values of prey ingested in dis-
tant feeding grounds (Medina et al. 2015). Other top 
predators inhabiting the area, like the Atlantic spot-
ted dolphin Stenella frontalis, show lower skin δ15N 
values than those observed in our muscle samples 
(Méndez-Fernandez et al. 2020). Given that prey−
muscle and prey−skin nitrogen stable-isotope discrim-
ination factors show similar values in ABFT and dol-
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phin (1.64 ± 0.20 and 1.57 ± 0.52, respectively; Varela 
et al. 2011, Giménez et al. 2016), one can infer that 
ABFT occupy higher trophic levels in the Canary 
Islands. A similar observation was made by Varela 
et al. (2018), who estimated that the ABFT occupies 
higher trophic levels than the striped dolphin S. 
coeruleoalba in the SoG. 

δ15N measured in muscle and liver tissues showed 
similar values to those observed in smaller-sized 
ABFT (SFL = 135 ± 15 cm) caught in the SoG (Varela 
et al. 2020b). Based on a meta-analysis of published 
zooplankton δ15N data for the Atlantic Ocean, Mc -
Mahon et al. (2013), showed that the Canary Islands 
and the SoG present similar δ15N baseline values. 
This suggests that, although there exist large size dif-
ferences between the specimens from both areas, 
they may occupy similar trophic levels in their 
respective food webs. Otherwise, the low δ15N values 
of ABFT from the Canary Islands compared to indi-
viduals from the GSL (Varela et al. 2020a) suggest 
that ABFT occupy a lower trophic level in the Canary 
Islands. However, McMahon et al. (2013) reported 
higher δ15N baseline values in the GSL, which sug-
gests that ABFT would also occupy similar trophic 
levels in the Canary Islands and GSL. 

Isotopic niche width estimations from SIBER and 
KUD indicate that the ABFT diet was more diverse in 
2017. Overall, SEAC and SEAB values obtained in this 
study are higher than those reported for ABFT from 
the SoG (Sorell et al. 2017, Varela et al. 2020b) and 
lower than those reported for specimens from the GSL 
(Varela et al. 2020a). These results suggest a more 
euryphagous diet in the Canary Islands than in the 
SoG, but a more stenophagous diet than in the GSL. 
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