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1.  INTRODUCTION 

The UK government has pledged to reduce green-
house gas emissions to net zero by 2050 (Department 
for Business, Energy & Industrial Strategy 2019). This 

goal will be achieved in part by producing 40 GW of 
electricity by 2030 through offshore wind (Department 
for Business, Energy & Industrial Strategy 2020a). 
Harnessing energy resource alternatives to fossil 
fuels is vital to curb CO2 emissions, and decelerate 
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aries, with a degree of avoidance displayed between 3 and 4 km, which weakened as distance 
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of the nearest turbine. We found attraction increased below the RHR at distances <70 m, while 
avoidance increased within the RHR at distances approaching the turbine. We explore how high-
resolution tracking data can be used to improve our knowledge of L. fuscus avoidance/attraction 
behaviour to established wind farms, and so inform assessments of collision impacts. 
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climate warming (Carbon Brief 2015). As of March 
2020, a total of 2040 offshore wind turbines were 
operational within the UK, with 925 under construc-
tion, and 843 awaiting construction (Department for 
Business, Energy & Industrial Strategy 2020b). Addi-
tionally, large areas of the coastal waters of England, 
Scotland, and Wales have been proposed for further 
development of offshore wind turbines (Crown Estate 
Scotland 2019, Crown Estate 2020, Scottish Govern-
ment 2020). 

Wind farms may affect seabird populations through 
several pathways, including: collision (Musters et al. 
1996, Desholm & Kahlert 2005, Newton & Little 2009); 
displacement (Welcker & Nehls 2016, MMO 2018); 
barriers to movement (Desholm & Kahlert 2005, Mas-
den et al. 2010); and habitat alterations (Inger et al. 
2009, Andersson & Öhman 2010). Wind farms may 
also provide de facto marine protected areas by 
excluding fisheries (Halouani et al. 2020), and sea-
bird attraction to offshore turbines may arise from 
potential foraging opportunities created by turbines 
and other infrastructure acting as epifaunal reefs, 
fish aggregation devices (Inger et al. 2009, Wilson & 
Elliott 2009), and/or platforms for resting (Savidge et 
al. 2014, Dierschke et al. 2016). However, the extent 
to which seabird collision risk is influenced by the 
attraction to turbines is currently poorly understood. 

Collision risk models (CRMs) (e.g. Band 2012, 
Kleyheeg-Hartman et al. 2018) are commonly used to 
estimate the mortality posed by wind farm turbines, 
and so inform the environmental impact assessment 
process for proposed developments. CRMs incorpo-
rate turbine parameters and aspects of bird flight 
characteristics and morphology. These models also 
include a parameter relating to the proportion of birds 
which actively avoid collision, termed the avoidance 
rate (AR) (Band 2012). The value assigned to the AR 
can provide a degree of uncertainty around mortality 
estimates produced by CRMs (Chamberlain et al. 
2006, Cook et al. 2012). Calculation of ARs, as used in 
CRMs, can be carried out through the comparison of 
post-construction mortality rates to those predicted 
pre-construction (Band 2012, Cook et al. 2014, 2018, 
Cook 2021); however, collection of at-sea mortality 
data is difficult (Newton & Little 2009). Avoidance 
responses may be directly ob served through a bird’s 
behaviour and manoeuvrability in the presence of 
turbines (Thaxter et al. 2018) or by comparison of ob -
served versus expected values of presence within 
defined areas around turbines or wind farm perime-
ters (Schaub et al. 2019). AR metrics calculated 
through this approach may represent attraction and 
avoidance as positive and negative values, respec-

tively (Cook et al. 2014, Schaub et al. 2019). Behav-
ioural responses to wind farms may be measured at 
hierarchical scales, including: macro-response, which 
considers attraction to, or displacement from, the 
entire wind farm on the scale of a few kilometres; 
meso-response, which occurs on sub-kilometre scales 
immediately outside or within the wind farm, and re -
gards movement influenced by the presence of tur-
bines; and micro-avoidance, which relates to horizon-
tal and vertical avoidance of collision within a few 
metres of turbine blades (Cook et al. 2014, May 2015). 
The total behavioural response to a wind farm can 
then be calculated by combining estimates of behav-
iour at macro-, meso-, and micro- scales (Cook et al. 
2014, 2018, May 2015). Behavioural traits may cause 
the rates of avoidance or attraction to vary between 
species, or individuals, and with distance to the wind 
farm boundary (Petersen 2005). However, to date, 
there have been very few empirical studies which have 
quantified avoidance behaviour at offshore wind farms 
(Green et al. 2016, Skov et al. 2018a). 

Potential impacts of wind farms can lead to devel-
opment delays; e.g. concern about the potential colli-
sion risk to Sandwich terns Thalasseus sandvicensis 
has led to the refusal of planning consent in relation 
to one offshore wind farm in England (Broadbent & 
Nixon 2019). This decision was in part influenced by 
lack of certainty in ARs, which therefore reduced 
confidence in the CRMs used in the assessment pro-
cess. This highlights a current lack of data on bird 
behaviour, which may lead to CRMs relying on gen-
eralized assumptions (Cook et al. 2014, 2018, Green 
et al. 2016). CRMs are sensitive to estimates of a 
number of behavioural parameters (Chamberlain et 
al. 2006, Masden & Cook 2016) and there remains 
uncertainty around these key parameters, which 
may vary according to internal (e.g. behavioural 
states) or external factors (e.g. meteorological and 
diurnal conditions), as outlined in Masden & Cook 
(2016). Therefore, increased empirical knowledge of 
these behaviours may increase confidence in model 
outputs (Green et al. 2016). Knowledge regarding 
seabird behaviour may be improved through techno-
logical advances in telemetry (Thaxter et al. 2015, 
Garthe et al. 2017), laser range-finders (Cole et al. 
2019), radar (Desholm et al. 2006, Fijn et al. 2015), 
and automated radar-tracking combined with cam-
eras (Skov et al. 2018b), which may provide more 
accurate observations of flight height, movement pat-
terns, and avoidance/attraction behaviour, to address 
these areas of uncertainty. 

Telemetry, such as high-resolution GPS tracking, 
can be used to link seabird populations to develop-
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ment areas, but also provide improved information 
on the movement and foraging ecology of species of 
high vulnerability to collision with wind turbine 
blades. One such species is the lesser black-backed 
gull Larus fuscus, which is Amber-listed under the 
UK Birds of Conservation Concern (Eaton et al. 2015) 
and regarded as a species with comparatively high 
vulnerability to collisions with wind farms (Furness et 
al. 2013, Spelt et al. 2019, Thaxter et al. 2019). The 
species’ vulnerability to potential collision mortality 
from wind farms has been highlighted as having the 
potential to impact Special Protection Area (SPA) pop-
ulations of lesser black-backed gulls (RSPB 2021). 
Lesser black-backed gulls can be attracted to turbine 
arrays for roosting opportunities on turbine pylons 
(Vanermen et al. 2020). Roosting or foraging oppor-
tunities may also influence macro-responses. How-
ever, previous reviews of the responses of gull spe-
cies, including lesser black-backed gulls, to offshore 
wind farms have reported variable patterns of 
behaviour, including avoidance, attraction, or an 
absence of an apparent macro-response (Cook et al. 
2014, Dierschke et al. 2016, Welcker & Nehls 2016, 
Vanermen et al. 2020). Interactions with offshore 
wind farms by this species have also been recorded 
to vary between individuals, and temporally be -
tween years and within seasons (Thaxter et al. 2015). 
While Cook et al. (2014), reviewing estimates of 
avoidance derived from both mortality rates and be -
havioural observations, found varying macro-scale 
responses of avoidance and attraction in lesser black-
backed gulls to offshore wind farms, within-wind 
farm (i.e. meso + micro) ARs could not reliably be 
quantified due to limited data. However, recent as -
sessment of the 3-dimensional vertical and horizontal 
movements of lesser-black-backed gulls using GPS 
tracking data has indicated a meso-avoidance signal 
at wind farms in northwest England (Thaxter et al. 
2018), with this result being supported by further 
observations in the North Sea at other wind farms 
(Vanermen et al. 2020). Nevertheless, it is evident that 
when referring to these scales, variation in re sponse 
distances may further exist within them. To date, few 
studies have examined the macro-response distances 
of lesser black-backed gulls to offshore wind farms 
(Welcker & Nehls 2016, Vanermen et al. 2020). There-
fore, a knowledge gap exists with re spect to both the 
extent of meso- and macro-scale avoidance and 
attraction responses, and response distances. 

To enhance the current knowledge of the avoid-
ance/attraction behaviour exhibited by lesser black-
backed gulls to offshore wind farms, we investigated 
the movements of GPS-tagged birds from a breeding 

colony in the Morecambe Bay and Duddon Estuary 
SPA. We adapt an approach from Schaub et al. 
(2019), which calculated the avoidance/attraction 
index (AAI) in a terrestrial raptor, and further modi-
fied the method to be applicable for central-place for-
aging individuals. By comparing the degree of diver-
gence or alignment between observed locations to 
simulated/random locations, we aimed to assess vari-
ation in avoidance/attraction to nearby offshore wind 
farms across macro- and meso-scales, while also 
deriving an estimate of macro-avoidance. Improved 
knowledge of avoidance and attraction behaviour 
exhibited at distance or in close proximity to wind 
turbines is essential to address knowledge gaps in 
lesser black-backed gull movement ecology and 
inform CRM estimates. 

2.  MATERIALS AND METHODS 

2.1.  Study area and tag deployment 

Fieldwork was carried out at the South Walney 
National Nature Reserve, Cumbria, England (54° 2’ N, 
3° 10’ W), within the Morecambe Bay and Duddon 
Estuary SPA. A total of 49 tags, 44 University of Ams-
terdam UvA-BiTS 5CDLe GPS tags and 5 Movetech 
Flyway18 GPS-GSM tags, were deployed on breed-
ing adult lesser black-backed gulls in 2014 and 2016. 
Birds were caught on the nest, using a walk-in wire 
mesh trap and, to enable long-term deployment (3−
5 yr), GPS tags were attached using wing-loop har-
nesses made from Teflon ribbon, which have previ-
ously been shown to have no measurable impacts on 
breeding success or over-winter survival (Thaxter et 
al. 2014, 2016). Deployment of tags was undertaken 
under licence to the independent Special Methods 
Technical Panel under the UK Ringing Scheme. All 
tag and attachment combinations were below 3% of 
individual body mass. 

2.2.  Wind farm parameters 

The region of the Irish Sea adjacent to South Wal-
ney contains 5 offshore wind farms, including Bar-
row (n = 30 turbines; in an area of 7 km2; operational 
2006), Ormonde (n = 30; 7 km2; operational 2012), 
Walney (n = 102; 53 km2; operational 2012), Walney 
Extension (n = 20; 14 km2; operational 2018), and 
West of Duddon Sands (n = 109; 61 km2; operational 
2014). Wind farm boundaries were defined by form-
ing an outline along the outermost turbine locations. 
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Collectively, therefore, 291 turbines were consid-
ered, covering an area of 161 km2 (Fig. 1). Distinct 
rotor height range (RHR) and turbine height were 
considered for each defined wind farm (Table S1 in 
the Supplement at www.int-res.com/articles/suppl/
m686p187_supp.pdf). Rotors varied from 45 to 77 m 
in radius (Table S1). 

2.3.  Data processing 

Data were collected between 2014 and 2019 and 
retrieved from 48 of the 49 tags deployed. Data from 
the breeding season (May−July) during the nestling 
and fledgling periods were selected. UvA and Move -
tech tags collected date-time-stamped GPS locations 
throughout the breeding season, every 5 min. How-
ever, UvA also collected bursts of higher-resolution 
data at a sampling interval of 10−60 s if the battery 
had full charge, with sampling intervals reduced to 
30 min when birds were at the colony. The GPS data 

were filtered to investigate avoidance and attraction 
at both macro- (fix frequency: <5 min) and meso- (fix 
frequency: <20 s) scales. Selected fixes were in -
tended to represent only the offshore movements 
undertaken by gulls, and the average trajectories 
from the colony. To filter GPS locations by these cri-
teria, observed points were selected using the dis-
tance and angle from the colony of each GPS point as 
follows: using the ‘trip’ grouping (an identifier allo-
cated to each sequence of points exiting and re-
entering a 200 m boundary around the colony), trips 
where the maximum distance from colony over-
lapped with the sea were selected on the assumption 
that furthest point was the final intended destination 
before returning to the colony. In addition, the angle 
of the location representing the furthest distance per 
trip in relation to the colony was ascertained. The 
distribution of these angles was then calculated. 
Trips falling within the interquartile range of this dis-
tribution were then selected to reflect potential 
direction of journeys made by birds from the colony. 

Fig. 1. (a) Turbine locations (red points). (b) 1 km 
distance bands in relation to wind farm perimeters 
(red: wind farm area). (c) 1 km2 grid cells used for 
spatial subsampling within 4 km buffer around 
wind farm boundaries (red: wind farm area; dif- 

ferent shades indicate distance band) 

https://www.int-res.com/articles/suppl/m686p187_supp.pdf
https://www.int-res.com/articles/suppl/m686p187_supp.pdf
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Use of the interquartile range of trajectories from 
individual trips where the maximum distances from 
the colony was reached while offshore, rather than 
use the full distribution of tracks, was intended to 
reflect trips that were truly marine in destination. 
While use of interquartile range was subjective, it is 
underpinned by the rationale to exclude trips which 
hugged the shore and subsequently went inland, 
potentially with no intention of travelling offshore and 
exhibiting no response to the offshore wind farms. 

2.4.  Analysis 

Avoidance behaviour was assessed through com-
parison of simulated and observed tracks in order to 
examine if observed responses to wind farms and 
turbines exhibited by birds were a consequence of 
chance alone. Analyses were conducted on data 
pooled across years, because within-year sample 
sizes proved insufficient for robust year-specific 
analyses. To create simulated tracks, the observed 
tracks were altered in their orientation by rotating 
the observed trajectories from the colony by a ran-
dom angle de rived from a normal distribution based 
on observed angles within the original trip trajec-
tory (Fig. 2). A total of 300 simulated tracks were 
produced for each observed trip. This method was 
modified from Schaub et al. (2019), however with 
differences in the method of rotation and the scales 
of analysis. Similar to Schaub et al. 
(2019), we opted to maintain the in -
ternal structure of the original tracks 
when producing random simulations 
(Richard et al. 2013). In contrast to 
Schaub et al. (2019), who randomly 
rotated tracks around a centroid of 
the track itself when within a wind 
farm, we rotated entire ‘trips’ (see 
Section 2.3) around a centroid based 
on the location of a central place, in 
this instance an individual’s breeding 
colony. Our analysis rotated entire 
trips from a central place of depar-
ture and return to examine a birds 
avoidance/attraction re sponse when 
outside of a wind farm as well as 
when within. All analysis was carried 
out using R (Version 4.1.1) (R Devel-
opment Core Team 2021), with data 
filtering facilitated through the R 
package BTOTrackingTools (Version 
1.0) (Thaxter 2020). 

2.4.1.  AAI and AR 

AAI (Schaub et al. 2019) was calculated within 
defined distance bands from the wind farm and from 
individual turbines in order to investigate macro- and 
meso-scale responses respectively (and explained 
further in Sections 2.4.2 and 2.4.3). This was calcu-
lated for each distance band by subtracting the 
expected proportion of location fixes (produced by 
the simulated tracks) from the observed proportion 
(corresponding to the original tracks), and dividing 
by the average between the observed and mean 
expected proportion (see Eq. 1). Positive values of 
AAI indicate attraction, and negative values indicate 
avoidance (Schaub et al. 2019). We assessed the sta-
tistical significance of AAI values based on 95% con-
fidence intervals (CIs) based on quantiles of the sim-
ulations. When the 95% interval did not contain 0, 
the result was deemed statistically significant. 

(1) 

A macro-AR was calculated for distances varying 
between 1 and 6 km from the wind farm boundary. 
Using the method described in Schaub et al. (2019), 
the mean expected proportion of location fixes in the 
area minus the observed proportion is divided by the 
mean of expected proportion (our Eq. 2). As in 
Schaub et al. (2019), negative values of AR in dicate 
attraction, and positive values indicated avoidance. 

AAI = (Propobs – Propexp) ÷ Propobs/exp
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Statistical significance of AR values was assessed 
using 95% CIs based on quantiles of the 300 simula-
tions. For intervals which did not contain 0, the result 
was deemed to be statistically significant. 

(2) 

2.4.2.  Macro-response 

Macro-avoidance/attraction was calculated for a 
maximum of 8 × 1 km distance bands from the wind 
farm boundaries, including up to 4 km inside and 
outside of the boundary (Fig. 1b). The value of 4 km 
from wind farm boundaries was chosen based on cur-
rent industry standards (Petersen 2005). Within the 4 
km boundary, random and observed GPS fixes were 
grouped into 1 km2 grid cells (Fig. 1c). Cells which 
overlapped with distance bands were allocated to the 
band nearest the centroid of the cell. AAI values 
were calculated by randomly selecting 21 contiguous 
grid cells per each distance band (21 grid cells were 
equivalent to the area of the smallest distance band 
[−3 to −4 km, within wind farm]); this was to ensure 
that the spatial structure is comparable for each dis-
tance band and that the bands with a greater number 
of grids cells did not have a greater weighting in the 
analyses. To maintain a degree of spatial similarity 
between the selected cells, nearest-neighbour analy-
sis was used in the selection of the cells within each 
distance band, by selecting 1 random grid cell within 
each distance band, and subsequently selecting the 
nearest 20 grid cells around the randomly selected 
grid cell. Random selection of differing combinations 
of grid cells was carried out 300 times. Each selection 
of random grid cells sampled all simulated tracks 
combined. An overall mean AAI value was calcu-
lated from AAI values from the 300 iterations of ran-
dom sampling of 21 grid cells. 

2.4.3.  Meso-response 

To investigate finer-scale meso-responses, GPS fixes 
of a higher resolution with sampling intervals <20 s 
were used. The distance of each point from the nearest 
turbine was calculated (Fig. 1a). Using GPS-derived 
altitude, fixes were allocated as ‘above’, ‘within’, or 
‘below’ RHR, or ‘loafing’ (Table S1). Trajectory speeds, 
calculated using time and distance b etween fixes, 
were used to characterize loafing points, defined as 
points with trajectory speeds <4 km h−1, a value based 

on perceived minimum flight speeds (Shamoun-
Baranes et al. 2011, Thaxter et al. 2018). Points 200 m 
from the nearest turbines were selected, and grouped 
into 10 m distance bands from turbines. AAI values 
were calculated separately for each distance band. 

2.4.4.  Individual sensitivity analysis 

To investigate the potential for individual bias in 
the calculation of AAI, we performed a jack-knife 
analysis of macro- and meso-scale responses by sys-
tematically excluding each individual from assess-
ments. The degree of similarity or variation between 
each modified assessment was investigated through 
visual analysis of plots depicting trends in AAI values 
across macro-/meso-distance scales. 

3.  RESULTS 

3.1.  Filtered data 

Following the filtering process, 23 out of 48 indi-
viduals provided data applicable for investigating 
macro-responses to wind farms, and 18 individuals 
provided data suitable for investigating meso-
responses (Fig. 3). Remaining data covered all years, 
excluding 2019. For the datasets suitable to investi-
gate macro- and meso-scale responses, the mean ± 
SD offshore trip distances were 20.82 ± 11.94 km and 
20.24 ± 12.17 km respectively, and mean ± SD trajec-
tories from the colony were respectively 63.28 ± 
30.23° and 51.42 ± 33.24°. 

3.2.  Macro-response 

The AR within 4 km of the wind farm boundaries was 
found to be −0.15 (95% CI: −0.44 to 0.06), the minus in-
dicating a slight degree of attraction. Values of AR in-
creased with the reduction of distance bands outside of 
the wind farm examined, from −0.19 (95% CI: −0.53 to 
0.05) at 6 km to −0.03 (95% CI: −0.19 to 0.08) at 1 km 
(Table 1). While this may suggest a reduction in attrac-
tion, it is more likely an artefact of the changing 
relative proportions of total observed/simulated fixes 
versus fixes within the wind farm. There was also a 
propensity for bird tracks to primarily overlap with the 
southeast areas of the study area (Figs. 3a & 4). 

AAI values at the majority of distance bands exam-
ined indicated no significant avoidance or attraction 
based on 95% CI, as the intervals contained 0. AAI 

AR = Propexp – Propobs ÷ Propexp

192



Johnston et al.: Seabird avoidance/attraction to offshore wind farms 193

values were found to be lowest in the 4 km distance 
band outside the wind farm perimeter (mean AAI: 
−0.52; 95% CI: −1.12 to −0.03), displaying significant 
avoidance. Significant attraction was indicated −1 to 
−2 km inside the wind farm (mean AAI: 0.38; 95% CI: 
0.19 to 0.58) (Fig. 4, Table 2). Inclination towards 
either avoidance or attraction was reduced at dis-
tances closer to the wind farm perimeters (between 0 
and 3 km). Visual analysis suggests little sensitivity 
of macro-scale AAI values to individual variation 
(Fig. S1). 

3.3.  Meso-response 

Fig. 3b displays the tracks considered in the as -
sessment of meso-scale responses (those with a 
time step <20 s) and Fig. 5 shows all fixes within 
the boundaries of the wind farms, relative to dis-
tance from nearest turbine and altitude. Through 
visual inspection of Fig. 6, it is ap -
parent there was an increase in 
avoidance behaviour within the RHR, 
with AAI values reducing to −2 in 
distances nearer than 60 m to tur-
bines (Table 3). By contrast, below 
the RHR, there was an apparent in -
crease in attraction at distances from 
40 to 10 m. There were no observed 
points above the RHR closer to tur-
bines than 60 m (Table 3), but no 
apparent trend in distances >60 m 
from the turbine. Visual analysis of 
Fig. S2 suggests little sensitivity of 
meso-scale AAI values to individual 
variation. 

4.  DISCUSSION 

4.1.  Avoidance behaviour 

Through the comparison of observed vs. expected 
tracks, we estimated an AR which indicated that 
lesser black-backed gulls from the study colony 

Fig. 3. Available Larus fuscus GPS fixes: (a) with a sampling interval <5 min (black) in relation to wind farm perimeters and  
associated 4 km buffer (red); (b) with a sampling interval <20 s (black) in relation to wind turbines (red)

Distance AR SD             95% CI  
band (km) Lower Upper 
 
1 −0.03 0.08 −0.19 0.08 
2 −0.05 0.13 −0.27 0.13 
3 −0.08 0.14 −0.34 0.09 
4 −0.15 0.16 −0.44 0.06 
5 −0.17 0.18 −0.50 0.06 
6 −0.19 0.19 −0.53 0.05

Table 1. Larus fuscus avoidance rate (AR) values across 1 km 
bands from wind farm boundary. 95% CIs based on quantiles  

of simulations

Fig. 4. Larus fuscus mean avoidance/attraction index (AAI) values for each 1 km 
band from wind farm (WF) boundaries (dashed line). Grey shading: 95% CI 
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exhibited an overall degree of attraction to wind 
farms within a 4 km boundary. However, we found 
that examining the AR for a total area surrounding 
the wind farm masked variation in responses at dif-
fering distances outside and within the wind farm. 
Comparing avoidance/attraction behaviour within 
various distances bands within the 4 km boundary, 
we found evidence of significant macro-avoidance at 
a distance of 3−4 km outside the wind farm, and 
attraction −1 to −2 km within the wind farm. How-
ever, the apparent macro-response was weak at 
other distance bands outside the wind farm and indi-

cated that the majority of birds did not alter flight 
routes to avoid wind farms. Rather, birds may enter 
wind farms and avoid turbines on a meso-scale, as 
observed in lesser black-backed gulls at a wind farm 
in the southern North Sea, off the Belgian coast (Van-
ermen et al. 2020). While inside the boundaries of 
wind farms, birds may exhibit meso-scale responses 
of avoidance or attraction by remaining outside the 
rotor swept area of turbines, or altering their flight 
height (our Figs. 5 & 6) (Thaxter et al. 2018). Turbine 
blades exist on a vertical plane, and wind direction 
will alter their orientation. Blade orientation may 

have a strong influence on micro-
scale avoidance behaviour (Skov et al. 
2018b); however, information on the 
orientation of turbine blades was un -
available for this study, and thus we 
considered the rotor swept area as a 
sphere. 

The results show that the detection 
and estimation of macro-response are 
sensitive to the distance considered 
around a wind farm. Values of AR 
were found to decrease when the total 
area examined outside of the wind 
farm increased. This was attributed to 
proportions of the total observed/sim-
ulated fixes versus fixes within the 
wind farm becoming skewed as the 
total area decreased, while the wind 
farm area remained static. Careful 
consideration is therefore needed 
in selecting an appropriate area sur-
rounding a wind farm to calculate 
macro-response. This was accounted 
for when examining AAI by calculat-
ing values for each distance band sep-

194

In relation Distance n n Proportion Proportion Mean SD        95% CI 
to wind farm (km) (observed) (expected) (observed) (expected) AAI Lower Upper 
boundaries 
 
Outside 3−4 309.67 363.90 0.07 0.10 −0.52 0.36 −1.12 −0.03 

2−3 493.81 469.70 0.11 0.12 −0.16 0.32 −0.65  0.32 
1−2 626.63 524.28 0.14 0.14 −0.07 0.30 −0.59  0.35 
0−1 561.82 481.22 0.12 0.13 −0.11 0.26 −0.62  0.18 

Inside 0 to −1 520.06 475.00 0.12 0.13 −0.24 0.34 −0.80  0.19 
 −1 to −2 815.13 478.13 0.19 0.13  0.38 0.12  0.19  0.58 
 −2 to −3 549.03 497.15 0.13 0.14 −0.09 0.15 −0.33  0.15 
 −3 to −4 495.40 400.93 0.12 0.11  0.05 0.08 −0.06  0.18 

Table 2. Larus fuscus mean avoidance/attraction index (AAI) values across 1 km bands from wind farm boundaries. 95% CIs 
based on quantiles of simulations. Also shown are the number of observed points, and mean number of expected points per  

distance band (taken from 300 random iterations)

Fig. 5. Observed Larus fuscus GPS points within boundaries of wind farms 
plotted in relation to distance from nearest turbine and altitude. Black curves: 
turbine rotor-swept area of the 6 wind farms in this study (2 are of identical  

height and blade radius). RHR: rotor height range
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arately, and using random sampling to account for 
spatial bias between bands. 

Our work focussed on the breeding season, when 
movements of lesser black-backed gulls are prima-
rily dedicated to central-place commuting flights for 
foraging. We did not take into account temporal vari-
ables such as time of year and variation between 
years. Over the course of a breeding season, birds 

may alter the extent they are at sea, and interactions 
with wind farms have been shown to vary temporally 
(Thaxter et al. 2015). To some extent, the attraction of 
an individual into a wind farm may be underpinned 
by foraging demands linked to breeding stages, or 
prey availability. This temporal variation in avoid-
ance/attraction should be taken into account within 
CRMs, as values of ARs are unlikely to be uniform 
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Fig. 6. Larus fuscus mean avoidance/attraction index (AAI) values calculated for 10 m distance bands from nearest turbine, for 
points (a) above, (b) within, and (c) below rotor height range (RHR) of nearest turbine. Red points: mean AAI values; grey 
shading: 95% CI. AAI values calculated for each random iteration (n = 300). Positive values relate to attraction, and negative  

values relate to avoidance
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year-round and between years. Similarly, the extent 
of offshore foraging may vary between colonies, 
dependent on available food resources and colony 
size (O’Hanlon & Nager 2018). Placement of the wind 
farm with respect to foraging areas may dictate the 
extent of overlap, and the behaviours a species will 
exhibit while within the wind farm. It is apparent in 

the case of lesser black-backed gulls that macro-
response avoidance to wind farms is slight, and that 
birds primarily appear to exhibit avoidance on a 
meso-scale, i.e. within tens of metres of the turbines. 
The weak attraction to wind farms as exhibited by 
GPS tracking complement findings based on boat-, 
platform-, and aerial survey techniques (Dierschke et 
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In relation    Distance              n                    n            Proportion     Proportion         Mean              SD          95% CI 
to RHR              (m)           (observed)     (expected)    (observed)     (expected)           AAI                               Upper       Lower 
 
Above              0−10                 0                     1                    0                    0.1                −2.00                −                 −                − 
                         10−20                 0                     1                    0                   0.09              −2.00                −                 −                − 
                         20−30                 0                  1.06                  0                   0.09              −2.00                −                 −                − 
                         30−40                 0                  1.21                  0                   0.11              −2.00                −                 −                − 
                         40−50                 0                  1.24                  0                   0.12              −2.00                −                 −                − 
                         50−60                 0                  1.29                  0                   0.13              −2.00                −                 −                − 
                         60−70                 2                   1.4                0.18                0.12               0.48             0.40            1.06          −0.20 
                         70−80                 0                  1.35                  0                   0.12              −2.00                −                 −                − 
                         80−90                 1                  1.54               0.09                0.15              −0.34             0.46            0.44          −1.14 
                      90−100               0                  1.43                  0                   0.13              −2.00                −                 −                − 
                       100−110               2                  1.48               0.18                0.14               0.38             0.49            1.02          −0.59 
                       110−120               2                  1.56               0.18                0.15               0.29             0.49            0.98          −0.59 
                       120−130               0                  1.64                  0                   0.15              −2.00                −                 −                − 
                       130−140               2                  1.74               0.18                0.16               0.24             0.47            0.98          −0.45 
                       140−150               0                  1.72                  0                   0.16              −2.00                −                 −                − 

Within             0−10                 0                  1.41                  0                   0.01              −2.00                −                 −                − 
                         10−20                 0                  2.34                  0                   0.01              −2.00                −                 −                − 
                         20−30                 0                  3.56                  0                   0.02              −2.00                −                 −                − 
                         30−40                 0                  4.73                  0                   0.03              −2.00                −                 −                − 
                         40−50                 0                  5.72                  0                   0.03              −2.00                −                 −                − 
                         50−60                 0                  6.82                  0                   0.04              −2.00                −                 −                − 
                         60−70                 3                  8.44               0.03                0.05              −0.57             0.34            0.01          −1.03 
                         70−80                 0                   10.11                  0                   0.06              −2.00                −                 −                − 
                         80−90                 8                   11.29               0.07                0.07               0.06             0.30            0.59          −0.36 
                      90−100               5                   12.18               0.04                0.07              −0.46             0.32            0.20          −0.91 
                       100−110               7                   13.96               0.06                0.08              −0.27             0.30            0.25          −0.68 
                       110−120               9                   15.22               0.08                0.09              −0.13             0.24            0.28          −0.47 
                       120−130              22                  16.53               0.19                 0.1                 0.65             0.22            1.05           0.34 
                       130−140              22                  17.42               0.19                 0.1                 0.60             0.23            1.00           0.25 
                       140−150              23                  19.01                0.2                 0.11               0.56             0.22            0.90           0.21 

Below              0−10                 0                  1.17                  0                   0.02              −2.00                −                 −                − 
                         10−20                 6                     1.5                 0.06                0.02               1.01             0.37            1.45           0.26 
                         20−30                 8                  1.88               0.08                0.03               1.06             0.37            1.51           0.36 
                         30−40                 5                  2.37               0.05                0.03               0.51             0.49            1.24          −0.31 
                         40−50                 1                  2.68               0.01                0.04              −0.98             0.42             −0.20          −1.55 
                         50−60                 3                  3.18               0.03                0.04              −0.23             0.50            0.72          −0.92 
                         60−70                 2                  3.45               0.02                0.05              −0.69             0.47            0.27          −1.26 
                         70−80                 2                  4.16               0.02                0.06              −0.85             0.41            0.01          −1.36 
                         80−90                 7                  4.55               0.07                0.07               0.19             0.50            1.16          −0.56 
                      90−100               3                  5.36               0.03                0.08              −0.74             0.41            0.03          −1.27 
                       100−110               7                     5.8                 0.07                0.08              −0.06             0.43            0.70          −0.67 
                       110−120              10                 6.32                  0.1                  0.09               0.19             0.40            0.92          −0.37 
                       120−130              10                 6.46                  0.1                   0.1                 0.15             0.38            0.81          −0.41 
                       130−140              10                 7.27                  0.1                  0.11               0.04             0.39            0.67          −0.51 
                       140−150               9                  7.98               0.09                0.12              −0.17             0.35            0.42          −0.68

Table 3. Larus fuscus mean avoidance/attraction index (AAI) values based on 10 m distance bands from nearest turbine and height 
bands based on rotor height range (RHR) of nearest turbine. 95% CIs based on quantiles of simulations. Also shown are the num-
ber of observed points, and mean number of expected points per random iteration (n = 300). (–) SD and 95% CI not applicable
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al. 2016). For this study site, we showed that breed-
ing lesser black-backed gulls changed from exhibit-
ing macro-avoidance at distances >3 km from the 
wind farm boundary to showing no significant re -
sponse at closer distances to wind farms. A decision 
to avoid or enter a wind farm to commute or forage 
may be made at threshold distance from the wind 
farm boundary, and lead to a reduction in displace-
ment at decreasing distances from the wind farm. In 
comparison to other seabirds, the energetic cost of 
macro-scale displacement from wind farms to lesser 
black-backed gulls is potentially insignificant; there-
fore other factors may be contributing to the decision 
to avoid or enter the wind farm (Masden et al. 2010). 
Vanermen et al. (2020), studying responses of lesser 
black-backed gulls to wind farms on the Belgian 
North Sea coast, similarly reported that birds dis-
played a degree of macro-avoidance at distances fur-
ther (>2 km) from the wind farm, while also being 
attracted to the wind farm edge to roost. The ability 
of lesser black-backed gulls to avoid turbines on a 
meso-scale may reduce the exhibition of macro-scale 
responses to wind farms if the benefit of entering the 
wind farm to forage, roost, or commute outweighs 
the cost of turbine avoidance (Vanermen et al. 2015, 
Dierschke et al. 2016, Welcker & Nehls 2016, Thaxter 
et al. 2018). This response is in contrast to the high 
degree of avoidance exhibited by northern gannets 
Morus bassanus (Dierschke et al. 2016), a species 
which has been similarly observed through GPS 
tracking (Garthe et al. 2017, Mendel et al. 2019). 

4.2.  Vertical patterns in avoidance behaviour 

We found that AAI values began to show greatest 
variation at distances approaching 60 m of a turbine, 
distances which may be within the rotor-swept area 
of blades of a radius 45−77 m within this study. With 
approaching distances to turbines, avoidance in -
creased within the RHR, while attraction within the 
height band below the turbine blades increased. 
Potential loafing behaviour on the water’s surface 
was increasingly prevalent at distances nearing the 
turbine base (Fig. 5). These results reflect those of 
Thaxter et al. (2018), who reported that birds were 
found within the RHR significantly less than ex -
pected by chance. Several factors may influence 
changes in species flight heights, including behav-
iour, wind conditions, time of year, and time of day 
(Corman & Garthe 2014, Ross-Smith et al. 2016). 
However, these changes in vertical space use while 
approaching turbines is suggestive of avoidance 

behaviour. Birds may be drawn towards the space 
below a turbine for the loafing or foraging opportuni-
ties available, but they appear to actively avoid alti-
tudes covered by the turbine rotor sweep when 
doing so. 

4.3.  Suggestions for future research 

Currently, CRMs use fairly limited models devel-
oped for use with survey data, reliant on potentially 
unrealistic biological assumptions (Masden et al. 
2021). Methods trailed in this study are intended to 
explore how GPS tracking data can be used improve 
our knowledge of response behaviours in animals 
and inform assessments of collision risk. To date, few 
studies have examined the response distances of 
lesser black-backed gulls to wind farms, with the 
exception of Vanermen et al. (2020). Both of these 
studies indicate that macro-responses change with 
respect to distance from the wind farm and the bio-
logical causes, and consequences of this variation in 
relation to modelling avoidance should be consid-
ered in future assessments. 

While GPS tracking may improve knowledge of 
bird response behaviour, the method itself contains 
error which should be accounted for. The accuracy of 
GPS fixes can be low (±10 m) (Corman & Garthe 
2014), with the addition of error on the vertical plane 
being larger than horizontal error (Péron et al. 2020). 
This error in vertical and horizontal positions can be 
reduced by selecting GPS fixes of a higher resolution 
(<20 s) (Bouten et al. 2013, Corman & Garthe 2014, 
Thaxter et al. 2018). Here we selected the fixes of the 
highest available resolution (<20 s), to investigate 
meso-scale response incorporating flight height. 
However, other modelling techniques accounting for 
observation error separate from behavioural pro-
cesses (Ross-Smith et al. 2016), or other means of 
measuring flight height, such as through barometric 
altimeter sensors, may aid in accounting for vertical 
error (Cleasby et al. 2015). 

Whilst we were able to quantify bird responses to 
turbines at meso- and macro-scales, the data we 
present do not allow us to do this at a micro-scale. 
There are 3 reasons for this. Firstly, to detect micro-
scale response, fix rates must be at a higher rate (<1 s) 
than recorded in this study (<20 s). Secondly, last-
second micro-avoidance is likely to be a very rare 
event (May 2015, Cook et al. 2018); consequently, 
sample sizes obtainable using GPS data are likely to 
be insufficient to detect any effect; already our analy-
sis had a limited sample size for investigating meso-
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scale behaviours within and above the RHR (Fig. 5). 
Thirdly, using telemetry data, behaviour must be 
inferred from the recorded tracks through tech-
niques such as hidden Markov models (Dean et al. 
2012, Browning et al. 2018). While the combination 
of GPS tracking with flight height (Cleasby et al. 
2015, Thaxter et al. 2018) and depth recorders 
(Browning et al. 2018) can improve behavioural 
inferences, uncertainty remains due to the lack of 
direct observation. Laser-range finders combined 
with visual observation (Cole et al. 2019), or radar-
controlled cameras (Skov et al. 2018b), allow for 
direct observations of meso- and micro-scale re -
sponses to turbines. This may allow the study of 
behaviours exhibited by birds that may leave them 
exposed or alert to turbines blades. 

4.4.  Summary 

Through the use of simulated and observed tracks, 
this study found that there was a degree of attraction 
displayed by lesser black-backed gulls within 4 km 
of the wind farms situated offshore from the study 
colony. However, AAI analysis found there to be 
variation in avoidance and attraction across distance 
bands within this boundary, with a degree of avoid-
ance being displayed 3−4 km from the boundary. 
Therefore, we highlight that ARs may vary spatially, 
and the boundary selected to investigate avoidance 
may influence the overall AR. The slight overall de -
gree of attraction to wind farms displayed by lesser 
black-backed gulls may lead to a greater risk of col-
lision, and highlights the importance of high-resolu-
tion information of meso- and micro-scale responses 
to turbines (Cook et al. 2014, 2018, Skov et al. 2018b, 
Thaxter et al. 2018). While we only considered off-
shore foraging birds, individual sensitivity analyses 
carried out here displays that the individuals largely 
reacted in a similar manner to the presence of wind 
farms and turbines. The methodology to calculate AR 
and AAI used in this study is primarily replicated 
from Schaub et al. (2019). However, Schaub et al. 
(2019) investigated avoidance behaviour displayed 
by a terrestrial raptor, and we have modified the 
method to be applicable to a central-place foraging 
seabird. At present, CRMs used in the marine envi-
ronment make simplified assumptions about the 
movement and behaviour of seabirds at sea (Masden 
& Cook 2016). As a consequence, ARs for these mod-
els must incorporate both the behavioural aspects of 
avoidance behaviour, and any error associated with 
the simplification of these models. The results we 

present here account for the behavioural element, 
but not the model error element, meaning that, with-
out further adjustment, they are not directly applica-
ble to widely used CRMs such as the Band (2012) 
model. However, the results of this study and that of 
Schaub et al. (2019) are a step towards models based 
on more realistic assessments of bird behaviour. 
Therefore, while the indexes of ARs we consider can 
be used to better understand behaviour, they are not 
directly applicable to CRMs. Nevertheless, further 
understanding of behavioural responses to wind 
farms is valuable in informing assessments. 

As the scale of offshore wind farm developments 
increases, there are significant concerns about the 
cumulative effects of collision at population scales 
(Brabant et al. 2015, Busch & Garthe 2016). There is 
significant uncertainty associated with these cumula-
tive assessments of collision risk, driven by a lack of 
validation of CRMs and a lack of empirical data on 
seabird avoidance behaviour. Whilst the ARs we 
report here are not directly applicable to widely used 
CRMs, as they lack an element to account for model 
simplifications and errors (Band 2012), they do pro-
vide a valuable assessment of the likely scale of 
avoidance behaviour in lesser black-backed gulls. 
Key next steps are validation of existing CRMs so we 
can understand the relative contribution of behav-
iour and model error/simplifications to the ARs nec-
essary for CRMs, and development of models that 
more accurately reflect bird behaviour in the marine 
environment. 
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