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1.  INTRODUCTION 

Migration is a seasonally driven behaviour that en -
ables populations to relocate synchronously between 
alternately favourable conditions for breeding and/or 
foraging, in a way that maximises ecological fitness 
(Dingle 1996). Humpback whales Megaptera novae -
angliae undertake one of the longest migrations 
among mammals (Stone 1990, Rasmussen et al. 2007) 
in order to exploit food-rich waters in higher latitudes 

during the summer, and warmer lower latitudinal 
waters during the winter to breed (Chittleborough 
1965, Robbins et al. 2011, Andrews-Goff et al. 2018). 
Feeding is largely absent during the migration and 
time spent on the breeding grounds, with individuals 
relying on previously stored energy reserves (i.e. 
‘capital’) obtained on the feeding grounds. This an -
nual migration has been widely studied in both the 
northern and southern hemispheres (Chittleborough 
1965, Dawbin 1966, Craig et al. 2003, Stevick et al. 
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2003, Rasmussen et al. 2007, Rizzo & Schulte 2009, 
Jackson et al. 2014). However, migration behaviour 
is complex, involving variation between and within 
species, inter- and intra-seasonally, as well as differ-
ences among age, sex, and reproductive classes 
(Swartz 1986, Craig et al. 2003, Burns et al. 2014, 
Thomisch et al. 2016). 

In migratory capital breeding mammals, migration 
is an important life cycle event given the energetic 
trade-off between energy acquisition and reproduc-
tion (Stephens et al. 2009, Irvine et al. 2017). Baleen 
whales store most of their energy as fat (lipid) re -
serves in their blubber, bones, muscle, and viscera 
tissues, which consequently can be highly variable in 
both weight and biochemical composition (Brodie 
1975, Lockyer 1987a, Higgs et al. 2011). Seasonal 
variations in stored energy resulting from periods of 
intense feeding and fasting result in seasonal changes 
in the relative energy reserves of an individual, also 
known as body condition (Lockyer 1987a, Niæss et al. 
1998). The body condition of an animal can be ex-
pressed by any physiological index that represents 
the energy stores of an individual relative to its struc-
tural size (Peig & Green 2010). Some common metrics 
used for body condition in baleen whales include 
body girth (Lockyer 1987b, Vikingsson 1990, Haug et 
al. 2002), blubber thickness (Vikingsson 1990, Miller 
et al. 2011), blubber volume (Christiansen et al. 
2014), lipid concentration (Kershaw et al. 2019, Aoki 
et al. 2021), body surface area (Soledade Lemos et al. 
2020), body volume (George et al. 2015, Christiansen 
et al. 2018), and body mass (Lockyer 1987b, Næss et 
al. 1998), often in relation to the body length (struc-
tural size) of the animal. Sufficient energy reserves 
need to be acquired to cover the basic metabolic re-
quirements of fasting individuals, as well as ad -
ditional energetic costs associated with demanding 
life-history stages such as late pregnancy and early 
lactation (Parry 1949, Braithwaite et al. 2015). Conse-
quently, the amount of stored energy a humpback 
whale acquires from the feeding grounds dictates the 
ability of individuals to withstand longer periods of 
fasting, as well as the reproductive potential of ma-
ture females (Møller & Saino 1994, Cotton et al. 2006, 
Moya-Laraño et al. 2008, Williams et al. 2013). The 
body condition of an individual should hence deter-
mine the duration an animal is able to reside on the 
breeding grounds, and consequently, the migration 
timing to and from the breeding grounds. This is es-
pecially relevant for cow/calf pairs where time post-
partum spent on the breeding grounds is important 
for calves to develop muscle mass to aid migration 
back to the feeding grounds. 

Compared to income breeding marine mammals, 
like sperm whales Physeter macrocephalus, an equi -
valent length humpback whale carries 32−75% more 
body lipids (Irvine et al. 2017). The comparatively 
higher amount of stored energy in humpback whales 
is likely due to the high energetic cost of migration 
and reproduction which occurs during a prolonged 
period of fasting. For baleen whales, the amount of 
energy reserves an individual deposits will vary de -
pending on reproductive status and time of year 
(Lock yer 1981, Perryman & Lynn 2002, Miller et al. 
2012).  

Despite the importance of body condition for 
migration and reproductive success in humpback 
whales, few studies have explored the relationship 
be tween migration timing and body condition. His-
torical whaling data have revealed that pregnant 
humpback whales that arrive in Australian waters 
later during the migration season carry larger energy 
stores compared to those arriving earlier (Irvine et al. 
2017). Therefore, pregnant females may time migra-
tion according to individual gestation timing whilst 
prioritising energetic accumulation on the feeding 
grounds. The migration timing of adult males may be 
driven by a trade-off between energy accumulation 
and maximising the time spent on the breeding 
grounds to increase mating opportunities (Irvine et 
al. 2017). However, juvenile humpback whales are 
not yet sexually mature, and their migration time 
might therefore not be driven by the need to max-
imise reproductive success, but by other bioenergetic 
(e.g. thermoregulatory benefits) or ontogenetic (e.g. 
behavioural development) factors (Craig et al. 2003). 
Quantifying the energy stores of different repro ductive 
classes of whales and how they may be influenced by 
the timing of migration, can provide valuable insights 
into the time investment trade-off be  tween energy 
accumulation and reproduction. 

The aim of this study was to investigate the rela-
tionship between body condition and migration tim-
ing in humpback whales. We used unmanned aerial 
vehicles (UAVs) to assess the morphometric body 
condition of migrating humpback whales off the east 
coast of Australia (Breeding Stock E1, BSE1) to (1) 
quantify the change in body condition between the 
northern migration (whales travelling from their 
Antarctic feeding grounds northward to their breed-
ing grounds near the Great Barrier Reef Marine Park, 
GBRMP) and southern migration (whales travelling 
from the GBRMP down to Antarctica) for different re -
productive classes, i.e. calves, juveniles, adults, and 
lactating females; and (2) determine whether the tim-
ing of migration (the day of the year an individual 
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migrates past northern New South Wales) influences 
body condition of humpback whales. 

Regarding the Objective (1), above, we hypothe-
sised (i) a decrease in body condition between the 
north- and southbound migrations for all reproduc-
tive classes with the exception of calves, (ii) the 
amount of body condition loss to be different for each 
reproductive class, and (iii) lactating females to lose 
the most body condition followed by non-lactating 
adults and juveniles.  

Regarding the Objective (2), above, we hypothe-
sised (i) that migration timing will significantly influ-
ence the body condition for all reproductive classes 
on the northern migration, with individuals migrating 
earlier expected to be in poorer body condition com-
pared to those migrating later. However, during the 
southern migration, we expected to see different re-
lationships for each reproductive class. For adults 
(males, resting females, and early-pregnant fe males), 
we hypothesised (ii) that migration time would have 
no effect on body condition due to confounding ef-
fects of sex and reproductive status. For juveniles, 
based on the thermoregulation hypothesis (where 
smaller individuals have a larger surface area to vol-
ume ratio, and therefore have more relative area to 
lose heat from), we hypothesised (iii) a significant de-
cline in body condition with migrating timing. For 
cow/calf pairs, we expected (iv) to see calves in better 
body condition migrating later with a similar condi-
tion reflected in the lactating females. 

2.  MATERIALS AND METHODS 

2.1.  Study population 

Each austral winter between May and November, 
the southern hemisphere population of humpback 
whales from BSE1 migrates from feeding grounds in 
Antarctica (feeding area V, 130° E−170° W, 59−68° S) 
to breeding grounds in the GBRMP (Forestell et al. 
2003, Smith et al. 2012, Bettridge et al. 2015). Whal-
ing significantly reduced the population of BSE1, 
with lower estimates of a few hundred individuals in 
the 1960s (Jackson et al. 2008). However, the cessa-
tion of commercial whaling in Australian waters in 
1963 has allowed the population to recover. Dedi-
cated population surveys, which began in the 1980s, 
have indicated a long-term average increase in the 
population at a rate of 10.9% yr−1 (Noad et al. 2019). 
The most recent population survey of BSE1 (in 2015) 
estimated the population at 24 545 (±7.4−8.4%) indi-
viduals (Noad et al. 2019). The east coast of Australia 

provides an ideal location to study humpbacks along 
their migratory route, with approximately 90% of 
individuals travelling within 10 km of the coastline 
when passing Cape Byron (Paton 2016). 

2.2.  Study site 

Surveys were conducted in northern New South 
Wales (NSW) from 2 land-based sites along the coast-
line, as well as from a commercial whale-watching 
vessel, hired for the purposes of this study. Flights 
from land were conducted from Ballina Head and 
Evans Head (Fig. 1). The commercial vessel de parted 
from Brunswick Heads, and was used to survey far-
ther offshore to help mitigate data sampling biases 
associated with sampling only near-shore in di viduals 
(Fig. 1). Sampling from the re search vessel oc curred 
up to 18 km from the coast, be tween 28° 21’ 36” S, 
153° 45’ 0” E and 28° 39’ 36” S, 153° 45’ 0” E, spanning 
approximately 100 km2. 

2.3.  Data collection 

The research team was composed of 2 to 3 people, 
including a UAV pilot, a spotter/data recorder, and 
often a dedicated person to hand launch and retrieve 
the UAV when operating from the vessel. Zenithal 
(from directly above) 4K ultra-high definition video 
recordings were made of the dorsal side of surfacing 
humpback whales between 11 June and 22 October 
2020 using a DJI Phantom 4 Pro UAV (weight 1388 g, 
diagonal size 350 mm), which had an integrated cam-
era sensor. The UAV was launched from either the 
dedicated research vessel or the headland and flown 
20−40 m in altitude toward the whale. Once above 
the whale, the UAV descended to approximately 
20 m altitude to record videos from above the whale. 

2.4.  Data processing 

Data were generated using definitions and protocols 
described by Christiansen et al. (2018, 2020). From 
the UAV videos, a minimum of 1 still frame photo-
graph was extracted for each whale in the group. An 
ideal photograph for aerial photogrammetry is repre-
sented by a whale lying flat at the surface with its dor-
sal side clearly visible. The body should be non-arch-
ing and non-rolled, and the body contour clearly 
distinguishable to allow accurate measurements of 
body length and width. Each photograph was quality 
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graded (1: good, 2: medium, 3: poor) based on camera 
focus, body posture (straightness of the body, degree 
of body roll, degree of body arch, body pitch), and 
length and width measurability (ability to identify the 
body contour to measure body length and width, re-
spectively). Images that scored a 3 in any variable or a 
2 in both arch and pitch, pitch and roll, or arch and roll 
were excluded from the analysis. 

Individuals were classified into 1 of 4 reproductive 
classes (calves, juveniles, adults, and lactating fe -
males). Individuals <11.2 m were classified as juve-
niles; those ≥11.2 m were classified as adults (Chit-
tleborough 1955). Lactating females and calves were 
determined by their close and consistent association 
with one another and by their relative size (calves 
<2/3 body length of mothers; Christiansen et al. 
2016). Apart from lactating females, differentiation 
be tween sexes was not possible, and hence the adult 
reproductive class comprised males, resting females 
(non-pregnant/non-lactating), and newly pregnant 
females (females that became pregnant during the 
study season). 

For each whale (video still frame), we measured 
total body length (from the tip of the rostrum to the 
notch of the tail fluke), and body width (Fig. 2). Width 

measurements of whales from the images were made 
perpendicular to the body axis and at 5% intervals 
along the entire body, excluding 0 and 100% of the 
body length (Fig. 2) (Christiansen et al. 2016). The 
length and width measurements were converted 
from pixels on a still image to absolute size (in 
metres) by scaling each still frame. This was done by 
taking into account the known altitude of the UAV, 
camera sensor size, focal length, and image resolu-
tion (Christiansen et al. 2018). 

2.5.  Body length, volume, and condition 

The body condition of individual humpback 
whales was estimated from the residual of the log-
linear relationship between body volume and body 
length (Christiansen et al. 2018). First, body volume 
was calculated from the body width, length, and 
height data following the procedures of Christian -
sen et al. (2019). Height data were obtained using 
height-to-width ratios calculated from data collected 
by Christiansen et al. (2020). Each whale was mod-
elled using small ellipses to form the cross-section of 
its body. The ellipses varied in width and height ac -
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cording to each 5% segment along the whale body. 
The width to height ratio was calculated for each 
segment using data from whales with both a dorsal 
(width) and lateral (height) image. The volume (V) 
for each body segment (ellipses) was calculated 
using the following formula (Christiansen et al. 
2019): 

                        
(1)

 

where s is the segment being measured for whale i, 
BL is the total body length of whale i, WA,s,i and WP,s,i 
are the anterior and posterior width measurements, 
respectively, and HA,s,i and HP,s,i are the anterior and 
posterior height measurements, respectively. We 
used a linear interpolation of both body width and 
height from 0−5% BL (tip of the rostrum) and from 
85−100% BL (tail region). The total body volume 
(BVTotal,i) of whale i was then calculated by the sum-
mation of all body segments: 

                                                        (2) 

The body condition (BC) was then calculated using 
the BVTotal for each whale using the following for-
mula (Christiansen et al. 2018): 

                                                (3) 

where BVObs,i and BVExp,i are the observed (mea-
sured) and expected (average) body volume of whale 
i measured in m3. The expected body volume for 
each whale was estimated from the linear log–log 
relationship between body volume and total body 
length: 

                                                 (4) 

where BVi is the expected body volume of whale i 
and BLi is the measured body length for whale i. 

2.6.  Data analysis 

The cost of residing on the breeding grounds was 
quantified by comparing the body condition between 
the northbound (North, May−August) and south-
bound (South, August−November) migrations for 
each reproductive class (calves, juveniles, adults, and 
lactating females). Data were analysed using linear 
regression models (LMs) in R v4.0.4 (R Core Team 
2021) (Model 1 LM: body condition [BC] ~ migration 

direction, subset = reproductive class). A separate 
model was used for each reproductive class, repre-
sented in the model under ‘subset’. The migration di-
rection (North or South), was determined for each 
sampled whale considering the date of the sightings, 
and the predominant direction of travel by the indi-
vidual. For adults and juveniles, the relationship be-
tween body condition and migration timing (day of 
the year) was quantified using LMs with the north-
bound and southbound migrations analysed sepa-
rately (Model 2 LM: BC ~ day of the year, subset = re-
productive class and travel direction). Instead of day 
of the year, migration timing for cow/calf pairs was 
analysed using the relative body length of the calf 
(CBL = calf body length/maternal body length) as a 
proxy for days postpartum, since the date of birth 
 varied between individual calves and calves grew in 
body length over the breeding season. Lactating fe-
males were analysed using LMs (Model 3 LM: BC ~ 
CBL, subset = reproductive class), whilst calf body 
condition was analysed using a generalised additive 
model (GAM) and a Gaussian family (Model 1 GAM: 
BC ~ smooth spline [%CBL to female body length], 
subset = reproductive class). Models were visually 
examined for each reproductive class and were vali-
dated and tested for potential violations of the as-
sumptions of normality, homo  skedasticity, and nor-
mality of residuals. 

3.  RESULTS 

The research effort spanned 68 survey days and 
was divided between 3 survey locations, with 44 days 
at Ballina Head, 7 at Evans Head, and 17 on the re -
search vessel (departing from Brunswick Heads). A 
total of 699 still images of individual humpback 
whales were extracted from the videos. After assess-
ing imagery and filtering the data based on picture 
quality, a total of 513 individual whales were used in 
the analysis (237 North and 276 South), including 48 
calves (7 North and 41 South), 166 juveniles (100 
North and 66 South), 251 adults (123 North and 128 
South), and 48 lactating females (7 North and 41 
South) (Table 1). Adults and juveniles were sampled 
throughout the data collection period, with cow/calf 
pairs being sampled from early July (Fig. S1). 

3.1.  Body length, volume, and condition 

Total body length of humpback whales ranged be -
tween 3.7 and 16.2 m (Table 2). Calves varied in 

Vs,i =BLi �0.05�

��
WA,s,i + WP ,s,i �WA,s,i( )�x

2
�
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length between 3.7 and 7.9 m, juveniles between 7.9 
and 11.2 m, adults between 11.2 and 16.2 m, and lac-
tating females between 10.8 and 15.1 m. There was a 
significant curvilinear (exponential) relationship be -
tween body length and body volume, with the log-log 
relationship showing a strong linear relationship 
(F1,511 = 1634, p < 0.01, R2 = 0.970) (Fig. 3). All whales 
followed a similar body width profile along the body 
axis, measured at 5% increments (Fig. S1 in the 
 Supplement, www.int-res.com/articles/suppl/m692
p169_supp.pdf). The widest point for juveniles, adults, 
and lactating females was at 45% body length down 
the body axis, whereas calves were widest at 40% 
body length (Fig. S2). The minimum, maximum, and 
median body condition and body lengths for individu-
als used in the analysis were derived for each sample 
location (Fig. S3). The relationship of absolute body 
length of cow/calf pairs was analysed, with calf body 
length showing a significant relationship with mater-
nal body length (F1,46 = 6.63, p = 0.01, R2 = 0.10). This 
relationship showed that longer (and potentially 
older) females had longer calves (Fig. S4). In addition, 
relative calf length (% of maternal length) was corre-
lated with day of year, with longer (potentially older) 
calves migrating later (F1,46 = 29.34, p < 0.01, R2 = 
0.37) (Fig. S5). 

3.2.  Changes in body condition between the 
northbound and  southbound migrations 

There was a significant loss in body condition be -
tween the north- and southbound migrations for 
adults (F1,249 = 42.37, p < 0.001) and juveniles (F1,164 = 
107.8, p < 0.001) (Fig. 4). The small number of obser-
vations of lactating females and calves during the 
northbound migration prohibited a statistical com-
parison for these reproductive classes. Adults lost 
approximately 9.8 percentage points in body condi-
tion between the north and southbound migrations 
(Fig. 4). Adults migrating north were approximately 
6.6 ± 0.01% (SE) above the total mean body condi-
tion of the whole sample population. This dropped to 
3.2 ± 0.01% below the mean body condition during 
the southern migration. Juveniles lost approximately 
18.3 percentage points of their body condition from 
the northbound (8.2 ± 0.01%) to the southbound 
migration (−10.1 ± 0.01%) (Fig. 4). 

3.3.  Influence of migration timing on  
body condition 

We found no statistical evidence to support a rela-
tionship between migration timing (day of the year) 
and body condition for adults (F1,121 = 2.49, p = 0.117) 
during the northbound migration (Fig. 5). The model 
showed potential weak evidence for juveniles to 
have declining body condition with day of the year 
during the northbound migration (Fig. 5). However, 
this was not statistically significant at a significance 
level of α = 0.05 (F1,98 = 3.79, p = 0.054). There was 
also no statistical evidence to suggest that migration 
timing of adults (F1,126 = 0.194, p = 0.660) and juve-
niles (F1,64 = 0.191, p = 0.663) affects their body con-
dition during the southbound migration. Similarly, 
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Reproductive           Ballina     Evans    Research    Total 
class                           Head       Head        vessel 
 
Calves                          24            6              18           48 
Juveniles                      95            3              68          166 
Adults                          134            7             110          251 
Lactating females        24            6              18           48 
Total                            277           22            214          513

Table 1. Number of individual humpback whales of each re-
productive class sampled at each survey location included in  

the analysis

Reproductive class    n North    n South    Body length (m)   Body volume (m3)   Body condition  Width at widest point (m) 
 
Calf                                  7              41                3.7−7.9                    0.7−7.4               −0.25 − 0.34                  0.66−1.60 
                                                                          (5.9 ± 0.81)               (3.2 ± 1.2)            (−0.01 ± 0.12)               (1.17 ± 0.17) 
Juvenile                         100            66               7.9−11.2                  6.7−28.8              −0.29 − 0.40                  1.37−2.61 
                                                                         (10.1 ± 0.83)             (16.1 ± 4.2)            (0.01 ± 0.14)                (1.97 ± 0.22) 
Adult                              123           128             11.2−16.2                16.9−64.9             −0.26 − 0.46                  1.97−3.26 
                                                                         (12.7 ± 1.05)             (32.8 ± 8.7)            (0.02 ± 0.13)                (2.51 ± 0.25) 
Lactating                         7              41              10.8−15.1               17.45−59.9            −0.23 − 0.32                  1.99−3.09 
                                                                          (12.8 ± 1.1)              (32.9 ± 9.2)           (−0.01 ± 0.12)               (2.48 ± 0.24) 
Total                               237           276              3.7−16.2                  0.7−64.9              −0.29 – 0.46                  0.66−3.26 

Table 2. Range (with mean ± SD) of body length, body volume, body condition, and body width at the widest point for dif-
ferent reproductive classes of humpback whales sampled on the east coast of Australia. Sample sizes (n) are also shown.  

Total n = 513 whales

https://www.int-res.com/articles/suppl/m692p169_supp.pdf
https://www.int-res.com/articles/suppl/m692p169_supp.pdf


Russell et al.: Humpback whale body condition and migration timing

there was no evidence to support 
migration timing (relative calf length 
as a proxy for days postpartum) of lac-
tating females affecting their body 
condition (F1,46 = 3.84, p = 0.055) 
(Fig. 6). However, calves showed a 
significant curvilinear relationship, 
where those migrating with a body 
length ap proximately 40−50% that of 
their mothers, were in significantly 
better body condition than earlier 
(<40%) or later (>50%) migrating 
calves (F1,9 = 0.24, p = 0.001; Fig. 7). 

4.  DISCUSSION 

We investigated the relationship 
between body condition and migra-
tion timing in BSE1 humpback whales 
on the east coast of Australia. We re -
corded a significant loss in body con-
dition for both adults and juveniles 
between their northern and southern 
migration. In addition, we found no 
evidence that the timing of migration 
influences body condition for adult, 
juvenile, and lactating female hump-
back whales for either migration di -
rection (north or south). However, 
calves showed a significant non-linear 
relationship with body length relative 
to that of their mother (a proxy for 
migration timing postpartum) and 
body condition. Calves migrating past 
northern NSW with a body length 
between 40 and 50% of the maternal 
body length were on average in better 
body condition than calves migrating 
past with <40% or >50% of the mater-
nal body length. 

It is worth noting that the body con-
dition metric used in this study was 
scaled against the body length of the 
animals, which means that measure-
ment errors in body length should not 
influence the estimate of body condi-
tion. However, given that length is 
used as a threshold to determine adults 
and juveniles, it is likely that some 
adults were misclassified as juveniles 
and vice versa. Similarly, some preg-
nant females may have been misclassi-
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fied as juveniles during the northern migration. The 
lowest body length for a lactating female re corded in 
this study was 10.8 m, which is below the adult 
threshold of 11.2 m. The smallest sexually mature fe-
male humpback whale from whaling re cords pre-
sented by Chittleborough (1965) was 10.5 m; there-
fore, measurements of sexually mature whales under 
this length will most likely be due to measurement er-
ror or error in height recorded. In the absence of more 
recent data on the mean body length threshold of 
humpback whales reaching sexual maturity, whaling 
data provide the most accurate information currently 
available. 

4.1.  Adults 

We found a significant decrease in body condition 
between the northbound and southbound migrations 
for adults (9.8%). This loss in body condition was 
expected given the high energetic cost of reproduc-
tion in female and male humpback whales while on 
the breeding grounds (Lockyer 1981, Oftedal 1993, 
Stephens et al. 2009). A similar loss in body condition 
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over a period of fasting has been well documented in 
other mammals (Lockyer 1981, Atkinson & Ramsay 
1995, Champagne et al. 2012), including baleen 
whales (Perryman & Lynn 2002, Bradford et al. 2012, 
Miller et al. 2012, Christiansen et al. 2016, Soledade 
Lemos et al. 2020). The loss in body condition re -
corded during this study is similar to what has been 
recorded for Stock D humpback whales (14.5%) of 
Western Australia (WA), between early (northbound) 

and late (southbound) migratory phases (Chris-
tiansen et al. 2020). In addition, a 20% decrease in oil 
yields was recorded at Carnarvon whaling station in 
northwest WA between humpback whales caught on 
their northern migration compared to those on the 
southern migration (Chittleborough 1965). The slightly 
smaller loss in body condition reported in the present 
study may be a result of differences in relative sam-
pling position on the migratory route. In WA, data 
were collected farther south of the breeding grounds 
compared to this study, which may explain the larger 
loss in body condition. However, Carnarvon whaling 
station, which recorded the largest de crease, was the 
closest location to the respective breeding grounds of 
the 3 studies, approximately 1000 km south. There-
fore, relative position of sampling on the migratory 
route would not explain this difference. Rather, re -
cords from Carnarvon whaling station may include 
all reproductive classes, including late-term preg-
nant females in good body condition and females 
approaching the end of lactation in poor body condi-
tion; the latter produced half as much oil yield as the 
former when caught at the same whaling location 
(Dawbin 1966). In addition to blubber, bones may 
have also been processed and oil ex tracted, poten-
tially contributing further to the larger yield in oil 
recorded at Carnarvon (Ivash chenko et al. 2011). 
Moreover, there might not be a perfect linear rela-
tionship between oil yields and body condition, since 
a whale could be catabolising tissue lipids without it 
being reflected in the morphometric body condition 
of the animal (Christiansen et al. 2020). Therefore, 
the overall lipid loss may be greater than loss in mor-
phometric body condition alone, which may explain 
the difference in body condition loss compared with 
the present study. 

Although humpback whales are thought to gener-
ally fast during migration and while on the breeding 
grounds, significant feeding opportunities have been 
recorded during the southern migration on the east 
coast of Australia (Stamation et al. 2007, Pirotta et al. 
2021). Feeding behaviour during migration has been 
recorded in other humpback whale populations, in -
cluding the east coast of America, South Africa, 
Brazil, Dominican Republic, Ecuador, Chile, and 
Mexico (Baraff et al. 1991, Gendron 1993, Swingle et 
al. 1993, Best et al. 1995, Danilewicz et al. 2009, De 
Sá Alves et al. 2009, Barendse et al. 2010, Findlay et 
al. 2017, Siciliano et al. 2019, García Cegarra et al. 
2021). This raises the possibility of revising this tradi-
tional model of feeding and fasting for at least some 
humpback whale populations (Eisenmann et al. 
2016). The exact role and extent that feeding during 
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in northern New South Wales (n = 48). The solid black line 
represents the predicted values of the fitted linear model, 
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migration has on the energetic balance of humpback 
whales remains largely unknown. However, whales 
may be able to meet up to 3.4 times their daily ener-
getic requirements when they suspend migration for 
opportunistic feeding (Andrews-Goff et al. 2018). Sig -
 nificant opportunities to replenish energy re serves 
may influence changes in body condition. The op -
portunistic feeding behaviour of humpback whales 
along the Australian east coast has been primarily ob -
served during the southern migration about 1000 km 
south from the location of this study (Gill et al. 1998, 
Stockin & Burgess 2005, Gales et al. 2009, Owen et 
al. 2015). Although occasional feeding op portunities 
may provide additional energy to complete the final, 
and arguably more demanding, section of the migra-
tion, these are likely to have little influence on the 
results of this study. 

We found no evidence to support migration timing 
in adult humpback whales being influenced by their 
body condition. However, migration timing of North 
Atlantic humpback whales has been found to be 
influenced by their feeding ground origin (Stevick et 
al. 2003). Localised environmental variables within 
feeding grounds can influence the amount of stored 
energy or body condition an individual can accumu-
late. The humpback whales that winter (breed) in the 
West Indies come from 5 main feeding areas, includ-
ing Gulf of Maine, eastern Canada, Greenland, Ice-
land, and Norway (Stevick et al. 2003, Kennedy et al. 
2014). The arrival and departure time of individuals 
in the West Indies was strongly influenced by their 
respective feeding areas, where those feeding in the 
Gulf of Maine and eastern Canada arrived and 
departed significantly earlier than those travelling 
from Greenland, Iceland, and Norway (Stevick et al. 
2003, 2018). Humpback whales exhibit strong site 
fidelity to both their breeding and feeding grounds 
(Calambokidis et al. 2001, Barendse et al. 2013, 
 Wenzel et al. 2020). Southern hemisphere humpback 
whales feed in 6 identified feeding areas, with 
whales showing strong site fidelity in each area 
(Chittle borough 1959, IWC 1999). BSE1 whales feed 
within feeding area V in Antarctica, spanning 
130° E−170° W, 59°−68° S (Bettridge et al. 2015). 
How ever, fine-scale movement within this area is 
poorly understood. With other populations showing 
site fidelity to feeding areas on a smaller spatial scale 
(Barendse et al. 2013), there is a potential for this to 
occur within Antarctic feeding areas. This would 
cause different migration distances for the various 
individuals that comprise BSE1, and potentially 
affect migration timing perceived from the northern 
NSW study sites. Prey type and prey availability at 

different feeding sites are also likely to influence the 
amount of energy reserves an individual may gain 
during the feeding season, thus creating a mix of 
individuals migrating at different times with various 
body conditions. 

During the southbound migration, the time at 
which an individual adult whale passed northern 
NSW did not influence its body condition. Sex deter-
mination of adults (apart from lactating females) was 
outside the scope of this study, and therefore some 
adults that migrated earlier may have been newly 
pregnant females. A newly pregnant female will 
have different strategies for maximising reproduc-
tive success (Craig et al. 2003), and thus would be 
more likely to conserve as much energy as possible 
during the breeding season. Residency times of BSE1 
whales on their breeding grounds in the GBRMP 
were recorded to be an average of 2 mo (Burns et al. 
2014). Males showed a longer mean residency time 
compared to females (Burns et al. 2014), supporting 
the hypothesis that males may seek to maximise 
breeding opportunities by spending more time on 
their breeding grounds (Craig et al. 2003). This dif-
ference in life history strategies between adult males 
and females may have obscured the relationship 
between body condition and migration timing for 
adults seen in this study. 

4.2.  Juveniles 

Juveniles were observed to decline in body condi-
tion between the northbound and southbound migra-
tions. Juvenile humpback whales lost more body 
condition (18.3%) during the breeding season com-
pared to adults (9.8%). A similar pattern was also 
documented in juveniles in Breeding Stock D in WA 
(Christiansen et al. 2020), which lost 28.5%. The 
authors predicted that younger, smaller juveniles, 
possibly newly weaned and still fat from their moth-
ers’ milk, might have been overrepresented in the 
‘early phase’ (northbound migration), whereas the 
‘late phase’ (southbound migration) captured a more 
accurate snapshot of juvenile body condition, thus 
creating a large drop in body condition that may not 
be representative of the juvenile class. In the present 
study, we collected data over the entire migration 
period and still found the same pattern, suggesting 
that the larger loss in body condition of juveniles was 
not due to sampling biases. 

The relatively large loss of body condition in juve-
niles was not expected, since juveniles do not carry 
the added cost of reproduction (Oftedal 1993, 1997). 
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However, juvenile humpback whales are still grow-
ing in length to reach sexual maturity, and this 
growth may be an important factor when comparing 
energetic requirements between reproductive classes. 
The mass-specific energetic requirement for juvenile 
North Atlantic right whales Eubalaena glacialis was 
estimated to be considerably higher than that needed 
for adult males and non-reproductive females (For-
tune et al. 2013). In addition, immature minke whales 
Balaenoptera acutorostrata showed no seasonal 
 variation in body condition (i.e. blubber volume) over 
the feeding season (Christiansen et al. 2013), sug-
gesting that juveniles may use any excess energy 
gained from feeding for growth. We found that the 
body volume, and hence mass, of humpback whales 
in creased exponentially with body length, and there-
fore adults are substantially heavier compared to 
juveniles. According to ‘Kleiber’s Law’, the mass-
specific metabolic rate of an animal decreases with 
increasing body size (Kleiber 1932). Based on this 
law, the relative (mass-specific) energetic cost of 
maintenance would be significantly higher for juve-
niles compared to adults. Since the body condition 
metric in our study ac counted for the structural size 
of the whales, a larger loss in body condition of 
 juveniles compared to adults would be expected. In 
combination with the required energy needed for 
growth, this may represent a substantial energetic 
cost for juveniles, which exceeds that of adult 
whales. 

We found the potential for a weak influence of 
migration timing on body condition for juvenile 
hump back whales from BSE1, but this influence was 
just outside the 95% confidence interval, and there-
fore was not statistically significant. Residency times 
on feeding and breeding grounds for juveniles will 
not be influenced by trade-offs between reproduc-
tion and energy acquisition. Instead, juveniles may 
only be influenced by their limited energy reserves 
(Craig et al. 2003). Craig et al. (2003) concluded that 
the initiation of migration for humpback whales is 
most likely due to complex interactions between food 
availability on the feeding grounds, hormonal state, 
body condition, and photoperiod. However, based on 
the results of this study, body condition does not 
seem to be a major factor in determining the migra-
tion timing of humpback whales. Logically, if whales 
were to fall below a certain body condition threshold 
that would threaten their survival, they would leave 
the breeding grounds. However, since BSE1 repre-
sent a healthy (growing) population of humpback 
whales, most individuals were likely to be far away 
from this threshold. 

4.3.  Lactating females and calves 

Calves showed a significant curvilinear relation-
ship between body condition and migration timing 
(i.e. relative CBL), with early (CBL <40% of maternal 
length [ML]) and late (CBL >50% ML) migrating 
calves displaying significantly poorer body condition 
than those passing northern NSW between 40 and 
50% ML. Calves increasing in both length and body 
condition throughout their migration was expected, 
since they are nursing on high caloric milk provided 
by their mothers (Oftedal 1997). However, how ba -
leen whale calves prioritise between somatic growth 
(body length) versus fat deposition (body condition) 
has not been investigated in depth. Absolute body 
width is highly correlated to absolute body length, 
and the body condition of an individual is based on 
the relationship between the 2 variables. Conse-
quently, calves that have grown in length but not 
increased in relative width are not necessarily thin-
ner than shorter calves, they have simply grown in 
absolute size without their body condition changing. 
Therefore, at a certain length or width, calves may 
change where they prioritise their energy invest-
ment. Christiansen et al. (2016) found no temporal 
change in calf body condition of humpback whale 
cow/calf pairs in Exmouth Gulf, WA. The authors 
hypothesised that calves may prioritise growth in 
length over body condition in order to survive the 
long migration back to Antarctica. Growth in length 
will aid swimming abilities, swimming efficiency, 
and potentially predator avoidance, while an overall 
increase in body size (i.e. length) will reduce heat 
loss due to a reduction in the surface area to volume 
ratio (Sumich 2021). 

Given the direct relationship between calf and 
maternal body condition (Christiansen et al. 2016, 
2018), it was unexpected that no relationship be -
tween migration timing and body condition for lac-
tating females was shown. Baleen whale maternal 
investment has been linked to female body condition 
at the time of birth, meaning that females in better 
body condition are able to increase their energetic 
investment (milk transfer) into calf growth rate 
(Christiansen et al. 2016, 2018). Furthermore, larger 
(i.e. longer) females were recorded to have signifi-
cantly more energy reserves and also longer calves, 
once again being able to invest more energy and 
body volume into their calf (Christiansen et al. 2016, 
2018). Therefore, one would expect the body condi-
tion of lactating females to be influenced by migra-
tion timing (i.e. CBL). Despite not finding a signifi-
cant positive relationship during this study, the 
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model indicated weak evidence for such a trend. The 
migration timing of cow/calf southern right whale 
E. australis pairs in South Australia were influenced 
mostly by diurnal period, followed by calf size, sea 
surface temperature, and lastly maternal body condi-
tion (Dickeson 2018). The authors concluded that calf 
size, rather than maternal size, facilitates migration 
from breeding grounds. 

Using relative calf length as a proxy for migration 
timing may introduce some errors due to maternal 
body length not reaching its maximum by the time of 
first parturition. These errors, however, will be mini-
mal due to the significant effect of maternal body size 
on calf birth size (Christiansen et al. 2016, 2022). 
Data from this study support previous findings that 
maternal body length has a significant effect on calf 
length, with longer females having longer calves. 

4.4.  Conclusions and management implications 

Stored energy acquired from feeding grounds fuels 
the energetic cost of migration and reproduction in 
capital breeding marine mammals. This stored en -
ergy dictates the ability of individuals to withstand 
long periods of fasting whilst enabling energetically 
demanding activities like breeding, calving, and lac-
tation. This study used body condition as a physio-
logical index to represent the amount of stored en-
ergy an individual carries relative to its structural 
size. When examining the relationship between mi-
gration timing and changes in body condition for dif-
ferent reproductive classes, juveniles lost the most 
body condition between their northbound and south-
bound migrations. This was potentially due to their 
high mass-specific metabolic rate and higher growth 
rate compared to adult whales. Calves were the only 
reproductive class whose body condition was signi -
ficantly influenced by migration timing with early 
and late migrating calves in significantly poorer body 
con dition than those migrating in the middle. 

Despite the importance of body condition for repro-
duction and migration in capital breeding marine 
mammals, few studies have explored the relationship 
between migration timing and body condition. It is 
important to obtain information and monitor baleen 
whale energetics during migration and over their 
reproductive cycle to determine any adverse effects 
created by anthropogenic disturbances. Australian 
humpback whale populations have been making a 
remarkable recovery since the cessation of whaling 
(Noad et al. 2019), but significant threats remain. The 
increase in coastal development, industry practices, 

and shipping around Australia pose a serious threat 
of not only injury and mortality due to vessel strikes, 
but also disturbance and displacement in key habitat 
areas (Clifton et al. 2007, Peel et al. 2018, Bejder et al. 
2019). In addition, modification in prey availability 
and diversity have been observed in the Southern 
Ocean, the main feeding grounds of southern hemi-
sphere humpback whales, as a result of climate 
change driven impacts, including ocean warming, 
ozone depletion, reduced sea ice, and environmental 
stress (Stammerjohn et al. 2008, Flores et al. 2012, 
Kawaguchi et al. 2013). Anthropogenic and climatic 
stressors can influence the amount of energy ac -
quired on feeding grounds and impact energy usage 
during migration. This study provides valuable in -
sight into the migration timing and energetic usage 
of east Australian humpback whales. The re sults of 
this study and similar studies are needed to develop 
and implement effective management stra tegies for-
mulated to protect the nutritive condition, and ulti-
mately population dynamics, of migrating animals. 
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