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1.  INTRODUCTION 

Fish populations are not distributed randomly in 
space but exhibit spatial patterns. Understanding 
which factors drive these patterns of spatial distribu-
tion is both a fundamental ecological need and a 
requirement for resource management and marine 
spatial planning (Planque et al. 2011). This is espe-
cially true in the current context of implementation of 
the ecosystem approach in the management of mar-
ine ecosystems and its reflection in legislation bodies 

worldwide (Enright & Boteler 2020). In the case of 
forage fish species, unravelling the factors driving 
their spatial distribution is even more important, 
since it is not only a key issue in the study of the 
structure and functioning of marine communities and 
ecosystems, but it is also very useful for developing 
ecosystem models (Bailey et al. 2010). Forage fish 
occupy central positions in marine food webs by 
feeding on zooplankton and acting as primary prey 
for larger fish, marine mammals and seabirds (Van 
der Lingen et al. 2009). Due to their key role in the 
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ecosystem linking bottom-up and top-down pro-
cesses (Lynam et al. 2017), a better understanding of 
the distribution and the environmental factors which 
define the distribution of forage species will help to 
predict future adaptive responses of the ecosystem to 
a change in external drivers such as fishing or climate 
change (Lindegren et al. 2018, Régnier et al. 2019). 

The marine food web of the northern continental 
shelf of Spain (NE Atlantic) shows a high diversity 
and complexity due to the large number of links 
between functional groups, with strong relationships 
between the pelagic, demersal and benthic domains, 
with forage fish playing a major role in the energy 
transfer from the pelagic to the demersal and benthic 
domains (Sánchez & Olaso 2004, Preciado et al. 2008, 
Corrales et al. 2022). In this trophic web, almost 40% 
of the global diet composition of demersal fishes con-
sist mainly of 2 small bentho-pelagic fish species: 
blue whiting Micromesistius poutassou and southern 
silvery pout Gadiculus argenteus (Preciado et al. 
2008, Rodríguez-Cabello et al. 2014). Yearly fluctua-
tions in the abundance of these 2 forage species seem 
to affect the feeding ecology of their predators. Thus, 
an increase in cannibalism in Merluccius merluccius 
due to the scarcity of its main prey species, Microme-
sistius poutassou (Preciado et al. 2015) and a correla-
tion between shifts in G. argenteus abundance and 
its importance in the diet of its predators, both in 
volume and frequency of occurrence (Rodríguez-
Cabello et al. 2014), have been observed. 

G. argenteus Guichenot, 1850 is a member of the 
family Gadidae inhabiting the deeper parts of the 
shelf and upper slope in warm-temperate latitudes of 
the NE Atlantic (between 20° N and 45° N) and the 
Mediterranean Sea (Gaemers & Poulsen 2017). It is a 
short-lived species (3−4 yr) (Gaemers & Poulsen 
2017), and off the northern coast of Spain, it feeds on 
various groups of small pelagic and benthopelagic 
crustaceans such as euphausiids and natantians 
(López-López & Preciado 2015). Due to its schooling 
behaviour, broad geographic distribution, high rela-
tive abundance and small size (Lmax = 15.0 cm, Gae-
mers & Poulsen 2017), G. argenteus is an important 
trophic resource for non-commercial such as Lepido-
pus caudatus and Molva macrophtalma and for many 
commercial species such as hake Merluccius merluc-
cius, megrims (Lepidorhombus spp.), anglerfishes 
(Lophius spp.) and Micromesistius poutassou, among 
other species (Gutiérrez-Zabala et al. 2001, Preciado 
et al. 2008, Rodríguez-Cabello et al. 2014 and refer-
ences therein). 

Despite the relevance of G. argenteus in the 
trophic ecosystem dynamics of the Spanish northern 

continental shelf, there is not only little detailed 
information on its biology but also a general lack of 
knowledge on the ecological preferences of the spe-
cies. To address the need to understand the relation-
ship between species distributions and the physical 
environment, a wide variety of numerical techniques 
encompassed under the term ‘distribution models’ 
(DMs) have been developed during the last decades 
(Elith & Leathwick 2009). According to those authors, 
a DM is a model that relates species distribution data 
(occurrence and/or abundance at known locations) 
with information on the environmental and/or spatial 
characteristics of those locations. Among the differ-
ent DM methods, generalized additive models (GAMs) 
(Hastie & Tibshirani 1990) have been successfully 
used to model the spatial distribution and environ-
mental preferences of marine fish species (e.g. Mar-
avelias et al. 2007, Sagarese et al. 2014, González-
Irusta & Wright 2016a,b, Mbaye et al. 2020). 

The use of long-term fish data can be a valuable 
tool in describing fish habitats (Feyrer et al. 2007); 
Spanish long-term monitoring surveys offer an ex -
ceptional opportunity to model the occurrence of G. 
argenteus using data from a fishery-independent 
multispecies bottom-trawl survey. The aims of this 
study were (1) to determine the importance of envi-
ronmental factors on the distribution of G. argenteus 
on the Spanish northern continental shelf, and (2) to 
map, for the first time for the species, its spatial distri-
bution and relative biomass. In the present study, we 
explore the environmental variables that influence 
the spatial distribution of G. argenteus using data 
from a historical series of research surveys together 
with a suite of biotic and abiotic factors and applying 
a 2-step GAM. In an area experiencing climate 
warming (Somavilla et al. 2017), improving knowl-
edge about the environmental drivers and spatial 
distribution of G. argenteus is necessary, for exam-
ple, to understand the effect that significant varia-
tions in the biomass and/or distribution of the species 
could cause in the food web, to increase our current 
understanding of marine ecosystem functioning, and 
to help in forecasting ecosystem resilience and 
adaptability to different scenarios of climate change. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

The study area comprises the northern Spanish 
shelf (southern Bay of Biscay, NE Atlantic) (Fig. 1). It 
is located at temperate latitudes, and the orientation 
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of the coastline, south−north up to Cape Finisterre, 
then turning northeastwards towards Cape Estaca de 
Bares and finally running west−east in the Can tab -
rian Sea, has a great influence not only on the 
oceanography but also in the ecosystem dynamics of 
the area. Thus, 2 different areas with different sedi-
mentary and hydrographic characteristics can be 
recognized: the Galician waters (ICES Division IXa) 
and the Cantabrian Sea (ICES Division VIIIc). The 
Galician waters are the northern edge of one of the 
major upwelling areas in the world, the eastern 
boundary system off NW Africa and SW Europe 
(Wooster et al. 1976). The frequent and seasonal 
upwelling of cold and dense North Atlantic Central 
Water (NACW) results in nutrient enrichment of the 
area, which ensures elevated primary production 
and high ecosystem productivity (Figueiras et al. 
2002). The intensity of the upwelling decreases to -
wards the Cantabrian Sea, and in this area, the 
dynamic of the ecosystem is greatly determined by 
seasonality, with a regular pattern of hydrographic 
conditions throughout the year characterized by win-
ter mixing and summer stratification, with phyto-
plankton blooms occurring during the transition peri-
ods (Sánchez & Gil 2000). 

Regarding seabed characteristics, the Galician 
shelf comprises a narrow strip (30 km wide from the 
coast) with rocky outcrops mainly located on the 
inner shelf and with 2 provinces: north and west of 
Cape Finisterre with the shelf essentially covered by 
a blanket of sand, and the area south of the Cape 
(where the coastline is characterized by the presence 
of many sea-drowned valleys known as ‘Rías’ and 

the large Miño River) with muddy bottoms on the 
inner shelf and sandy bottoms in the middle and 
outer shelf (López-Jamar et al. 1992, Fernández-
Salas et al. 2015). For its part, the Cantabrian Sea is 
cut by many submarine canyons, the shelf is very 
narrow (4−25 km wide), with rocky outcrops patchily 
distributed and a steep slope (Fernández-Salas et al. 
2015). Moreover, the area west of Cape Peñas is 
wider and sandy, whereas the eastern area is nar-
rower and muddier. In general, muddy sediments are 
located on the edge of the shelf and slope, and, due 
to the discharge of French rivers, on the shelf of the 
easternmost part of the Cantabrian Sea (Rey & Medi-
aldea 1989). 

2.2.  Fish data 

We used data collected during the DEMERSALES 
bottom trawl surveys (ICES code: SPGFS WIBTS-Q4) 
carried out annually every autumn (September−
October) along the trawlable bottoms of the northern 
continental shelf of Spain for demersal fishery and 
benthic ecosystem assessment. These surveys are 
based on a stratified random sampling design with 
trawling operations carried out during daylight and 
the sampling unit made up of 30 min hauls at a speed 
of 3.0 knots, using a baca 44/60 otter trawl gear 
(Sánchez 1993). The survey area was stratified ac -
cording to depth and bio-geographical criteria in 3 
depth strata (70−120, 121−200, 201−500 m) and the 
number of hauls per stratum is proportional to the 
surface area available for trawling in each strata. 
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Furthermore, additional hauls shallower than 70 m 
and deeper than 500 m are performed every year 
whenever possible. The methodology used in these 
surveys remained unchanged throughout this his-
toric series (ICES 2017). We used biomass data from 
all 2814 valid hauls carried out from 1998 to 2019 (see 
Tables S1 & S2 in the Supplement at www.int-res.
com/articles/suppl/m694p175_supp.pdf). Biomass was 
expressed in terms of total weight (kg) of Gadiculus 
argenteus captured in each haul. 

2.3.  Environmental data 

In this work we used 2 types of environmental in -
formation: environmental data which did not show 
relevant variation across the studied period: depth, 
slope and sediment type; and environmental data 
which showed important variations among years: 
near-bottom temperature, near-bottom salinity and 
chlorophyll a (chl a) (mean and maximum concentra-
tion, the day when the maximum occurs and the rel-
ative anomaly; see later in this section for a detailed 
explanation). All layers were constructed in R v.3.6.3 
(R Core Team 2020) to a final resolution of 3 × 3 km, 
computing 1 unique layer for the constant variables 
(Fig. S1) and 1 layer by year for the other variables 
(Figs. S2−S7). 

The bathymetry layer (Fig. S1) was obtained using 
data from the European Marine Observation and 
Data Network (EMODnet) Bathymetry portal (www.
emodnet-bathymetry.eu/) and projected to the final 
resolution using a bilinear interpolation with the 
function ‘projectRaster’ from the R package ‘raster’ 
(Hijmans 2021). The processed bathymetry layer was 
then used to produce the slope layer using the ‘ter-
rain’ function in the package ‘raster’ (Hijmans 2021). 
From 2014 to 2019 and during the DEMERSALES 
surveys, a total of 558 sediment samples were col-
lected from the study area using a box-corer. Prior to 
analysis, samples were oven-dried at 100°C and then 
5 ml of sodium polyphosphate and distilled water 
were added to disaggregate the sediment particles. 
The particle size distribution of the samples was ana-
lysed using a laser-diffraction-size analyser. The 
instrument provided grain size statistical parameters, 
including median particle diameter (Q50, μm) and 
sorting coefficient (So). The percentage of organic 
matter (%OM) content of the sediment was quanti-
fied as weight loss of dried (100°C, 24 h) samples 
after combustion (450°C, 24 h). Samples were classi-
fied into 3 sedimentary types according to the rela-
tive abundance of the particle size classes: mud 

(<62 μm), fine sand (62−500 μm) and coarse sands 
(>500 μm). Then, the sediment and the organic mat-
ter layers were generated to the final resolution 
interpolating the box-corer samples with the function 
‘fit.gstatModel’ from the ‘GSIF’ package (Hengl 
2019). The DEMERSALES survey only samples soft 
bottoms, and due to the presence of several rocky 
outcrops in the study area (Fernández-Salas et al. 
2015), rock data were downloaded from the EMOD-
net Geology portal (www.emodnet-geology.eu) and 
areas with rocky substrates were erased from the 
sediment and organic matter layers prior to the inclu-
sion of these 2 layers in the models. Therefore, the 
models predictions only covered soft bottom areas, 
and the distribution of G. argenteus on rocky areas 
was not analysed in this work. 

Near-bottom temperature and salinity were calcu-
lated using CTD data from samples taken concur-
rently with the hauls. For each CTD profile, the 
deepest value of temperature and salinity was ex -
tracted. The near-bottom temperature and salinity 
values were then interpolated to the final resolution 
using regression kriging (with depth as a covariate) 
using the implementation ‘fit.gstatModel’ from the 
‘GSIF’ package (Hengl 2019) (Figs. S2 & S3). 

The importance of biomass accumulation associ-
ated with near-surface phytoplankton blooms and its 
timing (phenology) has been largely recognized as 
crucial in the population dynamics of higher trophic 
levels and in global biogeochemical cycles (Somav-
illa et al. 2019). To identify the near-surface signal of 
the phytoplankton bloom and investigate the effects 
of its intensity and phenology on G. argenteus, 
weekly satellite-derived chl a concentration data at 
22 × 22 km resolution provided by the GlobColour 
project (www.globcolour.info) were used. For each 
grid, the mean (chlmean) and maximum chlorophyll 
concentration (chlmax) and the day when it occurs 
(Dmax) every year during the climatological period of 
the spring bloom in the area (March, April and May) 
was obtained. A fourth index (relative anomaly, 
ADmax) representing how much earlier or later the 
Dmax occurs every year at each particular location 
with respect to its climatological value was calcu-
lated as: 

                           ADmax = Dmax − Dclim                       (1) 

where Dmax is for each particular grid and year, and 
Dclim is the climatological value of Dmax at this partic-
ular grid (e.g. ADmax = +10 indicates a delay of the 
spring bloom of 10 d). All the chlorophyll layers 
(Figs. S4−S7) were projected to the final resolution 
using a bilinear interpolation. 
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The values of all the environmental variables in -
cluded in the analysis were obtained using the loca-
tion of the hauls, estimated as the mean point be -
tween the shoot (defined as the moment when both 
the vertical net opening and doorspread are stable) 
and haul (defined as the start of pulling the net back 
in) positions (ICES 2017), to extract the value at this 
point from the environmental layer. 

2.4.  Geostatistical aggregation curves 

To establish the type of spatial dynamics of G. 
argenteus during the study period, geostatistical 
aggregation curves and the space selectivity index 
(Ssp) (Petitgas 1998) were calculated for every year. 
The curves show the proportion of total biomass (P) 
per area unit (Tz), which in the present study was the 
kg per haul of G. argenteus, as a function of the pro-
portion of hauls (used in this work as a proxy for 
area) occupied by G. argenteus biomass. A complete 
de scription on how to calculate geostatistical aggre-
gation curves can be found in Petitgas (1998). The 
aim of the Ssp is to differentiate be tween different 
spatial dynamics, providing information about the 
level of aggregation of the species. Ssp was calcu-
lated following the formula proposed by Tamdrari et 
al. (2010), and differences in the Ssp index between 
years were tested using bootstrapping (Petitgas 
1998). Thus, the original dataset (for all the years 
together) was randomly resampled 1000 times with 
replacement. The P-curves were then recalculated 
for the new dataset, and the mean Ssp and 95% con-
fidence intervals were calculated using the ‘boot’ and 
‘boot.ci’ functions from the ‘boot’ package (Canty & 
Ripley 2021) in R. If the annual Ssp value for one of 
the years was outside the confidence interval, the null 
hypothesis (no significant variation in Ssp among 
years) was rejected. 

2.5.  Data analysis 

Statistical analyses were carried out in R v.3.6.3 (R 
Core Team 2020). The biomass of G. argenteus along 
the study area was modelled using GAMs. Since the 
data was zero-inflated, the spatial distribution was 
modelled using a 2-stage model (delta method) 
(Barry & Welsh 2002). This 2-step modelling was 
used as an attempt to deal with the difficulties of 
modelling over-dispersed data (Zuur et al. 2009), as 
is frequently the case with bottom trawl surveys. 
Two-step models have been successfully applied to 

model the spatial distribution of fish habitats (e.g. 
Loots et al. 2011, Sagarese et al. 2014, González-
Irusta & Wright 2016a,b, 2017). 

First, the probability of presence (Pp) was modelled 
using a logit link and a binomial error distribution. 
Then, the biomass of G. argenteus (calculated for 
30 min of trawling and removing the zeros) was log-
transformed and modelled using an identity link and 
a Gaussian error distribution. In both models, all the 
smoothers were constrained to 4 knots (the exception 
was the spatial effect, which was constrained to 16 knots) 
to avoid overfitting (Guntenspergen 2014). All GAMs 
were built with the implementation ‘gam’ in the pack-
age ‘MuMIn’ (Bartoń 2020) and the optimal (best-fit-
ting) model was chosen based on the lowest Akaike’s 
information criteria (AIC) value. Finally, both models 
were combined to produce the final delta models (see 
Section 2.6). Delta models are the final prediction, 
combining the Pp of G. argenteus with the predicted 
biomass (Pb) by multiplying both outputs. 

Before starting the analyses, the correlation be -
tween the explanatory variables was checked for 
collinearity using Spearman’s rank correlations and 
variance inflation factors (VIFs) (Zuur et al. 2009). If 
large correlations between any 2 variables oc curred, 
i.e. Spearman’s rank coefficients >0.7 (Dormann et 
al. 2013) and VIF ≥3 (Zuur et al. 2009), one of the 
variables was excluded to mini mize collinearity. Thus, 
chlmax, Dmax and fine sand were removed. These vari-
ables were dropped based on the biology of the spe-
cies. After these changes, the Spearman and VIF val-
ues of the remaining variables were lower than their 
thresholds, so all the other variables were included in 
the models. Finally, in order to consider other poten-
tial spatial effects produced by unmeasured drivers 
that could cause spatial autocorrelation in the residu-
als, the location of each trawl (longitude and latitude) 
was included in the model year by year. The full 
binomial model was: 

Pp = β1 + s1(depth) + s2(salinity) +  
s3(temperature) + s4(mud) + s5(coarse sand) +  
s6(organic matter) + s7(mean chlorophyll) +  
s8 (chlorophyll anomaly) + s9(longitude,  
latitude, by = f(year)) + f1(year) + ε1

(2)

 

where Pp is of G. argenteus, β1 is the intercept, s is an 
isotropic smoothing function (thin-plate regression 
splines), f indicates the variables which were in cluded 
as factors and ε1 is the error term. The Pb of G. argen-
teus was modelled including the same variables as in 
the binomial model. The relative importance of each 
variable was tested by removing the targeted variable 
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from the final model and computing the deviance 
variation. The spatial autocorrelation of deviance re -
siduals was analysed for each year and modelled sep-
arately using Moran’s I correlogram, applying the 
function ‘moran’ from the ‘spdep’ package (Bivand et 
al. 2013). As the p-values were not statistically signifi-
cant in any year for any model, the spatial autocorre-
lation in the residuals was considered nil. 

2.6.  Combining the delta maps 

The prediction of aggregations of the 22 yr was 
combined in 1 unique final map, following Colloca et 
al. (2009) and González-Irusta & Wright (2017). Apply-
ing their methodology, the delta maps were con-
verted to binary maps using an abundance threshold 
for each year. Using geostatistical aggregation curves, 
we de fined the yearly thresholds at the point where a 
tangent line to the curve had a 45° slope. According 
to those authors, this point corresponds to a change 
in the spatial distribution of fish from a dispersed dis-
tribution pattern to an aggregated pattern. A more 
complete description of the methodology can be 
found in Colloca et al. (2009). Once the 22 maps were 
converted to binary maps, the index of persistence 
(Ii) was computed as: 

                                                                (3) 

where n is the number of years considered and Fv is 
the value of each cell. Fv varies between 1 (the cell is 
considered suitable for aggregation) if the Pb in this 
cell was higher than the corresponding threshold, 
and 0 otherwise (i.e. the cell is not considered suit-
able for aggregation). Ii ranges between 0 (cell i 
never had a value higher than the threshold) and 1 
(cell i always had a value higher than the threshold) 
for each cell in the study area. The Ii allows us to 
show 1 unique map with the distribution of G. argen-
teus in the study area. 

2.7.  Evaluating the models 

The accuracy of the 3 models was tested using 
cross-validation. Since spatial data mostly have a 
local bias, spatial autocorrelation must be avoided be-
tween training and test data to make estimation 
model suitable for the entire, and not only for a 
specific local region of the dataset (Meyer et al. 2018). 
Therefore, it is essential that partitioned spatial data 
should be composed evenly over the entire region. 

This objective can be achieved by following a spatial 
cross-validation strategy (Roberts et al. 2017). In the 
present study, spatial cross-validation was carried out 
using a checkerboard strategy, applying the function 
‘spatialBlock’ from the R package ‘blockCV’ (Valavi 
et al. 2019) to divide the data into training and testing 
sets using spatial blocks. The size of the spatial blocks 
(near 25 km) was decided by using the function ‘spa-
tialAutorange’ from the same package, which basi-
cally allows us to use the range of the spatial autocor-
relation in the explanatory variables to determine the 
size of the spatial blocks. Then, data present in each 
group of blocks (see Valavi et al. 2019 for a further de-
scription of the checkerboard strategy) was randomly 
assigned as test or training data. Finally, each training 
and data set were randomly subsampled selecting 
80% of the data of each set in each iteration to avoid 
getting exactly the same data. The operation was re-
peated 10 times and in each iteration a set of evalua-
tion metrics was computed. The predictive power of 
the presence−absence model was evaluated by calcu-
lating the area under the curve (AUC) (Fielding & Bell 
1997), the kappa value (Cohen 1960) and the true skill 
statistics (TSS) (Allouche et al. 2006). The AUC pro-
vides a measure of the model’s ability to predict pres-
ences as presences and absences as absences. The 
value of AUC varied from 0 to 1; ≤0.5 suggests that 
the model has no predicting capability, while ≥0.7 in-
dicates that the model is acceptable (Hosmer et al. 
2013). Kappa corrects the overall accuracy of model 
predictions by the accuracy expected to occur by 
chance and its value ranges from −1 to +1, where +1 
indicates perfect agreement, a value ≤0 indicates a 
performance no better than random and a value >0.4 
is considered an acceptable measure of accuracy 
(Landis & Koch 1977). The TSS is a measure of speci-
ficity (proportion of correctly predicted absences) and 
sensitivity (proportion of correctly predicted pres-
ences) in the form of TSS = (specificity + sensitivity) − 1. 
TSS values range from −1 to 1, where 0 indicates no 
predictive power and a value ≥0.4 is considered a 
useful measure of accuracy (Zhang et al. 2015). The 
correlation between observed and predicted biomass 
values was evaluated using Spearman’s rank correla-
tion for both biomass and delta models. Spearman’s 
rank values range from −1 to +1, where a complete 
absence of correlation is represented by 0 and an ab-
solute value ≥0.4 is considered as the threshold for an 
acceptable correlation (Fowler et al. 1998). The pro-
cess was repeated 10 times for each, with a different 
random selection of training and test subsample each 
time. The evaluation metrics were calculated applying 
the functions ‘evaluate’ from the R package ‘dismo’ 

Ii =
1
n k=1

n

�Fv
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(Hijmans et al. 2020), ‘cor’ in the package ‘stats’ 
(R Core Team 2020) and ‘Kappa’ in the ‘SDMTools’ 
package (VanDerWal et al. 2014). 

3.  RESULTS 

Yearly geostatistical aggregation curves and asso-
ciated Ssp values along with the mean value and 
confidence interval for the period 1998−2019 are 
shown in Fig. 2. During this period, Ssp for all years 
was inside the correspondent confidence interval, 
and therefore, the null hypothesis of no significant 
variation of Ssp among years was accepted. Com-
bined analysis of the aggregation curves and Ssp val-
ues indicates that the spatial dynamics of Gadiculus 
argenteus during the study period corresponds to 
Dynamic D2: ‘consistent spatial pattern’, i.e. where 
local fish density changes at the same rate as popula-
tion abundance (Petitgas 1998, Tamdrari et al. 2010). 

The binomial model explained 45.0% of the de -
viance (Table 1). From the 10 initial model variables 

included in the full binomial model, only %OM and 
chlorophyll anomaly were not kept in the final 
model. Depth was clearly the most important vari-
able in the final model (Δ deviance = 288.48) (Table 1), 
showing that G. argenteus were most likely to be en -
countered at depths between 250 and 350 m (de -
creasing with shallower and deeper depths) (Fig. 3a). 
Mud was the least important variable (1.78), and sed-
iment associations were found with coarse sand 
(negative association) and mud (positive association) 
contents (Fig. 3b,c). The Pp of G. argenteus increased 
with increasing values of mean chl a and slope 
(Fig. 3d,e). Salinity values higher than 35.7 and tem-
perature values around 13°C increase the chance of 
species encounter (Fig. 3f,g). The inter-annual varia-
tion of the coefficient values did not show any clear 
temporal trend, with the higher probability of occur-
rence in 2001 and the lower in 2012 (Fig. 3h). 
Although year, salinity and mud did not have a statis-
tically significant effect on Pp (Table 1), they were left 
in the final model, as removing these variables dete-
riorated both the AIC score and the deviance 
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Fig. 2. Annual geostatistical aggregation curves and space selectivity index (Ssp) values for Gadiculus argenteus abundance 
for the study period (1998–2019). The curves relate the proportion of total biomass (P) per surface unit (Tz). Mean, 95% confi-
dence intervals (in square brackets) and annual values (in parentheses) of Ssp are shown for the whole study period. Data is  

displayed in 4 panels for better readability
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explained. The spatial effect (longitude and latitude 
of the haul by year) was the second most important 
variable (153.77). During the study period, high tem-
poral variability, especially in the Cantabrian Sea, 
was observed (Fig. 4). This area showed years with 
high Pp and others with low values. On the contrary, 
Galicia showed high Pp values in all years. 

The Gaussian model fitted for biomass explained 
47.0% of the deviance (Table 2). In this model, only 
%OM was not included in the final model. Of the 10 
variables in cluded in the final model, chlmean, salinity 
and chlorophyll anomaly showed no significant effects 
on the Pb of G. argenteus. However, they were kept 

because they improve the AIC value and increase 
the deviance explained by the final model. The spa-
tial effect (Δ deviance = 209.16), depth (162.54) and 
year (102.11) were the 3 most important variables, 
whereas chlorophyll anomaly was the least impor-
tant variable (1.51) (Table 2). Pb showed an increase 
with increasing depths up to 300 m depth and then a 
negative effect for deeper areas (Fig. 5a). Coarse 
sand showed a linear and decreasing trend, with 
highest biomass values in areas with no coarse sand 
(Fig. 5b). Biomass was higher at both low and high 
mud content (Fig. 5c). The effect of chlmean on bio-
mass was positive for values ranging from 0.3 to 
2.0 mg m−3 and slightly negative for higher concen-
tration values (Fig. 5d). Early chlorophyll blooms had 
a negative effect on Pb, whereas late blooms up to 
10 d showed a positive effect and negative for higher 
values (Fig. 5e). There was an increase in the bio-
mass of the species with increasing values of slope 
(Fig. 5f). Areas with a near-bottom temperature 
around 13.5°C were associated with high biomass 
values (Fig. 5g). G. argenteus biomass increased lin-
early with increasing salinity (Fig. 5h). The year coef-
ficient did not show any specific trend, with the low-
est coefficient in 2003 and 2013 and the highest in 
2004 and 2005 (Fig. 5i). The spatial effect showed 
high inter-annual variability, especially in Galician 
waters, the area with the highest Pb during the study 
period (Fig. 6). 

The yearly delta maps, which are the result of mul-
tiplying the presence/absence maps with abundance 
maps (biomass), showed that the main aggregations 
of the species are usually located in Galician waters, 
mainly between Cape Finisterre and Cape Estaca de 
Bares (Fig. 7). Moreover, aggregations on the upper 
slope south of Cape Finisterre have been found in 
some years. Finally, the distribution of Ii values, 
which range from 0 (the area was never predicted as 
being suitable for aggregation in all the years from 
1998 to 2019) to 1 (the area was predicted to be suit-
able for aggregation all the years), is shown in Fig. 8. 
The persistent G. argenteus aggregations are mainly 
located in the deeper areas of the continental shelf 
and in the upper slope of the Galician waters. In the 
Cantabrian Sea, only 2 small areas consistently clas-
sified as suitable for aggregation were located: one in 
the west, which is actually the eastern end of the 
Galician aggregation, and the other in the centre of 
the Cantabrian Sea. In this latter area, the aggrega-
tions are restricted mainly to the upper slope. 

Model evaluation outcomes are shown in Table 3. 
The Pp model showed AUC, kappa and TSS values 
higher than the threshold criteria for a good perform-
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Model                                                   N                   Explained  
                                                                                    deviance 
 
Binomial                                             2814                    45.0% 
 
Parametric terms       Δ deviancea   df/edf    Chi             p 
 Year                                 6.13          21       32.0         0.068 
Smoother terms              153.77 
 Spatial effect 1998                           2.69      0.65        0.921 
 Spatial effect 1999                           6.70     15.52        0.075 
 Spatial effect 2000                           9.46     18.74        0.091 
 Spatial effect 2001                           9.72     23.14        0.052 
 Spatial effect 2002                           4.67     13.53     <0.050    
 Spatial effect 2003                           6.09     20.74     <0.010   
 Spatial effect 2004                           5.30      6.64        0.469 
 Spatial effect 2005                           9.63     20.95     <0.050   
 Spatial effect 2006                           6.54     19.73     <0.050   
 Spatial effect 2007                           2.38      5.54        0.076 
 Spatial effect 2008                           5.88     25.04     <0.010   
 Spatial effect 2009                           2.39     10.71     <0.010   
 Spatial effect 2010                           5.87     16.42     <0.050   
 Spatial effect 2011                           2.00      4.29        0.114 
 Spatial effect 2012                           4.22      7.55        0.227 
 Spatial effect 2013                           2.00     23.01     <0.001   
 Spatial effect 2014                           2.00     18.66     <0.001   
 Spatial effect 2015                           8.16     18.88     <0.050   
 Spatial effect 2016                           8.68     28.62     <0.010   
 Spatial effect 2017                           2.00      4.49        0.118 
 Spatial effect 2018                           3.47     18.04     <0.010   
 Spatial effect 2019                           2.78      9.69      <0.050   
Depth                              288.48        2.98   304.64     <0.001   
Coarse sand                     34.02        2.35     27.95     <0.001   
Mean chlorophyll           20.68        1.00     16.32     <0.001   
 concentration 
Temperature                    17.80        2.37      9.82     <0.050   
Slope                                 7.59        1.00     11.83     <0.001   
Salinity                              2.31        1.53      5.45        0.091 
Mud                                   1.78        1.00      9.11        0.073 
 
aDeviance variation in the final model after elimination of 
the variable

Table 1. Number of hauls (N), relative importance (Δ deviance), 
degrees of freedom (df) or estimated degrees of freedom (edf) 
and statistical significance (p-value) of the explanatory variables  

for the presence−absence (binomial) model
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Fig. 3. Effect on the predicted probability of presence of Gadiculus argenteus (Pp) of the continuous explanatory variables 
(a: depth, b: coarse sand, c: mud, d: mean chl a, e: slope, f: salinity, g: temperature), and (h) coefficient value for the different lev-
els of the explanatory variable ‘year’ which was included as factor. Shaded areas: 95% confidence intervals around response  

curves; error bars in (h): SD; rug plots: distribution of the observed values

Fig. 4. Distribution maps of the probability of presence of Gadiculus argenteus (Pp) during the study period (1998−2019)



Mar Ecol Prog Ser 694: 175–191, 2022

ance, indicating that the model performs accurately. 
The Spearman coefficient value was 0.46 for the bio-
mass model and 0.59 for the delta model, showing an 
adequate correlation between observed and pre-
dicted values in both models. 

4.  DISCUSSION 

Using both a long time series from annual research 
surveys aiming at estimating demersal fish abun-
dance and a 2-stage GAM, the present study has 

identified some of the biotic and abiotic mechanisms 
behind the spatial distribution in Galician and Canta -
brian Sea waters of Gadiculus argenteus, an under-
studied forage fish species. 

The 3 predictions (presence−absence, biomass in 
hauls with presence of the species and total biomass, 
delta model) showed good performance, comparable 
to, or even better than those of, similar fish distribu-
tional studies (e.g. Sagarese et al. 2014, González-
Irusta & Wright 2017). These good model perform-
ances were probably obtained as a consequence of 
the intense coverage of the survey (both spatial and 
temporal) and the strong link between some of the 
tested environmental variables and G. argenteus dis-
tribution. The geostatistical aggregation curves sug-
gest that during the study period, G. argenteus ex -
hibited a proportional density population structure in 
which local abundance changes in proportion to 
changes in total species abundance. This is consis-
tent with the proportional density dynamic model 
(D2) (Petitgas 1998) which is driven by a site-depen-
dent mechanism (Petitgas 1998, Pereira et al. 2014), 
namely, the physical habitat preferences of the spe-
cies during the period 1998−2019 were not modified 
by changes in its annual abundance. This spatial 
 pattern has been previously observed in gadiforms 
in the eastern (e.g. Houghton 1987, Petitgas 1998, 
González-Irusta & Wright 2016a,b, 2017) and west-
ern North Atlantic (Tamdrari et al. 2010, Pereira et al. 
2014). 

Depth was the most important variable in the 
 presence−absence model and the second most im -
portant in the biomass model. This was an expected 
result, since depth encompasses several crucial 
oceano graphic factors for fish species, such as light, 
temperature, pressure or food availability, although 
disentangling the direct effect of these variables is 
frequently not possible. In the study area, depth is 
often the main gradient along which demersal fish 
species are organized on the shelf and upper slope 
(Sánchez 1993). In addition, bathymetry is a common 
descriptor of fish distribution among gadiform spe-
cies globally (Howes 1991) and it was a good predic-
tor of occurrence for other members of the Order 
Gadiformes in the NE Mediterranean (Pallaoro & 
Jardas 2002). In the northern Spanish continental 
shelf, the species has been commonly caught be -
tween 250 and 350 m depth (Sánchez 1993, the pres-
ent study) and its higher abundance in the upper 
slope has been also observed in the Mediterranean 
Sea (Pallaoro & Jardas 2002, Damalas et al. 2010, 
Fernandez-Arcaya et al. 2013). Similar bathymetric 
distribution on the upper slope and the deeper parts 
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Model                                                   N                   Explained  
                                                                                    deviance 
 
Gaussian                                            1793                    47.0% 
 
Parametric terms       Δ deviancea   df/edf      F              p 
 Year                               102.11          21       8.44      <0.001   
Smoother terms              209.16                                          
 Spatial effect 1998                           4.86      1.66         0.118 
 Spatial effect 1999                           2.04      3.53      <0.050   
 Spatial effect 2000                           2.00      0.15         0.389 
 Spatial effect 2001                           8.71      2.64      <0.050   
 Spatial effect 2002                           2.00      4.70      <0.050   
 Spatial effect 2003                           2.00      0.47         0.675 
 Spatial effect 2004                         12.86     1.78         0.067 
 Spatial effect 2005                           6.89      2.87      <0.010   
 Spatial effect 2006                           8.34      3.05      <0.001   
 Spatial effect 2007                           5.57      1.77         0.092 
 Spatial effect 2008                           2.00      2.02         0.131 
 Spatial effect 2009                         10.38     2.79      <0.001   
 Spatial effect 2010                           3.42      1.16         0.323 
 Spatial effect 2011                           8.55      2.98      <0.001   
 Spatial effect 2012                           3.87      2.13         0.051 
 Spatial effect 2013                         13.63     5.00      <0.001   
 Spatial effect 2014                           5.72      1.00         0.437 
 Spatial effect 2015                         10.88     2.57      <0.01    
 Spatial effect 2016                         10.23     4.67      <0.001   
 Spatial effect 2017                           3.65      3.18      <0.010   
 Spatial effect 2018                           7.96      1.95      <0.050   
 Spatial effect 2019                           7.14      2.25      <0.050   
Depth                              162.54        2.95    48.48      <0.001   
Slope                                10.88        1.37    24.15      <0.001   
Coarse sand                      9.69        2.45      8.05      <0.001   
Mud                                   6.52        2.34      4.51      <0.010   
Temperature                     5.27        2.47      3.93      <0.010   
Mean chlorophyll            3.38        1.92      2.46         0.082 
 concentration 
Salinity                              2.17        1.00      1.27         0.284 
Chlorophyll anomaly       1.51        1.97      0.63         0.426 
                                                                                            

aDeviance variation in the final model after elimination of 
the variable 

Table 2. Number of hauls (N), relative importance (Δ deviance), 
degrees of freedom (df) or estimated degrees of freedom (edf) 
and statistical significance (p-value) of the explanatory variables  

for the biomass (Gaussian) model
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Fig. 5. Effect on the predicted biomass of Gadiculus argenteus (Pb) of the continuous explanatory variables (a: depth, b: coarse 
sand, c: mud, d: mean chl a, e: chl a anomaly, f: slope, g: temperature, h: salinity), and (i) coefficient value for the different lev-
els of the explanatory variable ‘year’ which was included as factor. Shaded areas: 95% confidence intervals around response  

curves; error bars in (i): SD; rug plots: distribution of the observed values

Fig. 6. Distribution maps of the biomass of Gadiculus argenteus in presence areas (Pb) during the study period (1998−2019)
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of the continental shelf has been observed in its con-
gener G. thori, although its highest catch rates are at 
shallower depths (150−300 m) (Hislop et al. 2015, 
Husson et al. 2020). 

According to Cohen et al. (1990), G. argenteus 
aggregates over a wide range of substrates, from 
mud and muddy sand to gravel and rock bottoms. 

However, according to Pallaoro & Jardas (2002), the 
species seemed to be absent from the rocky sedi-
ments of the western Mediterranean Sea. In the pres-
ent work, the presence of G. argenteus over rocky 
bottoms cannot be ruled out due to the nature of the 
sampling carried out in Demersales surveys. Thus, 
the models of the present study refer to the popula-
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Fig. 7. Distribution maps of the biomass of Gadiculus argenteus in the delta model (Pp × Pb) during the study period (1998−2019)

Fig. 8. Distribution of the index of 
persistence (Ii) of Gadiculus ar-
genteus in the study area. Ii 
ranges from 0 (no aggregations 
found in any of the study years) 
to 1 (aggregations found in all of  

the study years)
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tion thriving exclusively on soft bottoms, with rocky 
areas out of the scope of this work. Mud and coarse 
sand showed an inverse effect on the Pp of G. argen-
teus. However, while the trend between the percent-
age of mud and the abundance of the species was 
less apparent, the decrease in the biomass of the spe-
cies with increasing values of coarse sand content 
seemed more evident. This apparent predisposition 
of G. argenteus to avoid coarse sand bottoms has 
been previously observed in the eastern Mediterran-
ean Sea (Damalas et al. 2010). In the case of demersal 
fish species, the role of sediments in their spatial dis-
tribution has been related to the trophic interaction 
between fish species and their prey (Hinz et al. 2003). 
However, G. argenteus is a planktophagous species 
which, in the study area, feeds mainly on pelagic and 
benthopelagic crustaceans (López-López et al. 2017). 
Thus, its sediment preferences (Pallaoro & Jardas 
2002, Damalas et al. 2010, the present study) might 
be related to current patterns in or near the sea bot-
tom. Slow bottom currents favour the deposit of silt 
and fine sands (Brackenridge et al. 2018), and, at the 
same time, would allow pelagic and bentho pelagic 
crustaceans to exhibit a normal vertical distribution 
pattern where their lower vertical limits can reach 
the sediment surface, making them available to ben-
thopelagic fish species (Mauchline & Gordon 1991) 
such as G. argenteus. 

Salinity along with bottom temperature showed a 
significative effect on G. argenteus distribution. In 
general, the species showed higher Pp and abundance 
in more saline waters with temperature values around 
13.5°C. On the northern coast of Spain, these condi-
tions are associated with the Iberian Poleward 
Current (IPC) and its intrusion into the Cantabrian 
Sea (the Navidad current) which transport these 
warmer and saltier waters along the coast (Somavilla 
et al. 2013). Interestingly, the distribution of these 
warmer and saltier waters in the continental shelf of 
the study area agrees with the higher abundance val-

ues observed in the delta models. On 
the other hand, the low abundance val-
ues observed in the muddy areas of the 
inner part of the Bay of Biscay could be 
related not only to the scarce penetra-
tion of the Navidad current in this area 
(Somavilla et al. 2013) but also to the 
influence of French rivers’ freshwater 
discharge which would lead to colder 
and less saline waters. Salinity and 
temperature have not only been identi-
fied as some of the factors which ex-
plain the composition and structure of 

fish communities in the Cantabrian Sea (Sánchez & 
Serrano 2003) but also as key in the spatial distribution 
of mature (Hedger et al. 2004) and spawning gadoid 
species (González-Irusta & Wright 2016a,b, 2017). 
Temperature also plays an important role in the abun-
dance and distribution of several zooplankton species 
ex ploited by G. argenteus (Lindley 1977). 

The role that chl a plays in the body condition of 
gadiform species has been described (Rueda et al. 
2015), but the present study is the first to provide 
information on the influence of primary production 
on their distributional preferences. Mean surface chl 
a concentration and chl a anomaly were included in 
the binomial and Gaussian final models respectively, 
showing their role not only on the presence but also 
on the spatial aggregation of G. argenteus on the 
northern Spanish continental shelf. High levels of chl 
a seem to indicate favourable conditions for the spe-
cies, increasing both the Pp and the abundance of G. 
argenteus. Chl a concentration is generally accepted 
as an index of the standing stock of phytoplankton in 
surface waters (Longhurst et al. 1995). Since the main 
systematic groups of zooplankton feed on phyto-
plankton, high concentrations of chl a are likely to be 
associated with high food availability for a zooplank-
tivorous fish such as G. argenteus. 

Our results show that changes in timing of the 
phytoplankton bloom have an effect on the biomass 
of G. argenteus. A change in the timing of the bloom 
may lead to trophic decoupling between phytoplank-
ton and zooplankton (Edwards & Richardson 2004) 
and this mismatch may partly determine the strength 
of year-classes in fish populations due to the amount 
of suitable prey available during the ‘critical period’ 
of larval development (Hjort 1914). Thus, changes in 
bloom timing could be partly responsible for the 
yearly fluctuations in the occurrence and abundance 
of G. argenteus observed in the present study, as has 
been noted for other forage fish species (Régnier et 
al. 2019). Although spawning habits and the early 
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Model                             AUC               Kappa                TSS          Spearman 
 
Binomial model        0.77 ± 0.04       0.47 ± 0.05       0.51 ± 0.04           na 
 (Presence) 
Gaussian model              na                     na                     na           0.46 ± 0.02 
 (Biomass) 
Delta model                     na                     na                     na           0.59 ± 0.04

Table 3. Evaluation outcomes (mean ± SD) for the probability of presence, bio-
mass and the combined delta models. The probability of presence model was 
evaluated using area under the curve (AUC), kappa and true skill statistics 
(TSS). Biomass and delta models were evaluated by calculating the Spearman  

coefficient. na: not applicable
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life history of the species are beyond the scope of the 
present study, addressing topics such as spawning 
areas, duration of yolk sac absorption or develop-
ment site (planktonic, demersal, etc.) should be the 
next step towards understanding the response of G. 
argenteus to variations of the current environmental 
conditions due to climate change. 

The spatial effect was the most important variable 
in the biomass model and explained the second 
largest deviance in the presence−absence model. 
The distribution of a species is a complex phenome-
non where is not always possible to determine all the 
drivers (both abiotic and biological) behind the ob -
served spatial effect. For example, the different geo-
morphologic and oceanographic characteristics be -
tween the Galician and Cantabrian Sea waters 
(Fernández-Salas et al. 2015, Hernández-Molina et 
al. 2015) could be shaping G. argenteus’ spatial dis-
tribution. Thus, when larvae of G. argenteus are pres-
ent in the study area (Izeta 1985), the eastward shelf-
slope Navidad current is still acting (Somavilla et al. 
2013). As was observed for several demersal fish spe-
cies in the area, a low-moderate influx of water of the 
Navidad current over the progressively narrow shelf 
of the Cantabrian Sea is necessary to allow eggs and 
larvae to remain close to nursery areas and not to be 
transported away to open sea (Sánchez et al. 2001). 
In addition, the presence of mesoscale anomalies, 
‘eddies’, over the shelf and moving west would en -
hance recruitment, since these features appear to re -
tain the larvae and juveniles and favour the feeding 
behaviour of recruits (Sánchez & Gil 2000). Accord-
ing to those authors, topographic factors enhance the 
effect of the eddies. Hence, the larger continental 
shelf and the orographic features of the western part 
may be responsible for the higher abundance of G. 
argenteus observed in this area in most years. 

Likewise, it is worth noting the role that dataset res-
olution has played in the analysis. Chl a data for the 
whole period (1998−2019) was only available at a 
coarse resolution (22 × 22 km). In our first approach, 
the spatial effect was included but not year by year 
and the effects of chl a mean concentration and anom-
aly were significant for both models. Unfortunately, 
with this approach, a significant spatial autocorrela-
tion in residuals was observed. The spatial autocorre-
lation was solved by including the spatial effect by 
year, but during the process, the significant effect of 
the chl a anomaly in the presences−absence model 
was lost. Thus, it seems that the spatial effect could 
be, at least partially, masking the effect of the chl a 
anomaly in the distribution of G. argenteus. The use 
of environmental data at a spatial resolution that at 

least matches the scale of a species’ response to the 
environment is desirable (although not always possi-
ble) for a more reliable estimate of the variable effect 
and its importance in the model (Mertes & Jetz 2018). 

Interestingly, the main aggregation areas for G. 
argenteus located in the present study are quite sim-
ilar to the commercial fishing trawling effort distribu-
tion in the area (e.g. González-Irusta et al. 2018). 
Fishing is the main driver in the dynamics of forage 
fish of commercial interest (Engelhard et al. 2014). 
Although it cannot be ruled out that G. argenteus 
may be impacted by commercial trawling bycatch or 
simply by disturbance, even if it is not retained in the 
nets, fishing seems to play little role in the population 
dynamic of the species not only due to its null eco-
nomic value in the study area but also due to its small 
size, which probably reduces its catchability by com-
mercial trawlers. Therefore, it seems that the overlap 
observed between the persistence aggregations and 
the commercial fishing effort could be the reflection 
of predator−prey relationships. Thus, the overall dis-
tribution of southern silvery pout could be shaping its 
commercially important fish predators’ niche (e.g. 
hake, megrim) and in turn, defining the distribution 
of the commercial trawling effort. This has important 
implications in terms of fishery management, espe-
cially in the current context of climate change, since 
future modifications in the environmental conditions 
which favour the observed aggregations could even-
tually have an impact on the distribution of this prey 
species and therefore on these predator species of 
commercially importance and eventually in the fishery. 

Our approach has shown that the spatial distribu-
tion of G. argenteus is influenced by both biotic and 
abiotic factors. This information is important in im -
proving the understanding of the relationship between 
environmental factors and G. argenteus dynamics in 
the study area. Such knowledge contributes to a bet-
ter evaluation of the population status and sheds 
light on the ecological preferences of a key species in 
the marine food web of the northern Spanish conti-
nental shelf. However, and despite the results ob -
tained in the present study, our understanding of the 
dynamic ecology of G. argenteus is still very limited. 
Obtaining knowledge on the spawning habits and 
early life history of the species are an essential re -
quirement for the improvement of future models. In 
addition, further studies on the species should delve 
into the link between commercial fishing trawling 
effort distribution and G. argenteus aggregations 
showed in this work, with the aim of better under-
standing the relevance of G. argenteus in the demer-
sal ecosystem of the southern Bay of Biscay. 
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