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1.  INTRODUCTION 

As we begin the UN Decade of Ocean Science for 
Sustainable Development, the call for more holistic 
management of the marine environment is clear. 

Marine spatial planning (MSP) is an important tool 
supporting implementation of the ‘ecosystem ap -
proach’ to environmental management, as outlined 
in the Convention on Biological Diversity (CBD), and 
enshrined in the UN Sustainable Development Goals 

© Inter-Research 2022 · www.int-res.com

*Corresponding author: kerry.howell@plymouth.ac.uk

Performance of deep-sea habitat suitability models 
assessed using independent data, and implications 

for use in area-based management  

Kerry L. Howell1,*, Amelia E. Bridges1, Kyran P. Graves1, Louise Allcock2,  
Giulia la Bianca1, Carolina Ventura-Costa3, Sophie Donaldson1,  

Anna-Leena Downie4, Thomas Furey5, Fergal McGrath5, Rebecca Ross6 

1School of Biological and Marine Science, Plymouth University, Plymouth PL4 8AA, UK 
2Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland 

3Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal 
4Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK 

5Marine Institute, Rinville, Oranmore H91 R673, Ireland 
6Institute of Marine Research, 5005 Bergen, Norway

ABSTRACT: Marine spatial management requires accurate data on species and habitat distribu-
tions. For the deep sea, these data are lacking. Habitat suitability modelling offers a robust defen-
sible means to fill data gaps, provided models are sufficiently reliable. We tested the performance 
of published models of 2 deep-sea habitat-forming taxa at low and high resolutions (~1 km and 
200 m grid-cell size), across the extended exclusive economic zones of the UK and Ireland. We 
constructed new data-rich models and compared new and old estimates of the area of habitat pro-
tected, noting changes in the protected area network since 2015. Results of independent valida-
tion suggest that all published models perform worse than expected considering original cross-
validation results, but model performance is still good or fair for Desmophyllum pertusum reef, 
with poorer performance for Pheronema carpenteri sponge models. High-resolution models using 
multibeam data out-perform low-resolution GEBCO-based models. Newly constructed models 
are good to excellent according to cross validation. New model spatial predictions reflect pub-
lished models, but with a significant reduction in predicted extent. The current marine protected 
area network and the European Union ban on bottom trawling below 800 m protect 40 and 60% 
of D. pertusum reef-suitable habitat, respectively, and 11 and 100% of P. carpenteri-suitable habi-
tat, respectively, within the model domain. We conclude that high-resolution models of D. pertusum 
reef distribution are a useful tool in spatial management. The poorer performing P. carpenteri 
model indicates areas for more detailed study. While low-resolution models can provide conserva-
tive estimates of percentage area-based conservation targets following the precautionary princi-
ple, high-resolution sea-floor mapping supports the development of better-performing models.  
 
KEY WORDS:  Deep sea · Habitat suitability modelling · Species distribution modelling · Marine 
conservation · Marine spatial planning · Pheronema carpenteri · Desmophyllum pertusum 

Resale or republication not permitted without written consent of the publisher

§Corrections were made after publication. For details see 
www.int-res.com/articles/meps2022/700/m700p197.pdf  
This corrected version: November 10, 2022 

https://crossmark.crossref.org/dialog/?doi=10.3354/meps14098&amp;domain=pdf&amp;date_stamp=2022-08-25
https://www.int-res.com/articles/meps2022/700/m700p197.pdf


Mar Ecol Prog Ser 695: 33–51, 2022

(UN General Assembly 2015). Maps lie at the heart of 
spatial management, including maps of human uses, 
socio-economics, political and legal arrangements 
and, critically, biophysical conditions and assemblages 
or communities of marine organisms, such as kelp 
forests and coral reefs. There is a pressing need to 
develop reliable and accurate maps of the spatial dis-
tribution of marine ecosystems to support conserva-
tion initiatives. 

Efforts to map benthic marine communities have 
largely focussed on shallow-water environments 
(Andrefouët et al. 2006, Traganos et al. 2018). Map-
ping deep-water communities is much more difficult 
because there is no direct equivalent to optical re -
mote sensing which provides wide coverage of high-
resolution data with direct observation of terrestrial 
and shallow (<10 m) coastal habitats. The majority of 
deep-water benthic biological mapping has been 
achieved using modelling approaches. Species distri-
bution modelling, also called habitat suitability mod-
elling, uses data on the presence, absence, abundance 
or biomass of a species, assemblage or community, 
and relevant environmental data, to produce a statis-
tical model of the relationship between species and 
their environmental drivers. The model can be used 
to make predictions of the distribution of the target 
species/community based on environmental data 
alone (Bryan & Metaxas 2007, Rengstorf et al. 2014, 
Howell et al. 2016). This type of mapping lends itself 
well to use in the marine environment, as the physi-
cal environment is often cheaper and simpler to 
measure than the biological components. There is a 
wealth of local, regional and global physical spatial 
models of the marine environment including oceano-
graphic, bathymetric and productivity models. Ben-
thic biological data are generally available for coastal 
marine areas and, together with physical environ-
mental data, they offer great potential to produce rel-
atively data-rich modelled maps. However, availabil-
ity of benthic biological data decreases with increased 
distance away from the coast and into the deep sea 
(Webb et al. 2010), and this can present challenges in 
the development of reliable models. 

The deep sea is increasingly subject to human use, 
and there is an urgent need to implement more effec-
tive, integrated management of deep-sea ecosystems 
through the use of area-based management tools and 
MSP. The last 15 yr have seen a growing trend in the 
use of predictive mapping techniques to generate 
models of the distribution of key species and assem-
blages in the deep sea (e.g. Bryan & Metaxas 2007, 
Guinan et al. 2009, Howell et al. 2011, 2016, Rengstorf 
et al. 2014, Robert et al. 2016, Pearman et al. 2020). 

These efforts have focussed particularly on those 
species and assemblages that appear in key marine 
conservation legislation, and have produced mod-
elled maps from a wide range of regions, of different 
extents and spatial resolutions. Models that provide 
large spatial coverage of a scale useful to national 
and regional MSP efforts tend to use low-resolution 
(>1 km2) modelled global environmental data sets in 
their production (Howell et al. 2016). Higher-resolution 
environmental data sets, such as multibeam bathy -
metry, and regional or site-specific oceanographic 
models tend to only be employed in the construction 
of models with a more limited spatial extent (Pearman 
et al. 2020), rendering them less useful for national- 
and regional-scale MSP, but still informative. 

While the potential applications of modelled maps 
in MSP have been demonstrated (Ross & Howell 
2013, Howell et al. 2016, Stirling et al. 2016, Rowden 
et al. 2017), models are not yet widely used despite 
their obvious potential (Marshall et al. 2014, Reiss et 
al. 2015). This contrasts with many other fields, for 
example fisheries and climate science, where models 
are routinely used to forecast future scenarios, and 
the results are used to make management and policy 
decisions (Hilborn 2012, IPCC 2014). The reasons for 
this are not clear. In their review of common objec-
tions to the use of models in environmental decision 
making, Addison et al. (2013) identified 9 key objec-
tions that are symptoms of 3 fundamental issues: (1) 
misconceptions about the role of models in decision 
making, (2) poor modelling practice and (3) a lack of 
effective communication and/or trust between mod-
ellers and decision makers. Objections around mod-
elling practice and outputs include issues with model 
accuracy and uncertainty. Model performance is 
usually tested using random subsampling from the 
full model build data set, so-called cross validation. 
However, the lack of true independence between 
testing and training data sets, as well as spatial sort-
ing bias, is known to artificially inflate model per-
formances (Veloz 2009, Hijmans 2012) leading to a 
phenomenon where many models appear to perform 
well yet provide very different spatial predictions 
(Piechaud et al. 2014, Howell et al. 2016). This may 
serve to compound concerns around model accuracy 
and uncertainty, and highlight the need for independ-
ent validation of model performance to help allay 
these concerns and encourage wider use of model 
output. 

In the NE Atlantic, habitat suitability models (HSMs) 
for scleractinian cold-water coral reefs and the aggre-
gation-forming deep-sea sponge Phero nema carpen-
teri have been developed for the continental shelf 
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claim areas of the UK and Ireland (Ross & Howell 
2013, Ross et al. 2015).  

Reefs of the scleractinian coral Desmophyllum per-
tusum are widely recognised as distinct biological 
communities or ‘biotopes’, and occur as thickets, dis-
crete reefs and giant carbonate mounds up to 300 m 
high and several km in diameter. Within this region, 
reefs have been observed on Hatton, George Bligh 
and Rockall Banks, the Wyville-Thomson Ridge and 
in Explorer and Dangaard Canyons (Howell 2010, 
Howell et al. 2010), the Porcupine Seabight (Foubert 
et al. 2005, Huvenne et al. 2005), Porcupine Bank (Ken -
yon et al. 1998), southern Rockall Bank (Mienis et al. 
2006, Wienberg et al. 2008) and the Outer He brides 
(Roberts et al. 2005), as well as farther north and south 
(Wheeler et al. 2007). Observations occur over depths 
from ~120 to ~1000 m, with most reported from 600 to 
800 m. Reef structures are highly biodiverse (Roberts 
et al. 2006), and have an important role as essential 
fish habitat (Husebø et al. 2002, Auster 2005). 

P. carpenteri is a small spherical glass sponge that 
occurs singularly or in dense aggregations, predomi-
nantly (but not exclusively) on fine sandy mud and 
mud substrata. Within UK and Irish waters, aggrega-
tions are a recognised biotope, and communities 
composed of this species have been described from 
1250 m in the Porcupine Seabight (Rice et al. 1990), 
1100 m in the Hatton-Rockall Basin (Hughes & Gage 
2004, Howell et al. 2014) and from 1450 m on Goban 
Spur (Lavaleye et al. 2002), with historical records of 
additional aggregations from Ireland to Spain in 
1000−2000 m water (Le Danois 1948) and in the 
Northern Rockall Trough (Wyville-Thomson 1874). 
Ag gregations are associated with an increase in abun-
dance and richness of macrofauna observed within 
spicule mats and sponge bodies (Rice et al. 1990, Bett 
& Rice 1992). Recent studies have suggested that 
known aggregations may be poorly connected (poten-
tially isolated) (Ross et al. 2019) and experience a 
substantive impact from bottom trawl fishing (Vieira 
et al. 2020).  

From a policy perspective, both D. pertusum reef 
and P. carpenteri aggregations are considered ‘Vul-
nerable Marine Ecosystems’ (VMEs) under United 
Nations General Assembly (UNGA) Resolution 61/
105, and as ‘threatened and/or declining species and 
habitats’ under the OSPAR Convention for the Protec-
tion of the Marine Environment of the North-east At-
lantic 1992. Understanding their distribution is there-
fore an important component to the development of 
area-based management of the region. 

The models of Ross & Howell (2013) were con-
structed using global-scale environmental data layers 

including the General Bathymetric Chart of the 
Oceans (GEBCO) and are at a resolution of ~1 km2. 
The models of Ross et al. (2015) were constructed us-
ing high-resolution multibeam data sets and are at a 
resolution of 200 × 200 m grid cell size. Both models 
were produced using the same underlying presence/
absence biological data set for each response variable, 
D. pertusum reef habitat and P. carpenteri species. All 
4 models performed well when tested using cross-val-
idation methods, and in general, high-resolution mod-
els performed better than low-resolution models ac -
cording to threshold-dependent evaluation. However, 
the spatial predictions and resulting maps de rived 
from models of different resolution were notably dif-
ferent. The aim of this study was to undertake inde-
pendent validation of these published models of VME 
distribution in the UK and Irish extended continental 
shelf claim areas, in order to assess model perform-
ance and inform future use in MSP and conservation. 
Specifically, we (1) independently validated model 
performance using newly collected independent 
data, (2) constructed new relatively data-rich models 
using the same modelling method as the prior publi-
cations and (3) quantified changes in predicted distri-
butions and assessments of percentage protection tar-
gets for each VME (VME indicator taxa in the case of 
P. carpenteri) as a result of new models. 

2.  MATERIALS AND METHODS 

2.1.  Site and model description 

The study considers the full extent of the Irish, and a 
partial extent of the UK, extended continental shelf 
claim area in the NE Atlantic (Fig. 1). A network com-
prising 3 different types of marine protected area 
(MPA) exists in this area for the protection of deep-sea 
habitats (Fig. 1): Special Areas for Conservation, 
OSPAR MPAs and North East Atlantic Fisheries Com-
mission (NEAFC) closures to bottom trawling for the 
protection of VMEs. While the sites do not constitute a 
coherently designed MPA network, they enable illus-
tration of the potential use of habitat maps in area-
based management. In addition, there is a ban on bot-
tom trawling below 800 m in European and UK waters. 

Scleractinian reef models of Ross & Howell (2013) 
and Ross et al. (2015) were predominantly construct -
ed using Desmophyllum pertusum reef presence/
absence data. However, a small number of presence 
points for Solenosmilia variabilis reef were also in-
cluded in the models. In our experience, S. variabilis 
appears to occupy the same topographic niche as D. 
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pertusum but occurs in deeper water. Records in-
cluded in the models were at the shallow end of their 
distribution only. The resulting models largely pre-
dicted the niche of D. pertusum reef but with a 
slightly deeper reach. This study evaluates and 
builds upon the original models using new D. per-
tusum reef data alone with S. variabilis reef data 
omitted. The models of Ross & Howell (2013) have a 
resolution 750 × 750 m grid cell size determined by 
the resolution of GEBCO at the latitude of the study 
site, and cover the full extent of both the Irish and UK 
continental shelf limit. The models of Ross et al. 
(2015) have a resolution of 200 × 200 m grid cell size 
and cover the full extent of the Irish, and the partial 
extent of the UK, continental shelf limit in the NE 
 Atlantic. Both  studies used their models to assess 
progress towards percent protection conservation 
targets, and re ported that between 20 and 29% of 
scleractinian reef-suitable habitat and be tween 1.9 
and 2.9% of Pheronema carpenteri-suitable habitat 
lies within the MPA network. 

2.2.  Biological data 

New data for both P. carpenteri and 
D. pertusum reef were compiled from 
5 research cruises to the NE Atlantic: 
(1) Eurofleets2-funded DeepMap cruise 
CE15011 (2015), with remotely oper-
ated vehicle (ROV) ‘Holland I’; (2) 
NERC-funded Deep Links JC136 
(2016), with ROV ‘ISIS’; (3−5) Sea Ro -
vers RH17001 (2017), RH18002 (2018) 
and CE19015 (2019), jointly funded by 
the Irish Government and EU, with 
ROV ‘Holland I’. These research cruises 
were not conducted for the sole pur-
pose of model validation, but this was 
a consideration in transect line planning 
for all cruises. Transect lines ranged 
from approximately 100 m to 3.1 km, 
with an average length of 1.3 km. Col-
lectively, these research cruises pro-
vide a data set consisting of 195 high-
definition ROV video transects spread 
over the study area (Fig. 1). This collec-
tive data set is re ferred to throughout as 
the ‘new’ data set. 

For the original data sets, presence of 
target habitat was determined from 
both quantitative and qualitative analy-
sis of still image data taken at 1 min in-
tervals along transects as described by 
Howell et al. (2010). P. carpenteri pres-

ence was determined from species lists from analysed 
sample data. D. pertusum reef habitat description fol-
lows that provided by Howell (2010), and subse-
quently adopted for use in the UK Deep Sea Habitat 
Classification (Parry et al. 2015). For the new independ-
ent data set, presence of the target habitat/ species 
was determined by expert evaluation of image-based 
data alone. Habitat identification was undertaken by 
2 annotators and designated when the habitat extent 
satisfied the OSPAR minimum biotope area threshold 
(25 m2). For quality assurance, 5% of transects were 
independently analysed by K. Howell following inter-
observer agreement standards used in published evi-
dence (MacLeod et al. 2010). 

2.3.  Original model validation 

For each of the 4 published models, the new bio-
logical data set was plotted in ArcGIS on raster 
grids of published model output, in their respective 
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Fig. 1. UK and Ireland Continental Shelf limits (black line) showing the origi-
nal data sets from Ross & Howell (2013) and Ross et al. (2015) together with the 
new data set (compiled from 5 different surveys over 5 years) used to inde-
pendently validate the models and subsequently build new models. The cur-
rent network of deep-sea marine protected areas (MPAs) is shown, together 
with the 800 m isobath, below which bottom trawling is prohibited. Bathyme-
try shown is the 200 × 200 m gridded multibeam data set (see Section 2.1 para-
graph 2 for detail) shaded for depth with contours of 200, 500 and 1000 m and 
intervals of 1000 m thereafter shown in grey. Map projected in British National  

Grid for aesthetic reasons
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output projections, and ROV point-based position 
data were reduced to 1 point per cell to avoid over-/
under-weighting the importance of specific environ-
mental conditions. Where cells contained any ROV 
position points interpreted as presence points, the 1 
point per cell was denoted as a presence, all other 
points were denoted as absence. As the original 
models were masked for novel climates, new data 
points that did not sit on old model predictions were 
removed from the data set as they were considered 
out of the original model domain. The final inde-
pendent validation data sets for the 200 × 200 m 
model included 2018 data points for D. pertusum 
reef and 1937 data points for P. carpenteri aggrega-
tions; for the 750 × 750 m model, the independent 
validation data sets included 646 data points for D. 
pertusum reef and 597 data points for P. carpenteri 
aggregations (Table 1). To assess the potential ef -
fect of spatial autocorrelation in inflating model per -
formance, independent validation was also under-
taken by reducing the data sets to one point per 
ROV transect. For each response variable, a single 
presence point was randomly selected within each 
transect, and a single absence point from absence 
transects. This provided 173 and 163 validation 
points for the D. pertusum and P. carpenteri 200 × 
200 m models, respectively, and 186 and 182 valida-
tion points for the D. pertusum and P. carpenteri 
750 × 750 m models, respectively. 

The probability values from published model lay-
ers (coglog MaxEnt output) were extracted for each 
data point. Threshold independent metrics of model 
performance (area under the receiver operating 
characteristic [ROC] curve, AUC) for each model 
were calculated and compared to the original pub-
lished models. Threshold-dependent metrics of model 
performance (specificity, sensitivity and percent 
 cor rectly classified [PCC]) were also calculated by 
converting extracted probability values to binary 
presence−absence using (1) the thresholds defined 
in the original publications, and (2) new thresholds 
that maximized model performance against the new 
data set. 

2.4.  Construction of new models 

Newly collected high-resolution multibeam bathy -
metry data (see Supplementary Material 1 at www.
int-res.com/articles/suppl/m695p033_supp.pdf) were 
added to the data described by Ross et al. (2015) and 
used to create grids with a cell size of 200 × 200 m 
that were re-projected from their original projection 
(WGS84) into Goode Homolosine Ocean (GHO) 
equal-area projection in order to allow for correct 
calculation of derived topographic layers and area. 

2.4.1.  Variable selection 

Seven topographic variables were derived from the 
bathymetric data using the ArcGIS Benthic Terrain 
Modeler add-in (Walbridge et al. 2018): terrain 
ruggedness, curvature, plan curvature, profile curva-
ture, slope, broad-scale bathymetric positions index 
(BBPI) and fine-scale bathymetric position index 
(FBPI). Information on the calculation and use of 
each of these variables can be found in the existing 
literature (Guinan et al. 2009, Ross & Howell 2013). 
The inner and outer radii for BBPI were 5 and 50 
raster cells, respectively, facilitating identification of 
topographic features at the 10 km scale, such as can -
yons and hills. For FBPI, the inner and outer radiuses 
were 1 and 5 raster cells, respectively, allowing for 
the identification of features within the <1 km scale, 
such as gullies. Generalised additive models (GAMs) 
were used to build bottom temperature and salinity 
layers using in situ CTD data from ROV and drop 
camera transects, as well as archived CTD casts from 
the British Oceanographic Data Centre (BODC) data -
base. GAMs were implemented in R (R Core Team 
2020) using the ‘mcgv’ package (Wood 2011) with 
depth, latitude and longitude used as explanatory 
variables. A detailed description is given in Supple-
mentary Material 2. New and original biological data 
sets for each of D. pertusum reef and P. carpenteri 
presence/absence were combined, re projected into 
GHO and plotted in ArcGIS on raster grids of envi-
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                                             Ross & Howell     Ross et al. (2015)      New model     Ross & Howell (2013)    Ross et al. (2015)  
                                           (2013) (GEBCO)  (200 × 200 m grid)                                (GEBCO) validation     (200 m) validation 
 
Desmophyllum pertusum    864 (75/789)        1284 (116/1168)    3291 (227/3064)         646 (64/582)             2018 (122/1896) 
Pheronema carpenteri         864 (53/811)         1284 (74/1210)     3196 (139/3057)         597 (32/565)              1937 (66/1871)

Table 1. Breakdown of biological data sets, showing total (presence/absence) data points, used to build habitat suitability 
models and independently validate the models of Ross & Howell (2013) and Ross et al. (2015). GEBCO: General Bathymetric  

Chart of the Oceans
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ronmental data. ROV/drop camera point-based posi-
tion data were reduced to 1 point per cell, where cells 
containing any presence observations were denoted 
as a presence, all other points were denoted as 
absence. Environmental data were extracted for 
each data point. 

Maximum entropy (MaxEnt) modelling (Phillips et 
al. 2006, Elith et al. 2011) is a presence-background 
modelling technique that has a successful perform-
ance record (Elith et al. 2006), particularly in studies 
with low prevalence (low number of presence re -
cords). Although MaxEnt was designed to account 
for covariation in data sets and can perform well with 
correlated variables (Feng et al. 2019), previous stud-
ies have found that pre-selection of variables leads to 
better-performing models (Ross & Howell 2013). 
Environmental variables were therefore first assessed 
for covariance using correlation matrices and vari-
ance inflation factors (VIFs) in R. Strong correlations 
and VIFs between variables (≥±0.7 and ≥3, respec-
tively) were addressed by removing 1 variable from 
each correlated pair based on the jackknife proce-
dure. Jackknifing calculates the individual contribu-
tion of variables to a model and produces model per-
formance statistics (termed ‘gain’ in MaxEnt) for 
each. Once correlates were removed, a model with 
all remaining variables was built. Following princi-
ples of model parsimony, final sets of variables were 
selected by systematically removing the variable 
contributing the least to the model (based on model 
gain with and without that variable) until the drop in 
overall performance was deemed unacceptable. This 
process is described in detail in Supplementary 
Materials 3 and 4. 

2.4.2.  Modelling 

If used with presence-only data, MaxEnt randomly 
selects a specified number of ‘background’ points 
that are considered to represent locations with an 
equal likelihood of having been sampled that act as 
the absence points to inform the model (Elith et al. 
2011). Whilst ‘absence’ points are presented in this 
study for each target taxa/habitat, it is not possible to 
be certain that they are not present somewhere 
within a 200 m grid cell due to the limited field-of-
view of camera equipment compared to the size of grid 
cells, and therefore the data within this study re -
present ‘pseudo-absences’. Having pseudo-absence 
data allowed for the MaxEnt samples-with-data 
(SWD) approach to be used, whereby environmental 
values are provided in a spreadsheet for both the 

presence and pseudo-absence points, instead of 
allowing MaxEnt to randomly select background 
points to act as absences. The benefit of the SWD 
approach is that as both the presence and pseudo-
absence points come from the same sampling cam-
paigns, it allows for the control of some bias in sam-
pling locations and experimental design that can 
facilitate improved predictive performance (Phillips 
& Dudík 2008). 

Preliminary models with different parameters were 
systematically trialled, including the changing of fea-
ture classes (linear, quadratic, product, hinge and 
threshold) and the regularisation parameter (0.1, 0.5, 
1, 3, 5, 10) to avoid over-fitting/-smoothing (Phillips 
& Dudík 2008). The final feature classes selected for 
both target habitat models were linear, quadratic 
and product features. Through trialling, hinge and 
threshold features were removed due to lack of eco-
logical applicability in this study; with these features 
turned on, the response curves produced did not 
make biological sense. The D. pertusum reef model 
used a regularisation parameter of 1, whilst the P. 
carpenteri model used 0.5. These parameters were 
chosen be cause they struck a balance between the 
model overfitting and over-generalising; this was 
apparent from the shape of the response curves and 
AUC scores. The final MaxEnt models were pro-
jected onto the study area in a raster format and 
constrained to sampled conditions using the MaxEnt 
novel climates output (i.e. areas where environmen-
tal values fall within those on which the model was 
trained). Environmental data layers used in the final 
models are plotted in Supplementary Material 5 and 
final model details are provided in Supplementary 
Material 6. 

2.5.  Evaluation of new models 

Both presence and pseudo-absence records were 
used to evaluate the performance of the MaxEnt 
models by partitioning the data using a 70/30 split 
10 times to create 10 sets of training and test data. 
These data sets were compiled manually rather 
than using the automated MaxEnt splitting tool to 
reduce spatial autocorrelation in the data. To 
achieve this, data sets were split such that whole 
transects fell into either a training or testing data 
set. This avoided a scenario where a single transect 
would be split into training and testing points, lead-
ing to a within-transect testing point validating the 
same transect (Howell et al. 2011). The prevalence 
within each test and training data set was compared 
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to the prevalence of the full data set, and any data 
sets identified as having >±1% change in the 
amount of presence data were discarded and 
another random partition made until all test and 
training data sets satisfied the criteria. Using the 
partitioned data, 10 new models were built for each 
habitat and evaluated using the ‘PresenceAbsence’ 
package (Freeman & Moisen 2008) in R, employing 
both threshold-independent (AUC) and threshold-
dependent metrics. 

Three thresholding techniques were used to 
assess model performance, as suggested by Liu et 
al. (2005) and recognising that different threshold-
ing methods are chosen to achieve different ends. 
Thresholds used were sensitivity-specificity equality 
(Sens=Spec), sensitivity-specificity sum maximiza-
tion (MaxSens+Spec) and minimum distance to the 
top left corner in the ROC curve plot (MinROCdist). 
Using the ‘presence.absence.accuracy()’ function, 
the thresholding techniques and resulting model 
per formances were assessed with 3 widely used 
indices: sensitivity, specificity and PCC. True skill 
statistic (TSS) can be calculated from sensitivity and 
specificity and is used in place of Cohen’s kappa as 
it corrects the overall accuracy of the model predic-
tions using the accuracy expected to occur by chance 
(Allouche et al. 2006). For both AUC and threshold-
dependent metrics, the mean and SD for each met-
ric were calculated for the 10 partitioned data sets 
and for the full model. 

2.6.  Quantification of habitat distribution  
and MPA analysis 

The thresholding technique that gave the highest 
average performance across the 3 chosen indices 
was selected for use in the final models. A binary 
raster of predicted presence and absence was pro-
duced as well as a raster of probability of predicted 
presence. Model fit was visualized by plotting the 
match−mismatch of binary predictions (Supple-
mentary Material 7) In addition, the relative proba-
bility maps from all 10 partitioned test/training 
models were used to produce standard deviation 
rasters to convey spatial uncertainty in the model 
predictions (Supplementary Material 8). The number 
of predicted presence raster cells within different 
MPA polygons and below 800 m were calculated 
and then expressed as percentages of total pres-
ences in the whole study area, in UK waters and in 
Irish waters. Values derived from published and 
new models were  compared. 

3.  RESULTS 

3.1.  Original model validation 

Results of the independent validation suggest that 
all published models perform worse than expected 
based on cross-validation results for both threshold-
dependent and -independent metrics (Tables 2 & 3). 
Model performance is still considered good (0.8−0.9) 
or fair (0.7−0.8) for scleractinian cold-water coral 
reef habitat models, with poorer performance for 
the Phero nema carpenteri models, particularly at 
low resolution. Independent validation using the 
thinned data set of 1 point per ROV transect (re -
moving ef fects of spatial autocorrelation) gave simi-
lar results. The extremely low prevalence of the P. 
carpenteri data set (Table 1) means that model per-
formance as measured by PCC is very much influ-
enced by correct prediction of absences (specificity); 
it also means that threshold selection will be strongly 
influenced by specificity and might explain why the 
new thresholds are all very low. High-resolution 
models out-performed low-resolution models for 
both taxa. 

3.2.  New model development and evaluation 

Results of variable correlation analysis and step-
by-step documentation of the variable pre-selection 
procedure are provided in Supplementary Materials 
3 and 4. Consideration of common performance in -
dices (Table 4) allowed for selection of final thresh-
olding methods. For both models, Sens=Spec was 
selected as the chosen thresholding method, provid-
ing thresholds for Desmophyllum pertusum reef and 
P. carpenteri aggregations of 0.44 and 0.37, respec-
tively. For D. pertusum reef, the AUC value for the 
full internally validated model and all cross-valida-
tion models was deemed excellent (0.9+). The 0.44 
threshold de termined by Sens=Spec generated good 
(0.8+) results for PCC, sensitivity and specificity for 
all models. 

For P. carpenteri, the AUC value for the full and 
all cross-validation models was deemed excellent. 
When thresholded at 0.26, all threshold-dependent 
metrics (PCC, sensitivity and specificity) for the 
full and training P. carpenteri models were classi-
fied as excellent (0.9+ full model and training 
sensitivity) or good (0.8−0.9 for training PCC 
and specificity) when internally validated. All 
cross-validation models were classified as good 
(0.8−0.9). 
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                                                                                         Method                PCC        Sensitivity    Specificity  TSS (Sens+   AUC   Threshold  
                                                                                                                                                                                  Spec-1)                      values 
 
Desmophyllum pertusum reef 
Original cross validation with original                     MinROCdist            0.82              0.75              0.82              0.57          0.86         0.48 
 threshold (Ross & Howell 2013) 
Independent validation with original threshold                                  0.68 (0.02)    0.78 (0.05)    0.67 (0.02)        0.45     0.74 (0.02)    0.48 
Independent validation but tuned to maximize        Sens=Spec        0.70 (0.02)    0.70 (0.06)    0.70 (0.02)        0.40          0.74         0.50 
 model performance (new threshold selected) 
Independent validation with original threshold      MinROCdist       0.77 (0.03)    0.71 (0.08)    0.78 (0.03)        0.49     0.79 (0.04)    0.48 
 and thinned data set 
Independent validation but tuned to maximize        Sens=Spec        0.73 (0.03)    0.74 (0.07)    0.73 (0.04)        0.47     0.79 (0.04)    0.44 
 model performance (new threshold selected)  
 using thinned data set 

Pheronema carpenteri 
Original cross validation with original threshold    MinROCdist            0.95              0.96              0.95              0.91          0.99         0.19 
 (Ross & Howell 2013) 
Independent validation with original threshold                                  0.91 (0.01)    0.34 (0.09)    0.95 (0.01)        0.29     0.65 (0.05)    0.19 
Independent validation but tuned to maximize   MaxSens+ Spec    0.92 (0.01)    0.34 (0.09)    0.95 (0.01)        0.30     0.66 (0.05)    0.45 
 model performance (new threshold selected) 
Independent validation with original threshold      MinROCdist       0.89 (0.02)    0.31 (0.12)    0.95 (0.02)        0.26     0.71 (0.07)    0.19 
 and thinned data set 
Independent validation but tuned to maximize   MaxSens+ Spec    0.90 (0.02)    0.31 (0.12)    0.95 (0.02)        0.26     0.71 (0.07)   0.375 
 model performance (new threshold selected)  
 using thinned data set

Table 2. Performance statistics for the published models of Ross & Howell (2013) according to original cross validation and new independent 
validation. Values given are means where followed by standard deviation given in brackets. Threshold values are predicted probabilities of 
presence. PCC: percent correctly classified; TSS: true skill statistic; AUC: area under the receiver operating characteristic (ROC) curve; 
MinROCdist: minimum distance to the top left corner in the ROC curve plot; Sens=Spec: sensitivity-specificity equality; MaxSens+Spec: 
sensitivity-specificity sum maximization. Method is left blank where no re-thresholding took place and threshold method used is that of  

the original model

                                                                                         Method                PCC        Sensitivity    Specificity  TSS (Sens+   AUC   Threshold  
                                                                                                                                                                                  Spec-1)                      values 
 
Desmophyllum pertusum reef                                                                                                                                                                        
Original cross validation with original                     MinROCdist            0.85              0.85              0.85              0.70          0.91         0.43 
 threshold (Ross et al. 2015) 
Independent validation with original threshold                                  0.72 (0.01)    0.88 (0.03)    0.70 (0.01)        0.58          0.87         0.43 
Independent validation but tuned to maximize        Sens=Spec        0.77 (0.01)    0.75 (0.04)    0.77 (0.01)        0.52     0.87 (0.01)    0.48 
 model performance (new threshold selected) 
Independent validation with original threshold                                  0.82 (0.03)    0.82 (0.07)    0.82 (0.03)        0.64     0.90 (0.03)    0.43 
 and thinned data set 
Independent validation but tuned to maximize        Sens=Spec        0.82 (0.03)    0.82 (0.07)    0.82 (0.03)        0.64     0.90 (0.03)   0.435 
 model performance (new threshold selected)  
 using thinned data set 

Pheronema carpenteri 
Original cross validation with original threshold    MinROCdist            0.96              0.96              0.96              0.92          0.96         0.34 
 (Ross et al. 2015) 
Independent validation with original threshold                                  0.90 (0.01)    0.47 (0.06)    0.91 (0.01)        0.29     0.69 (0.04)    0.34 
Independent validation but tuned to maximize   MaxSens+ Spec    0.84 (0.01)    0.67 (0.06)    0.84 (0.01)        0.51     0.74 (0.04)    0.07 
 model performance (new threshold selected) 
Independent validation with original threshold                                  0.86 (0.03)    0.47 (0.13)    0.90 (0.02)        0.37     0.75 (0.08)    0.34 
 and thinned data set 
Independent validation but tuned to maximize   MaxSens+ Spec    0.84 (0.03)     0.6 (0.13)     0.86 (0.03)        0.46     0.75 (0.08)   0.175 
 model performance (new threshold selected)  
 using thinned data set

Table 3. Performance of the published models of Ross et al. (2015) according to original cross validation and new independent validation. Val-
ues given are means where followed by standard deviation given in brackets. Threshold values are predicted probabilities of presence. Ab-
breviations as in Table 2. Method is left blank where no re-thresholding took place and threshold method used is that of the original model 
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3.3.  New model variable importance 

When variables were considered in isolation for 
D. pertusum reef, model gain was highest for temp -
erature (70.5% contribution), followed by rugosity 
(23.3%) and FBPI (6.2%) as depicted in the jackknife 
plot (Supplementary Material 6.0). Temperature also 
decreased the model gain the most when removed as 
a variable, further illustrating its importance as the 
major variable on which predictions are reliant. For 
the P. carpenteri model, when variables were consid-
ered in isolation, model gain was highest for depth 
(41%) followed closely by temperature (35.9%), then 
BBPI (20.1%) and profile curvature (3%). When 
omitted from the complete model, the variable that 
decreased model gain the greatest was depth, closely 
followed by temperature. 

3.4.  Old (data poor) vs. new (data rich)  
high-resolution models 

Model performance determined by cross validation 
suggests that new models (Table 4) are comparable 
but of lower performance than old models (Table 3). 
New model spatial predictions in general follow 
those of the models of Ross et al. (2015), although 
there are some notable differences (Fig. 2). Cold-
water coral reef is predicted to be present on all 
banks, seamounts and the continental slope in the 
region, but the distribution is more restricted than 
that predicted by Ross et al. (2015). As with the pre-
vious model, P. carpenteri is predicted to be present 
on the continental slope, Porcupine Seabight, Rose-
mary Bank Seamount, around the Hatton-Rockall 
Plateau and particularly in the Hatton-Rockall Basin. 
Presence is also predicted near the Wyville-Thomson 
Ridge where historical records refer to ‘the Holtenia 
grounds’ (Wyville Thomson 1874). The most notice-
able difference is in the change in predicted distribu-
tion in the south-west section of the Hatton-Rockall 
Basin (circled in Fig. 2c,d). Presence is predicted for 
both taxa inside the existing MPA network but, fol-
lowing the overall trend, the predicted distribution 
for D. pertusum reef is a contracted version of the 
2015 predictions (Fig. 3). Predictions for P. carpenteri 
presence inside MPAs has changed little from the 
2015 model. 
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3.5.  Comparison of percentage area protected by 
the 2015 MPA network 

For both taxa, there is a significant reduction in 
predicted extent of suitable habitat in km2 in the new 
models when compared to those of Ross & Howell 
(2013) and Ross et al. (2015) (Table 5). The difference 
is most striking for D. pertusum reef, where the low-
resolution 2013 model predicts an extent 39 times 
larger, and the 2015 model 6 times larger, than the 

new model for the whole study area. Some of this 
reduction will be due to the removal of all Solenos-
milia variabilis data points from the model data, 
which will have led to a slight contraction in pre-
dicted depth range; however, it is clear from Fig. 3 
that there is a general contraction in predicted distri-
bution between new and old models. As D. pertusum 
reefs are only found shallower than 1200 m in this 
region, consideration of only those areas shallower 
than this depth reveal the same overall trend. How-
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Fig. 2. Above threshold full model prediction maps for (a) scleractinian cold-water coral reef distribution from Ross et al. 
(2015), (b) Desmophyllum pertusum reef distribution with the new data set, (c) Pheronema carpenteri aggregation distribution 
from Ross et al. (2015 and d) P. carpenteri aggregation distribution with the new data set. Colour gradation from blue to red in-
dicates low to high predicted habitat suitability. The Hatton-Rockall Basin is circled in red in panels c and d. Grey background 
indicates predicted absence. White background indicates the prediction has been masked for novel climates. Maps projected  

in British National Grid for aesthetic reasons
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ever, there is an increase in the estimates of the per-
centage of suitable habitat contained within the 2015 
MPA network when calculated from the new model 
as compared to old models. 

3.6.  Assessment of percentage area protected by 
the MPA network present in 2020 

Assessment of the proportion of suitable habitat in -
cluded within the present day MPA network (Table 6) 
found that suitable environments for D. pertusum 

reefs are the most well protected within the study 
area (~40% contained within MPAs), with protection 
at national levels varying from 84% in UK to 24% in 
Irish waters. This is a significant increase from the 
12−32% protection under the 2015 network assessed 
using all models (Table 5). P. carpenteri-suitable 
habitat is the least well-protected of the 2 habitats 
assessed, with ~11% of predicted suitable environ-
ments included within a current MPA and protection 
at national levels varying from ~49% in UK to ~4% in 
Irish waters. However, this again is a significant 
increase over the 2015 MPA network, where the new 
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Fig. 3. Examples of changes to protected area model predictions. (a) Scleractinian cold-water coral reef distribution within the 
North-West Porcupine Bank marine protected area (MPA) from Ross et al. (2015); (b) Desmophyllum pertusum reef distribu-
tion within the North-West Porcupine Bank MPA with the new data set. Colour gradation from blue to red indicates low to 
high predicted habitat suitability. Remotely operated vehicle transects plotted showing presences as yellow stars and absence  

as white circles. Maps projected in British National Grid for aesthetic reasons

                                                Desmophyllum pertusum reef                  Pheronema carpenteri 
                                                             Ross & Howell        Ross et al.        New       Ross & Howell        Ross et al.        New  
                                                                    (2013)                  (2015)          model             (2013)                  (2015)          model 
                                                            GEBCO model  200 × 200 m grid                  GEBCO model  200 × 200 m grid 
 
Entire model extent 
Predicted suitable habitat (km2)           185 240.25            30 106.10      4748.32        218 725.88            73 709.68     54 289.48  
Predicted suitable habitat within             12.81                    20.00            31.61                1.29                      2.64              6.62 
 MPAs/NEAFC closures (%) 
Model extent within UK shelf claim 
Predicted suitable habitat (km2)            57 425.06              8281.48        1244.00         87 516.00              9514.00        8886.76  
Predicted suitable habitat within             29.84                    56.00            58.95                2.60                     11.20            25.23 
 MPAs/NEAFC closures (%) 
Model extent within Irish shelf claim 
Predicted suitable habitat (km2)            48 139.31             21 665.48      3412.36         49 343.63             63 525.96     43 936.44  
Predicted suitable habitat within             13.67                    12.60            21.65                1.10                      1.39              2.86 
 MPAs/NEAFC closures (%)

Table 5. Area of predicted suitable habitat broken down into entire model extent, and model extent in UK and Irish jurisdic-
tions. Percentage of predicted suitable habitat protected by the marine protected area (MPA) and North East Atlantic Fish-
eries Commission (NEAFC) closure network used by Ross et al. (2015) for the purpose of comparison, also broken down by  

national MPAs and NEAFC closures



Mar Ecol Prog Ser 695: 33–51, 2022

model suggested that only 7% of suitable habitat was 
protected by the 2015 MPA network. The addition of 
new MPAs in UK waters between 2015 and 2020 
have taken the UK from around 59 to 84% protection 
for D. pertusum reef and from 25 to 49% protection 
for P. carpenteri. It should be noted, however, that 
the model of Ross et al. (2015) and the new model 
only cover a partial extent of the UK continental shelf 
limit, and data are biased to those areas that have 
been designated as MPAs. Thus, estimates of per-
centage protection are likely substantial overesti-
mates. The EU ban on bottom trawling below 800 m 
is estimated to protect 100% of the habitat suitable 
for P. carpenteri, and 42% of D. pertusum reef-
 suitable habitat. Measured against IUCN targets, 
both habitats are within or above the recommended 
20−30% protection level. 

4.  DISCUSSION 

4.1.  Original model validation 

HSMs are potentially valuable tools in the field of 
marine environmental management, but there re -
main questions around the true accuracy and relia-
bility of modelled maps that may serve as a barrier to 
growth in use. In this study, we tested the perform-
ance of 4 published models at 2 different resolutions, 
750 × 750 m (Ross & Howell 2013) and 200 × 200 m 
(Ross et al. 2015): 2 for scleractinian cold-water coral 
reef habitat and 2 for the sponge Pheronema carpen-
teri. In the original published papers, all models per-
formed well when tested using cross-validation meth-

ods, and performance was mixed 
when comparing low- and high-resolu-
tion models, according to threshold-
dependent evaluation. While high-res-
olution Desmophyllum pertusum reef 
models outperformed low-resolution 
models, low-resolution models for P. 
carpenteri performed as well as high-
resolution models according to thres -
hold-dependent evaluation, and better 
than high-resolution models according 
to threshold-independent evaluation 
(AUC). Our study has shown that when 
tested using independent data, all 
models perform worse than ex pected 
based on published cross-validation 
results for both threshold-dependent 
and -independent metrics. Although 
models performed worse than under 

cross validation, model performance is still consid-
ered good (0.9−0.8) or fair (0.8−0.7) for scleractinian 
cold-water coral reef habitat models, with poorer 
performance for the P. carpenteri sponge models, 
particularly at low resolution and when measured by 
sensitivity. High-resolution models out-performed 
low-resolution models for both taxa when assessed 
using independent data. 

Our findings are in broad agreement with the very 
small number of comparable studies that have inde-
pendently validated deep-sea sponge and published 
coral HSMs, with some notable differences. Rooper 
et al. (2016, 2018) independently validated HSM for 
corals and sponges in the eastern Bering Sea slope, 
outer shelf in Alaska and Aleutian Islands. These 
models were developed based on data from bottom 
trawl surveys at a resolution of 100 × 100 m grid cell 
size and validated using camera-based surveys. These 
studies found that while model performance decreased 
when comparing cross validation to independent AUC 
scores, performance was still acceptable for coral mod-
els. This taken with our own findings suggests that 
high-resolution models (<200 × 200 m grid cell size) 
of deep-sea coral distributions can be accurate and 
can provide useful information for spatial manage-
ment of these vulnerable taxa. 

However, low-resolution models may not perform 
well. Bowden et al. (2021) recently evaluated 47 
HSMs from 8 published studies, all focussed on the 
area around New Zealand, using independent data. 
All models were at 1 km (30 arc-seconds) grid cell 
size, and in all cases model performance was lower 
than in published cross-validation values. Anderson 
et al. (2016) found that their models of the distrib ution 
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                                                                  D. pertusum reef        P. carpenteri 
 
Entire model extent 
 Predicted suitable habitat (km2)                   4748.32                   54 289.48 
 800 m trawl ban (%)                                        60.11                       100.00 
 2020 MPA/NEAFC network (%)                    40.26                        11.45 

Model extent within UK shelf claim 
 Predicted suitable habitat (km2)                   1244.00                   8886.76 
 800 m trawl ban (%)                                        48.74                       100.00 
 2020 MPA/NEAFC network (%)                    83.64                        49.30 

Model extent within Ireland shelf claim 
 Predicted suitable habitat (km2)                   3412.36                  43 936.44 
 800 m trawl ban (%)                                        64.25                       100.00 
 2020 MPA/NEAFC network (%)                    24.45                         3.79

Table 6. Area of predicted suitable habitat for Desmophyllum pertusum reef 
and Pheronema carpenteri broken down into entire model extent, and model 
extent in UK and Irish jurisdictions. Percentage of predicted suitable habitat 
protected by the most up to data MPA/NEAFC Closure network and the  

EU/UK 800 m trawl ban, also broken down by region
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of 4 scleractinian species (not D. pertusum) across the 
South Pacific Regional Fisheries Management Organ-
isation area and adjoining exclusive economic zones 
were not successful in accurately predicting suitable 
habitat for reef-forming deep-sea corals when inde-
pendently validated. These models were also con-
structed on a 30 arc-second grid (~1 km2), and data 
resolution was given as a possible explanation for 
model failure in the face of independent testing. 
Specifically, Anderson et al. (2016) cited the limita-
tions of the bathymetry data set used, which in turn 
affected the precision of each of the environmental 
predictor variables. Both studies reported on models 
of comparable resolution to the low-resolution model 
of Ross & Howell (2013) tested here. 

Interestingly, the model of Ross & Howell (2013) 
appears to have performed better than those of 
Anderson et al. (2016) in the face of independent 
data. Anderson et al. (2016) cited missing critical pre-
dictor variables, particularly substrate type, lack of 
true absence data, spatial bias in distribution of pres-
ence records, and aspects of the topography in the 
study area, as possible reasons for the poor perform-
ance of their model. The model of Ross & Howell 
(2013) did make use of background data to account 
for spatial bias in the data set, which may have re -
sulted in better performance when subjected to inde-
pendent testing. However, a principal difference 
between the models of Anderson et al. (2016) and 
that of Ross & Howell (2013) is the focus of the mod-
els. Ross & Howell (2013) modelled scleractinian reef 
habitat, whereas Anderson et al. (2016) modelled scle-
ractinian species presence. The difference is impor-
tant, as the former occupies a restricted subset of the 
environmental niche of the latter (Howell et al. 2011), 
and a narrower niche width can result in a better per-
forming model (Kadmon et al. 2003, Tsoar et al. 
2007). This concept is used to explain the possible 
poor performance of the sponge models of Rooper et 
al. (2016, 2018). These authors suggested that the dif-
ference they observed in their high-resolution (100 × 
100 m grid cell size) coral and sponge model perform-
ance may be a result of lumping species together into 
a large taxonomic group called ‘sponges’. This essen-
tially merged species with very different habitat pref-
erences, ultimately giving the group a wide environ-
mental niche. The coral group in their study was 
dominated by a single family (Primnoidae) and thus 
was less affected by this pooling action. 

Niche width is unlikely to explain the poor perform-
ance of the P. carpenteri model. This hexactinellid 
(glass sponge) is found predominantly on fine sedi-
ments where it loosely anchors to the substrate using 

long spicules at the base of the organism. Aggrega-
tions in the NE Atlantic are found over a very narrow 
depth range from 1000 to 1300 m (Rice et al. 1990) and 
appear to occupy a very specific niche. Cross valida-
tion of HSMs created for this species suggested that 
model performance was excellent (Ross & Howell 
2013, Ross et al. 2015). However, independent valida-
tion suggested that while the models have fair to good 
PCC and specificity, they have poor sensitivity, mean-
ing that the resulting maps may be indicating an ab-
sence where there is in fact a presence. Examination 
of the spatial distribution of false negatives suggests 
that most (25 of 28 data points) are found on offshore 
seamounts and banks. These habitat types, and there-
fore this particular aspect of the environmental niche 
of P. carpenteri, was not represented in the data set 
used to build the published models and could help ex-
plain why the models partially failed. However, as-
pects of the ecology of P. carpenteri may also explain 
the poor model performance. 

P. carpenteri, in common with other deep-sea 
sponge species that form aggregations, are thought to 
be associated with regions of enhanced bottom cur-
rents related to the interaction of internal waves with 
sloping boundaries (Rice et al. 1990, Klitgaard et al. 
1997, Davison et al. 2019) and raised features like the 
Mid-Atlantic Ridge (van Haren et al. 2017). The causal 
link is suggested to be an increase in the supply of 
food as a result of the resuspension of organic matter 
(Rice et al. 1990). Oceanographic variables (and vari-
ability) may therefore be of critical  importance in de-
termining the distribution of P. car penteri. The omis-
sion of such predictor variables from the models of 
Ross & Howell (2013) and Ross et al. (2015) may also 
explain why both models partially failed when tested 
with independent data. The inclusion of oceanographic 
variables in deep-sea marine species distribution mod-
elling has been found to improve model performance 
when tested with cross validation (Rengstorf et al. 
2014, Pearman et al. 2020), further supporting their in-
clusion in any future model development. 

Our results suggest that for both scleractinian reef 
and P. carpenteri the high-resolution models out-
 perform the low-resolution models when tested with 
independent data. This is an important finding, as 
it suggests that our ability to produce useful models 
of deep-sea benthic species and habitat distribution 
is dependent on the availability of high-resolution 
environmental data including bathymetry data. Cur-
rent maps of the seafloor are derived using satellite 
altimetry, which gives an average achievable resolu-
tion on the order of 8 km (Mayer et al. 2018). The per-
centage of the seafloor that has been measured by 

45



Mar Ecol Prog Ser 695: 33–51, 2022

echo-sounders is considerably less than 18%, and 
only about 9% of the seafloor is covered by high-
 resolution multibeam sonar data (Mayer et al. 2018). 
Recently, an international effort has begun with the 
objective of facilitating the complete multibeam 
mapping of the world ocean by 2030. The Nippon 
Foundation General Bathymetric Chart of the Oceans 
(GEBCO) Seabed 2030 Project has the potential to 
significantly improve the quality of HSMs that can be 
produced for deep-sea taxa by providing high-reso-
lution bathymetry data. However, access to high-res-
olution oceanographic model output, as well as unbi-
ased data sets of the distribution of target species and 
assemblages, and a good understanding of the biol-
ogy and ecology of those species and assemblages, 
are also necessary to improve the quality of models. 
Targeted efforts to collect these data over the next 
decade (Howell et al. 2020, 2021) will be important in 
the further development of this field. 

The good performance of the high-resolution scle-
ractinian reef habitat model suggests that it may be a 
useful tool in the spatial management of cold-water 
coral reefs in this region. Cold-water coral reef is 
considered a VME under UNGA Resolution 61/105, 
and, in the NE Atlantic is also classed as ‘threatened 
and/or declining habitat’ under the OSPAR Conven-
tion. Within European waters, it is also recognised as 
an Annex I habitat under the EU Habitats and Spe-
cies Directive (92/43/EEC). Collectively, these poli-
cies require relevant management authorities to take 
actions to protect cold-water coral reef habitat. Spe -
cifically, A/RES/61/105 (p. 17; available at: https://
documents-dds-ny.un.org/doc/UNDOC/GEN/N06/
500/73/PDF/N0650073.pdf?OpenElement) states: 

‘In respect of areas where vulnerable marine ecosys-
tems, including sea mounts, hydrothermal vents and 
cold-water corals, are known to occur or are likely to 
occur based on the best available scientific information, 
to close such areas to bottom fishing and ensure that 
such activities do not proceed unless conservation and 
management measures have been established to pre-
vent significant adverse impacts on vulnerable marine 
ecosystems’ 

Actions have so far been limited to those areas 
where cold-water coral reef has been observed either 
through visual or physical sampling means. However, 
the high-resolution model provides the best available 
scientific information on where cold-water coral reef 
is likely to occur in this region, and thus could be 
used to support decisions around further measures. 

Similarly, the good performance of the high-resolu-
tion P. carpenteri model in terms of PCC and speci-
ficity, and fair AUC score, suggests that it may also 
be a useful tool in the spatial management of the 

region. However, it must be noted that this is a pres-
ence/absence HSM, and therefore it only indicates 
likely presence/absence of suitable habitat for the 
species (a VME indicator taxon), not the aggregation 
(a VME). This, together with the notable deficiencies 
in the model outlined above, suggests it is less useful 
than the scleractinian reef habitat model, but may 
still have value in indicating areas for further consid-
eration given the precautionary principle. 

4.2.  New model performance and interpretation 

The newly constructed high-resolution models for 
Desmophyllum pertusum reef and P. carpenteri have 
been developed using more than twice the input data 
used in the original models of Ross et al. (2015) 
(Table 1), and consideration of oceanographic pre-
dictor variables (temperature and salinity) as terms in 
the models. Cross validation suggests good perform-
ance for both models. In general, model performance 
increases with increasing sample size; however, the 
nature of this relationship is variable and can depend 
on modelling method, prevalence and species range 
size (Stockwell & Peterson 2002, Wisz et al. 2008, van 
Proosdij et al. 2016). The inclusion of oceanographic 
variables in deep-sea HSMs has also been found to 
improve model performance (Rengstorf et al. 2014, 
Pearman et al. 2020). This suggests that the new 
models should perform better than the original 2015 
models, although this can only be assessed using 
new independent data. 

In this study, we used a presence−background ap -
proach rather than a presence−absence approach 
since our model input data are drawn from multiple 
surveys using multiple gear types and spanning more 
than 30 yr. In our opinion, absences cannot be in ferred 
from our data set with certainty, and so we opted to be 
cautious in our use of absence data. However, it should 
be noted that evidence suggests  presence−absence 
models perform better than presence-only models, 
particularly where species/assemblages oc cupy all 
suitable habitat, making absence data reliable (Brotons 
et al. 2004), although MaxEnt has been found to per-
form equally as well as  presence−absence models 
(González-Irusta et al. 2015). Future modelling efforts 
may wish to consider use of presence−absence ap-
proaches where authors feel absence data are reliable. 

Temperature was a significant term in both new 
models and is a fundamental variable that controls 
species distributions. D. pertusum has been observed 
living under a wide range of temperatures (4−13°C) 
(Freiwald et al. 2004), with an upper thermal toler-
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ance of 15°C (Brooke et al. 2013). Response curves 
for MaxEnt models for D. pertusum reef (Supplemen-
tary Material 6) suggest that the highest likelihood of 
occurrence of reef habitat in the study area is at tem-
peratures of ~8°C, which is almost the centre of the 
species thermal niche. No data are available on the 
thermal niche of P. carpenteri. Howell et al. (2016) 
reported this species to occur over a temperature 
range of 2.73−20.9°C (mean ± SD: 5.17 ± 2.03°C) in 
the northern North Atlantic. Response curves for 
MaxEnt models for P. carpenteri (Supplementary 
Material 6) suggest that this species occupies a nar-
row thermal niche, with peak likelihood of occur-
rence between 6 and 8°C, falling sharply to no occur-
rences below approximately 3°C or above 10°C. The 
wide range reported by Howell et al. (2016) is likely 
a result of poor position data from the older records 
used in that model in order to provide whole North 
Atlantic data coverage. 

New model spatial predictions in general follow 
those of the models of Ross et al. (2015). However, 
there are some notable differences, particularly in the 
spatial prediction for P. carpenteri in the southern re-
gion of the Hatton-Rockall Basin (Fig. 2c,d). In this re-
gion, available CTD data suggest that the temperature 
is cooler than that at equivalent depths in the Rockall 
Trough and on the European continental slope, mak-
ing this region less suitable for P. carpenteri than pre-
dicted by the 2015 model, which did not include tem-
perature. Interestingly, the model of Howell et al. 
(2016), which did include temperature, also predicted 
this area as suitable habitat; however, the thermal 
niche of P. carpenteri was likely incorrectly defined in 
that model as previously noted. The principal differ-
ence in the spatial predictions for the D. pertusum 
reef model is a general contraction of the 2015 predic-
tions in the current model. This is well illustrated in 
Fig. 3, where current model predictions are much 
more focussed than those of the 2015 model. 

4.3.  Re-assessment of current area closures and 
percentage protection targets for these VMEs 

For both taxa there is a significant reduction in pre-
dicted extent in the new models when compared to 
the models of Ross & Howell (2013) and Ross et al. 
(2015) (Table 5). The 2013 low-resolution models 
predicted 39 times and 4 times greater extent for D. 
pertusum reef and P. carpenteri, respectively. This 
difference has important implications for onward use 
of models in decision making. For example, calcula-
tions of ecosystem services such as carbon sequestra-

tion (Barnes et al. 2019, 2021) or nutrient cycling 
(Hoffmann et al. 2009) based on modelled extent 
may be grossly overestimated if based on low-resolu-
tion models. Similarly, the 2015 models predicted a 
greater extent of suitable habitat than the new model 
by 6 times and 1.4 times for D. pertusum reef and P. 
carpenteri, respectively, suggesting that estimates of 
extent based on model predictions should be used 
with caution and considered likely overestimates. 

In contrast, estimates of percentages of predicted 
suitable environments protected by the regional 
MPA network increased when calculated using the 
new model compared to the 2013 and 2015 models. 
The CBD originally set out a target of 10% of marine 
areas to be protected by 2010 (UNEP/CBD/COP/
DEC/VII/5), later moved to 2020 (UNEP/CBD/COP/
10/27), and that is now being followed up with calls 
for 30% by 2030. While these percentage area tar-
gets are not habitat specific, Aichi Target 11 makes 
specific reference to ‘ecologically representative and 
well-connected systems of protected areas’ (UNEP/
CBD/COP/10/27/Annex, p. 119; available at: https://
www.cbd.int/doc/decisions/cop-10/full/cop-10-dec-
en.pdf), which implies that different marine habitat 
types should be protected at that level. The inde-
pendently validated 2015 models suggest that for the 
area modelled and the 2015 MPA network, both the 
UK and Ireland have surpassed the original 10% pro-
tection target for D. pertusum reef, while the UK also 
surpassed this for P. carpenteri suitable habitat. In 
addition, the UK surpassed the 30% target for D. per-
tusum reef habitat in the modelled area. The picture is 
the same for the new model. However, in both the 
2015 and the new model, Ireland protects <10% of 
suitable habitat for P. carpenteri, implying that fur-
ther MPAs may be required. Ireland has committed 
to protecting 30% of its habitat by 2030 (Marine Pro-
tected Area Advisory Group 2020), and data such as 
these can help guide that process. 

The situation is broadly similar when considering 
the 2020 MPA network, although the estimates of 
percentage of habitat protected in UK waters are 
much higher. It must be noted, however, that the cur-
rent MPA network is not ‘strictly protected’ in line 
with IUCN specifications, and in some cases man-
agement measures have yet to be drawn up. It is also 
important to remember that the modelled area in UK 
waters is much more limited than that modelled in 
Irish waters due to the limited availability of multi-
beam mapping in UK waters. The areas that have 
been mapped (and thus used in modelling) in UK 
waters tend to be associated with protected status, 
thus the UK figures are likely gross overestimates. 
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Estimates of percentage of suitable habitat made 
from the low-resolution 2013 model are lower than 
all other estimates, and, reiterating the findings of 
Ross et al. (2015), suggest that low-resolution models 
result in conservative estimates in this context, which 
is in line with the precautionary principle and suggests 
low-resolution models may have a use in this area. 

An interesting finding is that the ban on bottom 
trawling below 800 m in EU waters (UK is currently 
following) protects >30% of both habitats estimated 
from the new model with 100% of P. carpenteri suit-
able habitat protected. While a significant achieve-
ment, it is important to again consider the issue of 
representativeness in Aichi Target 11. Cold-water 
coral reefs occurring at different depths support dif-
ferent assemblages of associated species in line with 
the well-documented turnover of species along the 
depth gradient (Rowe & Menzies 1969, Howell et al. 
2002, Carney 2005). In order to be representative, 
protection for cold-water coral reef sites must span its 
known depth range (thermal niche) necessitating 
protection of sites shallower than 800 m. In addition, 
the twin threats of ocean acidification and global 
warming mean that shallower areas of predicted 
suitable habitat in this region may be key refuge sites 
for cold-water coral reef (Jackson et al. 2014). Ocean 
acidification is causing the aragonite saturation hori-
zon to shoal, exposing deep-water coral reefs to 
waters that are corrosive to coral skeletons (Guinotte 
et al. 2006). In parallel, seawater temperatures are in -
creasingly exposing reefs to novel conditions. While 
live D. pertusum can tolerate long-term exposure to 
combined end-of-the-century temperature and pCO2 
scenarios (Hennige et al. 2015, Büscher et al. 2017), 
the dead coral skeletons that make up the reef frame-
work are weakened by acidified conditions and be -
come more susceptible to bioerosion and mechanical 
damage (Hennige et al. 2015). This ultimately leads 
to crumbling, collapse and loss of complexity of the 
larger habitat, and its associated ecosystem services 
(Hennige et al. 2020). In this region, the East Mingu-
lay Special Area of Conservation (SAC), Wyville 
Thomson Ridge SAC, and North West Rockall Bank 
SAC represent important strongholds for reef habitat 
(Jackson et al. 2014), and therefore the 800 m bot-
tom-trawling ban alone will not meet the qualitative 
aims of Aichi Target 11. 

5.  CONCLUSIONS 

Independent testing of 4 published models has 
shown that for the taxa considered, high-resolution 

models (<200 × 200 m grid cell size) can be accurate 
and can provide useful information for spatial man-
agement of these vulnerable taxa. With respect to 
UNGA Resolution 61/105, the high-resolution cold-
water coral reef model provides the best available 
scientific information on where this VME is likely to 
occur in this region, and thus could be used to sup-
port decisions around further measures. Our ability 
to produce useful models of deep-sea benthic species 
and habitat distribution is highly dependent on the 
availability of high-resolution environmental data in -
cluding bathymetry data. To improve model perform-
ance, significant research effort is needed to map the 
seafloor, oceanographic environment and distribu-
tion of species and assemblages (presence, absence, 
density) in order to provide more, better-quality, 
model input data. In addition, further research effort is 
needed to provide a more complete understanding of 
the importance of environmental variables to target 
taxa, and their interactions at a variety of scales. For 
well performing high-resolution models (200 × 200 m), 
estimates of extent based on model predictions should 
be used with caution and considered likely overesti-
mates. Low-resolution models (750 × 750 m) may be 
useful in providing conservative estimates in progress 
towards percentage protection targets but are not 
recommended for use in estimates of extent. For 
Desmophyllum pertusum reef and Pheronema car-
penteri, the UK and Ireland have made good progress 
towards the 10% CBD target for conserving habitats 
and species within MPAs. This, together with the EU 
ban on bottom trawling below 800 m, provides a 
level of protection for both; however, representativity 
needs to be considered in these assessments. Assess-
ment of UK progress is limited by a lack of available 
multibeam data. 
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