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1.  INTRODUCTION 

The Norway lobster Nephrops norvegicus (Lin-
naeus, 1758) is a benthic burrowing decapod crus-
tacean inhabiting the continental shelf of the north-
eastern Atlantic Ocean and the Mediterranean Sea, 
at depths of 50−800 m (Bell et al. 2006). The species 
is of great commercial importance across its entire 
distribution, with average catches over the period 

2010−2019 of 53 493 and 3341 t yr−1 for the north-east 
Atlantic Sea and the Mediterranean, respectively 
(FAO 2021). Within the Mediterranean basin, the 
Adriatic Sea represents one of the most important 
and productive fishing areas for Norway lobster 
(FAO 2021). Here, this species lives at depths of 
50−400 m in muddy sediments (Froglia & Gramitto 
1988, Artegiani et al. 1997, Russo et al. 2018). N. 
norvegicus is strongly linked to day−night cycles 
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(Aguzzi & Sardà 2008), which affect its behaviour, 
diet and the possibility of being caught by trawling 
operations; individuals are captured when they are 
out of their burrows for feeding and mating (Froglia 
1972, Aguzzi et al. 2021). Females are captured less 
often during certain periods of the year because 
they spend more time in their burrows incubating 
eggs (Newland et al. 1992, Aguzzi & Sardà 2008). 
Females reach the size at the onset of maturity 
(SOM) at different sizes, depending on the geo-
graphical area (Tuck et al. 2000). In the Medi -
terranean Sea, the SOM is generally reached at a 
range of 30−39 mm carapace length (CL) (Mytilineou 
et al. 1990, Relini et al. 1998). In the Medi terranean, 
reproduction usually takes place in June−October 
(with geographical variations; Relini et al. 1998, 
Mente et al. 2009). Due to its commercial relevance, 
several authors have investigated the biological and 
ecological characteristics of N. norvegicus (Stacho -
witsch 1992, Abelló et al. 2002, Aguzzi & Sardà 2007, 
Aguzzi et al. 2021). However, few studies to date 
have focussed on its feeding ecology (Baden et al. 
1990, Cristo 1998), likely because the trituration pro-
cess taking place in the foregut by means of the gas-
tric mill (McGaw & Curtis 2013, Cau et al. 2020) 
makes the identification of prey difficult (Parslow-
Williams et al. 2002). Nevertheless, based on the 
available studies, N. norvegicus is classified as a 
euryphagous and non-selective species, consuming a 
great variety of crustaceans, fish and mollusks, either 
as an active predator or a scavenger (Cristo & Cartes 
1998, Cristo 1998). 

The analysis of stomach contents (SCA) is one of 
the most widely used techniques to investigate the 
feeding ecology of a species (Hyslop 1980, Welden et 
al. 2015). However, this approach presents different 
shortcomings because of the complexity of taxa iden-
tification and, depending on the species’ feeding 
behaviour, the amount of unidentifiable material 
(Garrison & Link 2000, Parslow-Williams et al. 2002). 
Moreover, SCA provides a snapshot of the diet of an 
individual at a certain time and space, thus requiring 
several samples to obtain a complete picture of the 
overall feeding ecology of the species (Fanelli et al. 
2010). In the last decades, the use of stable isotope 
analysis (SIA) has proven to be particularly effective 
in aquatic food web studies (Vander Zanden et al. 
2015) with the stable isotopes of nitrogen (δ15N) and 
carbon (δ13C) representing the most used tracers 
(Divine et al. 2017, McCormack et al. 2019). Carbon 
isotope composition in living animals usually pro-
vides clues to the origin of ingested organic matter 
through an increase in δ13C of ca. 1‰ per trophic 

level, and it is useful for discriminating between 
pelagic or benthic food (Layman et al. 2012). Nitro-
gen isotope values are proxies of the trophic level of 
a species, as δ15N usually increases by 2.5−3.4‰ from 
prey to consumers (Post 2002, Sweeting et al. 2007, 
Caut et al. 2009, Layman et al. 2012). Thus, combined 
measurements of δ15N and δ13C allow trophic rela-
tionships within a food web to be revealed (Carlier 
et al. 2008, Layman et al. 2012). However, recent 
studies have identified concerns regarding the issue 
of unquantified error associated with using non-
species-specific estimations for modelling and devel-
oping dynamic mixing models (Ballutaud et al. 2022). 
To fully understand temporal changes in the feeding 
ecology of a species, a combination of the use of SCA 
and SIA is highly recommended (Genner et al. 2001, 
Cocheret de la Morinière et al. 2003, Rybczynski et 
al. 2008). 

The combined use of SIA and SCA, therefore, con-
stitutes a robust approach to assess the feeding ecol-
ogy of a species, its niche width and possible dietary 
changes in time and space (Bearhop et al. 2004, 
Fanelli & Cartes 2008, Fanelli et al. 2010, 2011). 
Together, these techniques can mitigate possible 
variations in the abundance or type of prey because 
the calculation of trophic niches through SIA is not 
influenced in the short term, unlike results obtained 
exclusively with SCA (Bearhop et al. 2004). These 
coupled techniques can also determine the trophic 
status of the species, and limit possible errors in diet 
determination caused by ontogenetic, environmental 
and prey composition changes (Genner et al. 2001, 
Cocheret de la Morinière et al. 2003, Bearhop et al. 
2004, Rybczynski et al. 2008). This is especially true 
for animals such as Norway lobster that do not make 
large movements on the seafloor, being more territo-
rial and therefore more vulnerable to possible 
changes in the composition of their prey (Aguzzi & 
Sardà 2007, 2008). Additionally, such an approach, 
extended over large temporal scales (i.e. 1 yr of 
monthly sampling), also allows us to link changes in 
food availability over time, in relation to natural vari-
ations in benthic communities or alterations due to 
external factors such as fishing pressure, to different 
food needs of the species during its life cycle and 
possible changes related to reproductive traits 
(Fanelli & Cartes 2008, Cartes et al. 2014). 

In this context, the specific objectives of the pre-
sent study were to (1) investigate the overall feeding 
ecology of N. norvegicus in the Central Adriatic Sea, 
(2) assess any seasonal variations in its diet and (3) 
identify potential biological drivers of the observed 
trends. 
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2.  MATERIALS AND METHODS 

2.1.  Study area and sample collection 

Specimens of Nephrops norvegicus were collected 
within the ‘off Ancona’ fishing grounds located in the 
central Adriatic Sea (Fig. 1). The area is heavily influ-
enced by discharge from the Po River (Artegiani et 
al. 1997) and is dominated by sandy and muddy sed-
iments (Spagnoli et al. 2010, Santelli et al. 2017). The 
‘off Ancona’ fishing ground is an important area 
for N. norvegicus, where high densities have been 
observed at ca. 70 m depths (Froglia et al. 1997). In 
this area, the reproductive period for this species in 
terms of ovarian maturation occurs from April−July, 
with a peak in May (Colella et al. 2018). For females, 
the SOM is reached at about 30 mm CL (Angelini et 
al. 2020). 

A total of 589 Norway lobster specimens were 
collected (309 males; 280 females) at depths be -
tween 50 and 100 m within the ‘off Ancona’ fishing 
ground by the Institute for Marine Biological Re -
sources and Biotechnology of the National Research 

Council (CNR-IRBIM) during the biological sam-
pling of commercial catches funded within the 
European Data Collection Framework (DCF; EU 
2017). All sampled individuals were adults; no ju -
veniles were analysed. Monthly sampling was car-
ried out from January−December 2019 and in July 
and October 2020, on board a commercial bottom 
trawler (overall length: 25 m; tonnage: 98.5 t; 
engine power: 480 KW). The net cod-end had a 
50 mm diamond mesh according to the Italian leg-
islation in derogation to the European regulations 
concerning the Mediterranean Sea (EU 2006). 
Given the difficulty in obtaining samples every 
month from commercial fishing activity due to 
marine weather conditions, 2 months were added 
in 2020 to complete the seasonal sampling. Monthly 
samples were then merged, following the Northern 
Hemisphere seasons: 131 individuals collected in 
winter (January and February), 87 individuals col-
lected in spring (March, April and May), 228 indi-
viduals collected in summer (June and July) and 
143 individuals collected in autumn (September, 
October and December). 
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Fig. 1. The ‘off Ancona’ study area (highlighted by crossed cells), corresponding to the principal Nephrops norvegicus fishing  
ground within the northern-central Adriatic Sea, according to Russo et al. (2018)
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2.2.  Macroscopic and biometric evaluation and SCA 

Sex was identified based on the external morphol-
ogy of the first pair of pleiopods, and macroscopic 
maturity stage was established only for females, 
according to ICES criteria (ICES 2010). The sex of 
each individual was used to calculate the sex ratio as 
follows: total number of females/total number of 
females + total number of males. In order to obtain a 
length frequency distribution (LFD), for each speci-
men, CL was measured to the lowest mm (using a 
calliper). The total individual wet weight (WW, in g) 
was then recorded using a precision scale balance 
(Radwag WLC 6/ F1/K accuracy: 0.1 g). After dissec-
tion with laboratory scissors and tweezers, the 
gonads, hepatopancreas and full stomach weights 
(WW, in g) were measured using a Mettler−Toledo 
XP204 scale (accuracy: 10−4 g). 

Overall, 489 individuals (269 males; 220 females) 
were used for the SCA and to calculate the fullness 
index. The contents of each full stomach were ex -
tracted and the stomach walls were weighed again; 
by subtracting the latter measure from the full stom-
ach weight, it was possible to determine the weight 
of the contents. This procedure was used to calculate 
stomach fullness (in %), used as an expression of 
feeding intensity, as follows: content weight / body 
weight × 100 (Fanelli et al. 2009). Gonad and hep-
atopancreas weights were used to determine the 
gonadosomatic index (GSI; %GSI = gonad weight / 
body weight × 100) and the hepatosomatic index 
(HSI; %HSI = hepatopancreas weight / body weight 
× 100). As some specimens were damaged and it was 
not possible to obtain gonad and hepatopancreas 
weights, only 391 individuals (230 males; 161 fe -
males) were used to calculate GSI and HSI. 

These 2 indices can be good indicators of the nutri-
tional and reproductive condition of a species (Rosa 
& Nunes 2002a, Zara et al. 2013). The HSI is consid-
ered a proxy for energy reserves stored in the liver 
(Jones & Obst 2000), while the GSI is often used as a 
proxy for gonad maturity effort and to highlight the 
different phases of the reproductive cycle (Devlam-
ing et al. 1982). Taking into consideration that fe -
males allocate more energy to reproduction than 
males (Kao et al. 1999, Tsikliras et al. 2010) and that 
the liver plays an important role in energy storage 
(Papiol et al. 2014), HSI and GSI were calculated for 
both sexes as well as in relation to season. 

The stomach contents, stored in Petri dishes, were 
then analysed and each prey item or piece (in the 
case of hard structures such as crustacean telsons, 
fish otoliths and cephalopod beaks) was identified to 

the lowest possible taxonomic level. The recognized 
taxa were kept separate in the analyses to best 
describe the diet. As many prey items were crushed 
and highly digested, thus making it impossible to 
weigh them individually, the subjective point method 
(e.g. Swynnerton & Worthington 1940) was used to 
determine the contribution of each prey to the overall 
content of a stomach. 

The following indices were then calculated: fre-
quency of occurrence of prey (%F = [number of stom-
achs containing prey / total number of stomachs] × 
100), percentage of numeric abundance of prey (%N = 
[number of prey / total number of prey] × 100) and 
percentage of wet weight of prey (%W = [weight of 
prey / total weight of prey] × 100). These values were 
then used to calculate the index of relative impor-
tance (IRI) according to Pianka (1973) for each taxo-
nomic category, expressed as %IRI = (IRIi / ∑IRI) × 
100 (Fanelli & Cartes 2008). Trophic diversity was 
calculated on the prey found in the stomachs of spec-
imens sampled across the sampling period using the 
Shannon-Wiener index (Shannon & Weaver 1949). 

2.3.  SIA 

For SIA, 26 individuals, divided by season (6 in win-
ter, spring and summer; 8 in autumn) and sex (3−4 fe-
males and 3−4 males for each season) were selected 
from the total sample. Specimens were selected ac-
cording to the average size observed across the sam-
pling period; thus, females used for SIA had a mean 
(±SD) CL of 41.5 ± 10.45 mm and males had an aver-
age CL of 44.5 ± 10.15 mm. The dissected muscle por-
tions were oven-dried at 60°C for 24 h and then ca. 
0.5−1 mg of tissue was put into tin capsules (Fanelli et 
al. 2010). In order to avoid pseudoreplication, each in-
dividual represented a replicate within the factor sea-
son (Hurlbert 1984). The samples were then automati-
cally loaded into an elemental analyser (Thermo 
Flash EA 1112) for the determination of total carbon 
and nitrogen and then analysed for δ13C and δ15N 
with a continuous-flow isotope-ratio mass spectrome-
ter (Thermo Delta Plus XP). Stable isotope ratios are 
expressed in relation to reference international stan-
dards (atmospheric N2 and PeeDee Belemnite for δ15N 
and δ13C, respectively), as: 

           δ13C or δ15N = [(Rsample/Rstandard) − 1] × 103      (1) 

where R = 13C/12C or 15N/14N. Analytical precision, 
based on standard deviations of internal standards 
(International Atomic Energy Agency IAEA-CH-6; 
IAEA-NO-3; IAEA-N-2), ranged from 0.10−0.19‰ for 
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δ13C and 0.02−0.08‰ for δ15N. Additionally, in order 
to estimate the trophic position (TP) of N. norvegicus 
in the area (see below), samples of primary consumers, 
i.e. Anadara kagoshimensis Tokunaga, 1906 and Mi-
machlamys varia Linnaeus, 1758, collected in the 
same fishing grounds were prepared for SIA. As lipids 
were not extracted from the samples, a correction for 
lipid contents (for samples with C:N ratios >3; Post et 
al. 2007) was applied, based on the equation proposed 
by Post et al. (2007), which considers the relationships 
between C:N ratios and δ13C signatures: 

       δ13Cnormalized = δ13Cuntreated − 3:32 + 0:99 × C:N  (2) 

where δ 13Cuntreated is the δ13C of the bulk (not-defat-
ted) samples. 

2.4.  Statistical analysis on stomach content data 

Sex ratios, GSI, HSI and fullness were analysed 
through univariate analyses. Firstly, data were checked 
for homogeneity of variance by the Levene test. In 
case of homogeneity, an ANOVA was run on the data 
set; alternatively, a non-parametric test was carried 
out. Differences in mean CL between males and fe-
males were tested by Welch’s t-test, which is used to 
determine the distribution probability between 2 vari-
ables (Hatfield 1998). Univariate analyses were carried 
out using the R packages ‘dplyr’, ‘ggplot2’ and ‘car’ 
(Wickham 2016, 2020, Fox & Weisberg 2019). Multi-
variate techniques were used to analyse changes in diet 
across seasons. First, non-metric multi-dimensional 
scaling (nMDS) analysis was carried out on the Bray-
Curtis resemblance matrix of 4th-root-transformed 
prey biomass data. After that, a permutational multi-
variate analysis of variance (PERMANOVA) was car-
ried out to test for differences among levels of factors 
(season and sex), using permutation methods and cal-
culating p-values through a Monte Carlo test (Ander-
son et al. 2008). PERMANOVA was run on a 2-factor 
crossed design, with season (4 levels) and sex (2 levels) 
as fixed factors. Permutations of residuals were run 
under a reduced model, and the significance level was 
set at p < 0.05. SIMPER was used to evaluate the taxa 
that contributed most to the similarity/dissimilarity be-
tween and within groups. Here, the ‘Decapoda’ cate-
gory referred to all unrecognized Decapoda prey be-
yond this level, apart from swimming crabs of the 
genus Liocarcinus Stimpson, Goneplax rhomboides 
Linneus, 1758, and Brachyura in general. Finally, 
canonical analysis of principal coordinates (CAP; An-
derson & Willis 2003) was run on the factor found to be 
significant in PERMANOVA in order to visualise sepa-

ration among samples on the basis of putative factors 
(along the 2 axes; Gorley 2006). In order to perform 
these analyses, prey items were assembled by taxo-
nomic groups. Multivariate analyses were carried out 
with PRIMER v6 PERMANOVA+ software (Gorley 
2006, Anderson et al. 2008). 

2.5.  Statistical analysis of isotope data 

Standard ellipse areas (SEA) for the δ13C and δ15N 
values were calculated using Bayesian statistics in 
the R package ‘SIBER’ (Jackson et al. 2011), to eval-
uate the area of   the isotopic niche of the species in 
the various seasons. After calculating the SEA, a 
Bayesian SEA analysis was used to calculate the pos-
terior distribution of the covariance matrix for each 
group (SEAc); the SEAc used the summary statistics 
calculated earlier to add the maximum likelihood 
estimates to the Bayesian estimates (Jackson et al. 
2011). Trophic positions based on stable isotope data 
(TPSIA) were estimated according to the following 
equation (Post 2002): 

                    TPSIA = [(δ15N − δ15Nb) / Δn] + λ              (3) 

where δ15N and δ15Nb are, respectively, the nitrogen 
isotopic signature of each Norway lobster specimen 
and that of the benthic and pelagic baselines taken 
from Fanelli et al. (2022) and E. Fanelli (unpubl. data; 
carnivorous and omnivorous zooplankton), Δn is the 
trophic enrichment expected at each trophic level 
(3.4‰), according to Post (2002), and λ is the TP of 
the baseline, set at 2 as a primary consumer (Carlier 
et al. 2007, Rigolet et al. 2014). Additionally, the R 
package ‘TROPHICPOSITION’ was used to calculate the 
TP, which allows the incorporation of a Bayesian 
model to calculate a consumer’s TP using stable iso-
topes with 1 or 2 baselines (Quezada-Romegialli et 
al. 2018a,b). For TP estimation, we used data from 
Fanelli et al. (2022) for the pelagic baseline and from 
E. Fanelli (unpubl. data) for the benthic baseline. 
Before running mixing models to determine the main 
contributors to the diet of N. norvegicus, a mixing 
polygon simulation was run using the R package 
‘splancs’ (Rowlingson & Diggle 2021), thus taking 
into account the isotopic signatures of consumers and 
the mean and standard deviation of dietary source 
isotopic signatures and trophic enrichment factors 
(Parnell et al. 2013). Particulate organic matter 
(POM) was also tested in the model as a probable 
food source. It was not possible for us to directly sam-
ple POM in the study area; thus, for the analysis we 
used values from another site within the Adriatic Sea 
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reported in Faganelli et al. (2009). The mixing poly-
gon was calculated for each iteration of source data, 
and each point in the polygon was used to determine 
whether consumers are within or on the edge of the 
mixing polygon. Iterations continued until the vari-
ance of the mixing polygon’s area stabilised (Smith et 
al. 2013). This analysis allowed us to select the most 
suitable food sources to be used in the mixing model, 
built using the R package ‘SIMMR’ (Parnell et al. 
2013). The results were used to investigate propor-
tions of different prey in the N. norvegicus diet pre-
viously identified on the basis of SCA results and 
refined through the mixing polygon routine. This 
analysis can discriminate various food sources from 
the isotope values   taken from the organisms’ tissue 
samples (Parnell et al. 2013). Prey used for mixing 
models were the brachyuran crabs G. rhomboides 
and Liocarcinus depurator Linnaeus, 1758, the bi -
valve M. varia, and the European anchovy En graulis 
encrasicolus Linnaeus, 1758. All isotope data used in 
the analyses are presented in Table 1. 

3.  RESULTS 

3.1.  Biological features 

The LFD obtained from all sampled Nephrops 
norvegicus specimens showed a unimodal distribution 
(Fig. S1 in the Supplement at www.int-res.com/
articles/suppl/m695p109_supp.pdf). Males ranged 
from 15−75 mm CL (mean ± SD: 47.3 ± 10.15 mm), 
while females ranged from 20−75 mm CL (42.6 ± 
10.45 mm). The LFD differed significantly between 

the 2 sexes (Welch’s t-test, t = 4.4, df = 266.5, p < 
0.001). In general, males were slightly more abundant 
during winter (0.35), spring (0.37) and autumn (0.44), 
while in summer (0.60) the number of females was 
higher. The highest GSI value for females was 
recorded in summer (11.33) and the lowest in autumn 
(0.04), while males’ GSI remained constant through-
out the year, ranging from 0.09−1.85 (Fig. 2). The HSI 
values for both females and males were relatively 
constant throughout the year, except for females in 
autumn where the maximum values   occurred (for fe-
males, HSI ranged from 0.05−6.15; for males, from 
0.42−5.61; Fig. 3). Overall, there were significant dif-
ferences between males and females for both GSI and 
HSI (p < 0.05). Differences in the GSI index were sig-
nificant for all factors tested (sex and season; Table 2). 
According to pairwise comparisons, there were sig-
nificant differences only for female specimens across 
seasons, with spring differing from summer and 
summer  differing from autumn and winter (both 
pairwise  comparisons: p < 0.05). The results for HSI 
were  significant (p < 0.05) for all factors tested (sex 
and season; Table 3a). For females, pairwise compar-
isons showed that HSI changed significantly across 
seasons, with autumn differing from all other seasons 
(both pairwise comparisons: p < 0.05). GSI and HSI 
values for males remained constant across seasons. 
The fullness index, calculated separately for females 
and males by season, showed a relatively constant 
trend (Fig. 4), with a slight increase ob served for 
males in autumn. However, there were no significant 
differences for any of the factors tested (Table 3b). 
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Species                              δ15N    δ13C   δ15N_SD  δ13C_SD 
 
Anadara demiri                 7.8     −19.5       0.7            0.2 
Anadara kagoshimensis   8.7     −18.5        1             0.6 
Mimachlamys varia          7.3     −19.8       0.2            0.1 
Tritia mutabilis                   11     −19.2       0.1            0.1 
Astropecten irregularis     8.9     −18.8       0.8             1 
Medorippe lanata            10.6    −17.6       0.5            0.8 
Goneplax rhomboides      8.4     −18.7       1.2            0.7 
Liocarcinus depurator      11.1    −18.1       0.7            0.7 
Phytoplankton                   3.3     −20.5       0.6            0.5 
Plankton omnivorous        4.4     −20.6       0.5            0.3 
Plankton carnivorous        5.1     −19.8       0.4            0.3 
Engraulis encrasicolus      8.6     −18.8       0.7            0.3 
Sardina pilchardus            8.1     −20.0       0.3            0.4 
Trachurus sp.                     9.0     −19.0       0.4            0.3

Table 1. Isotopic values   of all species used for stable isotope 
analysis. All prey isotopic values   are from E. Fanelli (unpubl. 
data) except Sardina pilchardus and Trachurus sp., which  

are from Albo-Puigserver et al. (2016)

Fig. 2. Seasonal variation of the gonadosomatic index (GSI) 
with median values (horizontal black lines), value beyond 
interquartile range (vertical black lines) and outliers (black 
dots), obtained for the sampled male and female Nephrops  

norvegicus individuals

https://www.int-res.com/articles/suppl/m695p109_supp.pdf
https://www.int-res.com/articles/suppl/m695p109_supp.pdf
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3.2.  Diet composition 

Out of 489 analysed stomachs, 329 were full. The 
analysis of diet composition in terms of %W showed 
that N. norvegicus mostly fed on decapods, fish and 
polychaetes throughout the year, with a total of 35 
 different taxa found (Box 1). Individuals of different 
sizes were consumed, mainly of small and medium 

sizes. Only one plastic item was found in the stom-
ach contents. The crabs Goneplax rhomboides and 
Liocarcinus spp. represented the most abundant 
items in all seasons (22 and 29% of all decapods, 
respectively). Fish showed the greatest abundance 
in summer, while polychaetes were more abundant 
in autumn (Fig. 5). There were significant differ-
ences in the diet, in terms of consumed prey, only 
for the factor season, with summer being signifi-
cantly different from autumn (p < 0.05; Table 4). 
There were no significant differences in diet 
between the 2 sexes (p > 0.05), which showed simi-
lar results for prey consumed. The CAP analysis 
showed a separation among seasons, with the first 
axis (CAP1) separating mostly spring and summer 
samples and the second (CAP2) separating winter 
and spring (Fig. S2). SIMPER analysis showed a 
strong contribution of decapod crustaceans and fish 
in every season (Table S1). In winter, spring and 
autumn, the most abundant prey were decapod 
crustaceans followed by fish. In summer, the prey 
with the greatest contribution was fish, followed by 
Liocarcinus spp. and G. rhomboides. 

3.3.  Stable isotope and Bayesian statistics 

The δ13C values ranged from −18.2 to −20.6‰, with 
the maximum observed in winter and the lowest in 
summer. δ15N values varied from 8.5−11‰, with the 
maximum observed in spring and the lowest in win-
ter (Fig. 6a). The estimation of SEAc showed that N. 
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                         df        RD       Mean RD        F              p 
 
Sex                    1    129.361    129.361    772.016    <0.001 
Season              3     79.431     26.477    158.013    <0.001 
Sex × season    3     88.402     29.467    175.859    <0.001

Table 2. Nonparametric ANOVA carried out for the gonado-
somatic index of Nephrops norvegicus by sex and season. 
The residual value (RD) represents the difference between 
the single GSI value and the mean of all obtained values 

Fig. 3. Seasonal variation of the hepatosomatic index (HSI) 
obtained for the sampled male and female Nephrops  

norvegicus individuals. Details as in Fig. 2

                         df        SS             MS           F              p 
 
(a) 
Sex                    1      14.09       14.092   15.888   <0.001    
Season              3      13.90         4.634      5.224     0.00156 
Sex × season    3      11.57         3.856      4.347     0.00509 
(b) 
Sex                    1       0.64         0.638      1.334      0.249   
Season              3       2.04         0.678      1.418      0.237   
Sex × season    3       2.85         0.950      1.986      0.115  

Table 3. Results of ANOVA carried out for the (a) hepatoso-
matic index and (b) fullness index of Nephrops norvegicus  

by sex and season 

Fig. 4. Seasonal variation of the fullness index of obtained 
for the sampled male and female Nephrops norvegicus  

individuals. Details as in Fig. 2
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FORAMINIFERA                       Caridea 
 Foraminifera*                           Processa sp. 
 Uvigerina sp.                            Crangonidae 
PORIFERA                                  Pontophilus spinosus 
 Porifera*                                   Alpheoidea 
GASTROPODA                          Alpheus glaber 
 Gastropoda*                             Paguridae 
 Rissoidae                                   Penaeoidea 
 Turritellidae                              Parapaeneus longirostris 
BIVALVIA                                   Solenocera membranacea 
 Bivalvia*                                   Pandaloidea 
 Anadara kagoshimensis          Plesionika heterocarpus 
 Kurtiella bidentata                  ECHINODERMATA 
 Mytilus galloprovincialis         Echinodermata* 
 Pectinidae                                Echinoidea 
CEPHALOPODA                       OSTEICHTYES 
 Chephalopoda*                        Osteichtyes* 
 Sepiolidae                                 Pleuronectiformes 
 Sepiola affinis                           Clupeiformes 
POLYCHAETAE                         Sardina pilchardus 
 Sternapsis scutata                    Engraulis encrasicolus 
CRUSTACEA                              Carangidae 
 Crustacea*                                Trachurus trachurus 
 Amphipoda                               Mullidae 
 Hyperiidae                                Mullus barbatus 
 Isopoda                                    PLANT DEBRIS 
 Decapoda                                  Debris of land plant 
 Brachyura                                 Algae 
 Goneplax rhomboides            PLASTIC REMAINS 
 Liocarcinus depurator 

Box 1. List of prey items found in the sampled Nephrops  
norvegicus stomachs. *unidentified material

(a) Source                   df         MS       Pseudo-F    p (perm) 
 
Season                         3       7737.2         2.06            0.01 
Sex                               1       1622.6         0.43            0.82 
Season × sex               3       2395.3         0.64            0.83 

(b) Groups                   t      p (perm) 
 
Winter, spring           0.43       0.96 
Spring, summer        1.28       0.15 
Summer, autumn     2.13       0.01 
Autumn, winter        0.96       0.48

Table 4. Results of PERMANOVA (a) main test and (b) pair-
wise comparisons for the diet composition of Nephrops  

norvegicus by sex and season

Fig. 5. Seasonal composition of the diet of Nephrops 
norvegicus in terms of the percentage of wet weight of prey. 
To better highlight the various categories of prey, taxa have 
been merged (Decapoda contains Brachyura, Liocarcinus  

spp. and Goneplax rhomboides)

Fig. 6. (a) Standard ellipses encompassing ca. 95% of the 
data drawn for each group independently on δ15N and δ13C, 
the dotted lines representing each individual showing the 
area occupied by each group (season). Ellipses are drawn 
per season (light blue: winter; red: spring; green: summer; 
black: autumn). (b) Standard ellipse area illustrating poste-
rior estimates of the Bayesian SEA for each group, each box 
represents the communities with credible intervals at 25−50 
and 75%, the red cross represents the median and the black 
point the mean value, used to compare individual groups  

(seasons) 
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norvegicus exhibited the widest niche 
width in winter and summer (Fig. 6b). 

The ‘TROPHICPOSITION’ analysis indi-
cated that the contribution of the ben-
thic baseline was higher compared to 
that of the pelagic baseline (Fig. 7). 
The Norway lobster was generally 
located at the fourth trophic level, 
with winter TP = 4.17, spring TP = 
4.37, summer TP = 4.08 and autumn 
TP = 3.90. 

The mixing polygon simulation 
showed that consumer values were 
inside the 95% mixing region (the out-
ermost contour in Fig. S3), allowing us 
to select the prey for the following 
mixing models. POM was eventually 
discarded from the Norway lobster’s 
diet, as it was not a probable food 
source; indeed, given its great vari-
ability, it did not fit well in the poly-
gon. The prey that showed the highest 
contribution to the N. norvegicus diet, 
according to the SIMMR output, was Liocarcinus 
depurator, while that showing the lowest was G. 
rhomboides (Fig. 8a). Seasonal differences in prey 
contribution were also evidenced by the model, with 
L. depurator mostly contributing to Norway lobster’s 
diet in winter, spring and summer, followed by 
Engraulis encrasicolus. A clear shift toward greater 
consumption of fishes occurred in autumn, when the 
crustacean component decreased (Fig. 8b). 

4.  DISCUSSION 

This is the first study integrating SCA and SIA to 
analyse the feeding ecology of Nephrops norvegicus 
in the Adriatic basin at a seasonal level. Results con-
firmed that the Norway lobster behaves as a scav-
enger and, to a lesser extent, also as an active benthic 
predator, mostly feeding on decapod crus taceans (es-
pecially the brachyuran crabs Liocarcinus spp. and 
Goneplax rhomboides), fish, polychaetes and bi-
valves. This finding is in agreement with what has 
been observed in other studies (Cristo 1998, Cristo & 
Cartes 1998, Santana et al. 2020). Overall, the trophic 
diversity of prey was low, and as a generalist pre -
dator, its diet tends to reflect local variations in food 
availability (Parslow-Williams et al. 2002). Indeed, the 
2 decapod species found to be prevalent in N. nor -
vegicus diet (G. rhomboides and Liocarcinus spp.) are 
particularly frequent across the whole study area 

(Santelli et al. 2017). Furthermore, these 2 species 
have little to no commercial value and are often 
 discarded by bottom trawl fisheries (Sánchez et al. 
2007), which may affect food availability for benthic 
scavengers (Ramsay et al. 1997, Depestele et al. 
2018). Therefore, as a consequence of the high trawl-
ing effort occurring in the Adriatic Sea (Russo et al. 
2020), the availability of these decapod species as 
 discard on the seabed may influence the feeding be-
haviour and fullness of N. norvegicus. Fish also repre-
sent important food items, according to the scaveng-
ing behaviour of the species (Nickell & Atkinson 1995, 
Cristo & Cartes 1998, Depestele et al. 2018). Moreover, 
some otoliths were found in stomach contents, espe-
cially of E. encrasicolus and  Sardina pilchardus Wal-
baum, 1972, suggesting that the fishes were not con-
sumed whole. Fish fragments or dead pelagic fish on 
the bottom could be present due to discard from fish-
ery activities (Tsagarakis et al. 2014). 

4.1.  Seasonal variations in the biological condition 
of N. norvegicus 

The GSI index increased in females during sum-
mer, in agreement with the reproductive period of 
the species as reported for the Adriatic Sea and other 
areas (Rosa & Nunes 2002b, Mente et al. 2009, 
Colella et al. 2018). For males, no fluctuations in the 
index across seasons were observed, consistent with 
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Fig. 7. Trophic position plot for the δ15N and δ13C isotopic signals of Nephrops 
norvegicus and of the considered benthic (Benthic_BL) and pelagic (Pelagic_BL)  

baselines
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a pattern of continuous spermatogenesis (Farmer 
1974, Sardà 1998). In females, the HSI index showed 
an increase in autumn after the reproductive period, 
with a trend contrasting that described for the 
Atlantic Ocean (Rosa & Nunes 2002b). These results 
could be attributed to the increase in fullness values 
which occurred in autumn and recovery after repro-
ductive activity. Indeed, females need to invest in 
lipids to produce eggs, especially for yolk formation 
(Gibson & Barker 1979, Dall 1981, Relini et al. 1998). 
Stomach fullness was relatively constant throughout 
the year (with slightly higher values in autumn), sug-
gesting continuous predatory behaviour during all 

seasons, as observed in the north-eastern Atlantic 
(i.e. Irish Sea; Parslow-Williams et al. 2002), with no 
differences between sexes. 

4.2.  Seasonal variations in the feeding ecology 

Changes in feeding habits of the Norway lobster are 
linked to both the availability of prey on the bottom 
and changes in energy demand throughout the year 
(i.e. for reproduction; Bell et al. 2006). When emerging 
from their burrows, Norway lobsters do not usually 
travel long distances (Vigo et al. 2021). The strong ter-
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Fig. 8. (a) Prior and posterior distributions of dif-
ferent food sources for Nephrops norvegicus 
during the year; (b) comparison of proportions 
of the diet of N. norvegicus among sources 
and across seasons (colours as in part (a) of the  

figure)
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ritoriality shown by this species could influence sea-
sonal variations in its diet when mobile prey availabil-
ity varies over time and space according to seasonal 
patterns; for example, Liocarcinus depurator, one of 
the most important prey species, undergoes offshore 
migrations during the summer (Onay & Bilgin 2021) in 
the Black Sea. Seasonal migrations have also been re-
ported for other relevant prey in Norway lobsters’ diet 
(see Fouzai et al. 2012). The possible fluctuations in 
the abundance of prey could influence the biological 
conditions of the species. In the study area, small 
pelagic species found in the lobsters’ stomach contents, 
especially S. pilchardus, may have been discarded by 
bottom trawl fisheries (confirmed by DCF data stored 
at CNR-IRBIM) and, to a lesser extent when fish are 
small or damaged, also by pelagic trawlers (Santojanni 
et al. 2005). While decapod crustaceans were abundant 
prey items in the N. norvegicus diet throughout the 
year, higher consumption of fishes occurred in spring 
and summer. The higher contribution of the fish prey 
signature in the predator’s tissue in autumn (as ob-
tained by mixing models based on δ15N and δ13C val-
ues) was explained by a delayed time of incorporation 
following consumption. Prey contribution as deter-
mined by SIA generally confirms SCA results (Polunin 
& Pinnegar 2002, Post 2002). Isotopic values   change 
across seasons, with variations related to food avail-
ability also reflected in the analysis of the breadth of 
trophic niches (Post 2002, Decottignies et al. 2007). Al-
though differences between sexes across seasons due 
to reproductive activities were expected (Rosa & 
Nunes 2002a, Colpo & López-Greco 2018), males and 
females exhibited similar feeding strategies. Similar 
results of inter-sex feeding behaviour for N. norvegicus 
were described by Santana et al. (2020) in Clew Bay 
(Ireland). 

Although other authors (Murray & Cowie 2011, 
Carreras-Colom et al. 2022) have reported plastic 
items in the stomach contents, in our study this factor 
was not relevant. However, recognition of these items 
could have been masked by other prey and/or their 
small size, as the presence of microplastic fragments 
and fibres in the gut (stomach and intestine together) 
of Norway lobsters from the same study area have al-
ready been reported by Martinelli et al. (2021). 

4.3.  Position of N. norvegicus in the benthic  
food web 

Analysis of the TP of N. norvegicus suggests that 
the species occupies a high trophic level, as al ready 
observed for other decapods (Fanelli et al. 2013), 

with minimal differences across seasons. The scav-
enging behaviour of the species, whereby it con-
sumes other high trophic level species (i.e. present-
ing high isotopic values) such as fish or large 
crustaceans (sometimes similar in size to N. norvegi-
cus), supports such high TP value attribution (Cristo 
1998, Santana et al. 2020). The consumption of prey 
at different trophic levels   can vary according to the 
area, and consequently in fluence the TP of N. nor -
vegicus (Hinz et al. 2017). The TP model confirmed 
that N. norvegicus mostly relies on benthic food 
items (albeit including fish). In this study the variabil-
ity in TP can indicate di versified consumption based 
on prey availability, including discard; this is indeed 
common in species that can be active predators as 
well as scavengers, like Callinectes sapidus Rathbun, 
1896, a crustacean with a similar feeding ecology 
(Carrozzo et al. 2014). However, changes in this pat-
tern can be expected in the future; for example, a 
decrease in fisheries discards due to application of 
the Landing Obligation (EU 2013) could affect the TP 
of N. norvegicus. 

5.  CONCLUSIONS 

This work contributes to our knowledge of the 
feeding ecology of Nephrops norvegicus. The results 
confirm the scavenging behaviour of the species, and 
the strong relationship of its diet with the local ben-
thic community, with Liocarcinus spp. and Goneplax 
rhomboides, being common species in the study 
area. Furthermore, this study highlights possible 
links between the feeding ecology of the species and 
the availability of fisheries discard. The results of the 
combined use of SIA and SCA allowed us to obtain a 
complete description of the feeding habits of N. 
norvegicus throughout the year and link this be -
haviour to changes in GSI, HSI and fullness indices. 
N. norvegicus is of great commercial importance 
in the study area which represents an important and 
heavily exploited fishing ground. The TPs recorded 
here can be used in future food-web models within 
the study area. Therefore, the results of the present 
study are of paramount importance within the con-
text of an ecosystem approach to fisheries. 
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