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1.  INTRODUCTION 

The largest and least exploited fish stocks of the 
world’s oceans inhabit the seabed and water column 
at depths below 200 m (Robison 2009, Priede 2017). 
Conservation efforts for deep-sea fish fauna are 

essential, especially when considering threats due to 
anthropogenic disturbances, such as seabed mining 
(Cuyvers et al. 2018) and deepwater fisheries (Smith 
2007). It is important to obtain accurate estimates of 
deep-sea fish diversity (i.e. how many fish species 
live in each geographic region) to develop efficient 
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management and conservation methods. However, 
morphological identification of deep-sea species is 
hindered by taxonomic confusion or poor diagnostic 
features (Kawaguchi & Shimizu 1978, Kenchington 
et al. 2017, Finucci et al. 2018). These major obstacles 
have resulted in the species diversity of deep-sea fish 
being much less well known than that of coastal fish 
species (Tanner et al. 2018, Miyazaki et al. 2019). 

DNA barcoding has been developed into an effi-
cient tool for identifying species and providing new 
perspectives on ecology, taxonomy, and biodiversity 
(Hebert et al. 2003, Krishnamurthy & Francis 2012, 
Gaither et al. 2016, Sachithanandam & Mohan 2018). 
Therefore, DNA barcoding should also offer an effec-
tive approach for identifying cryptic deep-sea fish 
species and characterizing genetic diversity in these 
species (Kenchington et al. 2017). The mitochondrial 
cytochrome c oxidase subunit I (COI) region is the 
standard mitochondrial DNA (mtDNA) marker used 
for DNA barcoding by the international community, 
and COI reference sequences of marine fish species 
have been collated (Ward et al. 2005, Hubert et al. 
2012) and accumulated in the Barcode of Life Data 
System (BOLD; Ratnasingham & Hebert 2007) and 
the International Nucleotide Sequence Database 
Collaboration (Arita et al. 2021). The 2% Kimura 2-
parameter (K2P) distance between a query sequence 
and a reference sequence was used as a criterion for 
fish barcode identification (Ward 2009); more robust 
methods, such as the barcode index number (BIN) 
system (Ratnasingham & Hebert 2013), have been 
devised and used recently. The accumulation of ref-
erence sequences from deep-sea fish species from 
around the world contributes to accurate species 
identification as well as aiding the discovery of cryp-
tic species and characterizing intraspecific genetic 
differentiation of many widespread species (Priede 
2017). 

Although DNA barcoding has clear potential for 
exploring deep-sea fish species diversity, the bar -
coding method using mtDNA markers has some 
potential limitations to infer species boundaries; the 
pattern of genetic differentiation between species 
shown by mtDNA may differ from that shown by 
nuclear DNA due to the effect of ancestral polymor-
phism, sex-biased gene flow, selection of any mtDNA 
nucleotides, introgression following hybridization, 
etc. (Moritz & Cicero 2004). Therefore, intraspecific 
genetic differentiation in mtDNA sequences that 
suggests the existence of cryptic species needs to be 
confirmed by analyses of multiple nuclear genetic 
markers (Moritz & Cicero 2004); species diversity in 
various fish taxa has been explored by the combina-

tion of mtDNA barcoding and analysis of nuclear 
genetic markers (Monaghan et al. 2005, Raupach et 
al. 2010). To date, this approach for the study of 
deep-sea fish species has been limited; however, 
the combination of mtDNA barcoding with recently 
developed high-throughput sequencing methods, 
such as restriction site-associated DNA sequencing 
(RAD-seq) (Peterson et al. 2012), genotyping-in-
thousands by sequencing (GT-seq) (Campbell et 
al. 2015), multiplexed intersimple sequence repeat 
(ISSR) genotyping by sequencing (MIG-seq) (Su -
yama & Matsuki 2015), and genotyping by random 
amplicon sequencing-direct (GRAS-Di) (Hosoya et 
al. 2019), offers a potentially rapid and reliable 
approach for analyses of the genomes of deep-sea 
fish species. Among these methods, MIG-seq is a 
method that amplifies anonymous genome-wide 
ISSR, which is widely used in the population genetics 
of fishes (e.g. Hirase et al. 2012, Ni et al. 2014, Kato 
et  al. 2021), using multiplex PCR without prior 
genetic information. It has been shown to be cost 
effective and capable of identifying genetic diversity 
within and among species, even from small tissue 
samples and from relatively low-quality DNA from 
museum specimens (Iwasaki et al. 2019, Eguchi et al. 
2020). Therefore, MIG-seq is considered optimal for 
DNA barcoding based on nuclear genomes (Suyama 
et al. 2022). 

The northwestern Pacific Ocean has high species 
richness, which may be attributed to the high topo-
graphic complexity that includes large semi-enclosed 
seas, several islands, and deep-sea trenches (Fuji -
kura et al. 2010, Brandt et al. 2019). Such topographic 
complexity is also expected to result in high species 
diversity and genetic variation in deep-sea fish spe-
cies. However, only a limited number of large-scale 
DNA barcoding studies have been conducted on 
deep-sea fish species in the northwestern Pacific 
Ocean (Zhang & Hanner 2011, Wang et al. 2012). 
Here, we performed DNA barcoding of mesopelagic 
and demersal fish species on the continental shelf 
and upper slope in the seas around Japan and Tai-
wan; the analyzed specimens were obtained from 
fish landed at Japanese and Taiwanese fishing ports. 
All specimens used for DNA barcoding were identi-
fied using available monographs and taxonomic  
literature and deposited as accessible specimens in 
museum collections for future studies. Based on 
phylogenetic analyses using the obtained DNA bar-
coding data, we sought to identify cryptic species 
and to characterize the genetic diversity in deep-
sea fish species that are distributed around the 
world. Our phylogenetic analyses indicated the oc -
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currence of considerable intraspecific genetic dif -
ferentiation in deep-sea fish species. To validate the 
effectiveness of DNA barcoding for identifying 
cryptic species and characterizing genetic diversity 
in deep-sea species, we focused on 3 northwestern 
Pacific Ocean deep-sea species and investigated 
whether the intraspe cific genetic differentiation 
detected by COI sequences could also be detected 
using nuclear DNA markers obtained by MIG-seq. 

2.  MATERIALS AND METHODS 

2.1.  Specimens and sample collection 

As many specimens as possible of mesopelagic and 
demersal fish species from continental shelves and 
slopes (n = 166) of Japanese and southern Taiwanese 
waters were collected from 2018 to 2020. The spec-
imens were obtained from fishery catches landed 
at  10 ports: Ishinomaki (Miyagi Prefecture [Pref.], 
Japan), Kanaya (Chiba Pref., Japan), Hiratsuka 
(Kanagawa Pref., Japan), Numazu (Shizuoka Pref., 
Japan), Yui (Shizuoka Pref., Japan), Maisaka (Shi -
zuoka Pref., Japan), Isshiki (Aichi Pref., Japan), Shin-
Naga saki (Nagasaki Pref., Japan), Kasasa (Kago shima 

Pref., Japan), and Dong-gang (Pingtung County, Tai-
wan) (Fig. 1). After dissecting tissue samples for DNA 
analysis using a sterile blade and preserving in 99% 
ethanol, each specimen was fixed in 10% formalin. 
The specimens were deposited in the Kanagawa 
Prefectural Museum of Natural History (KPM-NI), 
Japan, and the National Museum of Marine Biology 
and Aquarium (NMMB-P), Taiwan. All specimens 
were identified based on morphological criteria 
described by Nakabo (2013) and other  taxonomic ref-
erences (e.g. Jordan & Snyder 1900, Kawaguchi & 
Shimizu 1978, Didier et al. 2012, Koeda & Ho 2019). 
The taxonomic system and scientific names were 
based on Motomura (2020). Information on the geo-
graphic distribution of each species is based on 
Nakabo (2013), Koeda & Ho (2019), FishBase (https://
www.fishbase.se), and BOLD (www.boldsystems.org). 

2.2.  DNA extraction and COI sequencing 

Genomic DNA was extracted using a Gentra Pure-
gene Tissue Kit (Qiagen). PCR amplification of the 
mitochondrial COI gene was performed in a 10 μl mix-
ture containing 10 to 50 ng of template DNA, 0.4 μmol 
of each forward and reverse primer (forward: FishF2 
[5’-TCG ACT AAT CAT AAA GAT ATC GGC AC-3’] 
and reverse: FishR2 [5’-ACT TCA GGG TGA CCG 
AAG AAT CAG AA-3’], or forward: FishF1 [5’-TCA 
ACC AAC CAC AAA GAC ATT GGC AC-3’] and 
reverse: FishR1 [5’-TAT ACT TCG GGG TGG CCA 
AAG AAT CA-3’] [Ward et al. 2005]), 0.2 μl of 
Tks Gflex DNA Polymerase (Takara Bio), 5 μl of 2× 
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Fig. 1. Fishing ports in Japanese (black circle) 
and Taiwanese (white circle) waters where 
specimens were collected. The specimens 
were collected from fishing ports with deep- 

water catches
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Tks Gflex Buffer (Takara Bio), and distilled water. 
The following thermal cycling program was used to 
amplify the DNA: 1 cycle at 95°C for 2 min; 35 cycles 
of denaturation at 94°C for 30 s, annealing at 54°C for 
30 s, and extension at 72°C for 1 min; and, finally, a 
single extension step at 72°C for 10 min. PCR prod-
ucts were purified with ExoSAP-IT (Thermo Fisher 
Scientific) following the manufacturer’s protocol. 
Purified PCR products were sequenced in the for-
ward direction using a BigDye Terminator v3.1 Cycle 
Sequencing Kit (Thermo Fisher Scientific) and an 
Applied Biosystems 3130 DNA Analyzer (Thermo 
Fisher Scientific). The obtained sequences were reg-
istered with the DNA Data Bank of Japan (DDBJ), 
BOLD, and the National Center for Biotechnology 
Information (NCBI). The project name for BOLD is 
‘DNA barcoding of deep-sea fishes around Japan’ 
(code: TERA). Species identification for each ob -
tained sequence was based on the BIN of BOLD 
(June 23, 2021). The BIN system is an online frame-
work that clusters barcode sequences algorithmi-
cally; the BIN shows high concordance with species 
(Ratnasingham & Hebert 2013). The BIN system gen-
erally recognizes as the same species those with a 
98% K2P distance or less and assigns sequences to 
the same BIN. However, if there is a possibility of 
misidentification or cryptic species, the BIN may not 
have been assigned correctly. Therefore, our study 
proposed that this framework classify species into 
4 cases, as described below and in Table S1 in  
the Supplement at www.int-res.com/articles/suppl/
m701p083_supp.pdf. 

Case I, match to species: The top hit species (BIN) 
matches the morphological identification with >98% 
sequence similarity. The nearest neighbor shows 
≤98% sequence similarity. Classification to this case 
indicates that morphological and molecular identifi-
cation are consistent. 

Case II, genetic differentiation: The top hit species 
(BIN) matches the morphological identification with 
>98% sequence similarity. The nearest neighbor 
shows ≤98% sequence similarity. However, 2 or 
more genetic lineages are found within the top hit 
species. This case suggests the existence of cryptic 
genetic differentiation or misidentification. 

Case III, ambiguous match: Two or more species 
(BIN) show >98% sequence similarity. One of these 
species matches the morphological identification. 
This is caused by misidentification of the registered 
sequence or the existence of species that are geneti-
cally quite close. 

Case IV, unmatched: No species match (no BIN is 
assigned to a query sequence, and the top hit se -

quence is less than 98%) because reference se -
quences are not registered in BOLD. 

2.3.  Phylogenetic analyses based on COI 
sequences 

To identify potential cryptic deep-sea fish species 
from Japanese and Taiwanese waters, phylogenetic 
and population genetic analyses based on COI 
sequences and genome-wide single-nucleotide poly-
morphism (SNP) loci were performed for species for 
which sequences were obtained from multiple speci-
mens (Tables 1 & 2). We downloaded COI sequences 
of each focal species from NCBI (https://www.
ncbi.nlm.nih.gov) that matched the following crite-
ria: at least 500 bp in length, clearly labeled with the 
species name, and labeled with the sampling loca-
tion. We used these sequences for phylogenetic 
analyses with the newly obtained COI sequences. 
COI sequence alignment was performed using 
ClustalW (Thompson et al. 2002). The aligned DNA 
sequences were trimmed to the same lengths 
between samples using MEGA X (Kumar et al. 2018) 
and assigned into haplotypes using FaBox 1.5 (Ville-
sen 2007). Neighbor-joining phylogenetic trees were 
constructed in MEGA X using the K2P substitution 
model with complete deletion options and 1000 boot-
strap replicates. 

2.4.  Genome-wide SNP analysis by MIG-seq 

Genome-wide SNP loci were used as nuclear 
genetic markers; these markers were obtained from 
each species using MIG-seq. MIG-seq, one of the 
reduced complexity methods for building next-gen-
eration sequencing libraries by PCR similar to GRAS-
Di and GT-seq (Campbell et al. 2015), was developed 
to analyze ecological studies (Suyama & Matsuki 
2015). As MIG-seq is a cost-effective method, avail-
able on non-model organisms without designing 
original primers, and optimized for low-quality DNA 
(Suyama & Matsuki 2015), it is suitable for use with 
relatively low-quality DNA from some specimens. 

MIG-seq was performed for 3 species, Chimaera 
phantasma Jordan & Snyder, 1900 (n = 16), Pyra-
modon ventralis Smith & Radcliffe, 1913 (n = 6), and 
Neoscopelus microchir Matsubara, 1943 (n = 20), 
because mtDNA analyses showed cryptic differenti-
ation within each of these species (see Results, Sec-
tion 3). MIG-seq and quality control of the raw MIG-
seq data were carried out as described by Suyama et 
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al. (2022), and 1632 to 7437 reads were obtained 
(Table S2). After the quality control was complete, 
the remaining reads were assembled using de novo 
map pipelines (ustacks, cstacks, sstacks) in Stacks 
v.1.48 (Catchen et al. 2011). Homologous sequences 

(loci) were assembled in each sample using ustacks 
with the following settings: minimum depth of cover-
age = 3, maximum distance allowed between stacks = 
3, maximum distance allowed to align secondary reads 
to primary stacks = 4, and upper bound for epsilon 
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Species                         Maximum interspecific    Reference data 
                                          K2P distance (%)          
 
Homostolus acer                           2.1                    Suruga Bay (this study), Taiwan (KU885675.1) 
Peristedion orientale                    2.9                    Enshunada Sea (this study), Taiwan (KU892829.1) 
Chimaera phantasma                   3.8                    South China Sea (this study), Taiwan (KU687932.1, KU687933.1), Kago- 
                                                                                shima (this study), Nagasaki (this study), Enshunada Sea (this study),  
                                                                                Suruga Bay (this study) 
Diaphus garmani                          3.5                    Taiwan (this study, KU943110.1) 
Benthosema pterotum                  3.0                    Sagami Bay (this study), Indonesia (HQ564294.1) 
Deania calcea                               5.4                    Sagami Bay (this study), Chile (KU737834.1), Iberia (JN161153.1) 
Etmopterus molleri                       5.9                    Enshunada Sea (this study), Okinawa (GU130715.1), Australia  
                                                                                (HQ956341.1) 
Dasyscopelus asper                      8.7                    Suruga Bay (this study), Gulf of Mexico (MG856572.1) 
Dasyscopelus obtusirostris           2.0                    South China Sea (this study), Gulf of Mexico (MG786362.1) 
Neoscopelus microchir               11.8                     Enshunada (this study), South China Sea (this study), Taiwan  
                                                                                (KU943094.1, KU943097.1), South Africa (KF489667.1) 
Synagrops japonicus                    6.6                    Enshunada Sea (this study), South China Sea (MH638809.1), Australia  
                                                                                (JN313203.1) 
Notacanthus chemnitzi                3.3                    Ishinomaki (this study), Canada British Columbia (FJ164915.1), North  
                                                                                Atlantic (EU148272.1), Greenland (LC163604.1) 
Bathophilus longipinnis             16.8                     Suruga Bay (this study), USA (MG856424.1) 
Stomias affinis                              2.8                    Suruga Bay (this study), Gulf of Mexico (MG856779.1), Taiwan  
                                                                                (LU943042.1) 
Polymetme corythaeola               6.1                    Suruga Bay (this study), South Africa (JF494214.1), Canada Nova Scotia 
                                                                                (KY033938.1) 
Chauliodus sloani                       14.8                     Suruga Bay (this study), Taiwan (KU943050.1), USA (MH378480.1) 
Cyttopsis rosea                             3.1                    Enshunada Sea (this study), Taiwan (KU943302.1), USA (MH378494.1) 
Antigonia capros                          3.6                    Suruga Bay (this study), South China Sea (KY371135.1) 
Idiacanthus fasciola                      6.0                    Suruga Bay (this study), Gulf of Mexico (MT323722.1) 
Photostomias guernei                 17.4                     Suruga Bay (this study), Canada Atlantic (KY033730.1) 
Cryptopsaras couesii                    6.1                    Suruga Bay (this study), Taiwan (KU943197.1), East Pacific (GU440295.1),  
                                                                                South East Pacific (HQ956180.1), Atlantic Ocean (MH033862.1)

Table 1. Cosmopolitan deep-sea fishes that showed high intraspecific genetic diversity. K2P: Kimura 2-parameter

Species                                Interspecific K2P        Reference data 
                                                distance (%) 
 
Pseudotriakis microdon               0.013                  Suruga Bay (this study), Atlantic Ocean (EU148299.1) 
Dalatias licha                                0.000                  Suruga Bay (this study), Australia (HQ956264.1), Malta (KY909372.1),  
                                                                                 North Atlantic (GU130676.6) 
Zameus squamulosus             0.005−0.009            Taiwan (this study), Australia (JN312348.1), India (KF899772.1) 
Ruvettus pretiosus                  0.000−0.002            Sagami Bay (this study), South Africa (HQ945992.1), Australia  
                                                                                 (JN313155.1), Mediterranean Sea (LN907524.1) 
Simenchelys parasitica           0.002−0.007            Ishinoaki (this study), Canada (KY033948.1), New England (KF930446.1) 
Epigonus denticulatus                 0.000                  Suruga Bay (this study), Africa (JF493429.1) 

Table 2. Cosmopolitan deep-sea fishes that showed low intraspecific genetic diversity. K2P: Kimura 2-parameter
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(error rate [bounded high]) = 0.01. A catalogue of 
consensus loci was built for each sample using 
ustacks to assemble the loci, allowing only 2 mis-
matches between sample loci. A list of loci was 
obtained with the following settings: minimum num-
ber of populations in a locus = 1, minimum percent-
age of samples in a population = 0.90, minimum 
minor allele frequency (-min-maf) = 0.05, and maxi-
mum observed heterozygosity (max-obs-het) = 0.7; 
data analysis was restricted to the first SNP per locus 
(-write-single-snp). 

Maximum likelihood trees were constructed using 
RAxML with 1000 bootstrap replicates. Population 
genetic structure was assessed using STRUCTURE 
v.2.3.4 software (Pritchard et al. 2000). An admixture 
ancestry model with correlated allele frequencies 
was generated for a putative number of subpopula-
tions (K) ranging from 2 to 5. Ten runs of 10 000 
Markov chain Monte Carlo iterations after a burn-in 
period of 10 000 iterations were carried out for each 
K-value. The STRUCTURE output was analyzed in 
STRUCTURE HARVESTER (Earl 2012). The most 
likely number of clusters was identified by the ΔK 
method (Evanno et al. 2005). 

3.  RESULTS 

3.1.  DNA barcoding of northwestern Pacific Ocean 
deep-sea fish species 

A total of 166 COI sequences were obtained from 
115 species, 84 genera, 48 families, and 17 orders of 
fish. Since 468 deep-sea fish species (140 families; 
Shinohara & Matsuura 1997) have been recorded in 
Suruga Bay and 602 species (168 families; Shinohara 
et al. 2005) in the waters around the Ryukyu Islands, 
our samples are expected to cover more than 20% of 
deep-sea fish species in the waters around Japan and 
Taiwan. The sequence lengths ranged from 500 to 
660 bp, and no stop codons, insertions, or deletions 
were observed in any of the sequences (Table S1). 
Genetic distances between species within genera 
were generally >6.0%, although there were a few 
exceptions (Fig. 2); for example, Pentaceros japoni-
cus Steindachner, 1883 versus Pentaceros wheeleri 
(Hardy, 1983) (Pentacerotidae) showed low genetic 
differentiation (0.009%) despite the large morpho-
logical differences (Fig. S1). Intraspecific genetic dis-
tances were generally <1.0%. 

Within the 115 species, 29 species were Case I 
(match to species), 13 species were Case II (genetic 
differentiation), and 44 species were Case III (ambi -

guous match); 19 species were assigned to Case IV 
(unmatched) (Fig. 3). Nine species were assigned to 
both Case II and Case III because 2 or more genetic 
lineages of the same species with ≤98% sequence 
similarity and different species with >98% sequence 
similarity were deposited in BOLD. Although 22 spe-
cies (13 + 9) were assigned to Case II, 2 of these spe-
cies, Coelorinchus multispinulosus Katayama, 1942 
and Coryphaenoides marginatus Steindachner and 
Döderlein, 1887, might have been misidentified, as 
their morphological characteristics are very similar 
to  the species Coelorinchus kamoharai Matsubara, 
1943 and Coryphaenoides microps (Smith & Rad-
cliffe, 1912), respectively. Thus, 20 of the Case II spe-
cies showed evidence of intraspecific genetic differ-
entiation. Overall, 53 species (44 + 9) were assigned 
to Case III, suggesting the existence of many mis -
identifications in deep-sea fish species. For example, 
3 Coryphaenoides species (Macrouridae) were identi-
fied and sequenced in this study; however, some 
DNA database sequences appear to have been mis -
identified presumably due to the small morphological 
differences among these species (Fig.  S2). For 35 
species, including those assigned to Case IV, the COI 
sequences from Japanese waters were ob tained for 
the first time in this study (Table S3). 

3.2.  Phylogenetic analyses of deep-sea fish species 
using COI sequences 

We performed phylogenetic analyses using COI 
sequences obtained here and in previous studies of 
the 20 Case II species suspected of cryptic genetic 
differentiation (Table 1, Fig. 4). These species had 
mesopelagic and demersal ecotypes, and 2 major 
patterns were identified (Fig. 4). The first pattern was 
genetic differentiation between the western and 
eastern Pacific, in 9 species: Bathophilus longipin-
nis (Pappenheim, 1914) (Stomiidae); Stomias affinis 
Günther, 1887 (Stomiidae); Chauliodus sloani Bloch 
& Schneider, 1801 (Stomiidae); Photostomias guernei 
Collett, 1889 (Stomiidae); Idiacanthus fasciola Peters, 
1877 (Stomiidae); Dasyscopelus asper (Richardson, 
1845) (Myctophidae); Dasyscopelus obtusirostris (Tån-
ing, 1928) (Myctophidae); Cyttopsis rosea (Lowe, 
1843) (Parazenidae); and Antigonia capros (Lowe, 
1843) (Caproidae). The second pattern was genetic 
differentiation between species in the South China 
Sea and Japanese waters in the northwestern Pacific 
Ocean, in 4 species: Chimaera phantasma Jordan & 
Snyder, 1900 (Chimaeridae); Homostolus acer Smith 
& Radcliffe, 1913 (Ophidiidae); Benthosema ptero-
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tum (Alcock, 1890) (Myctophidae); and Peristedion 
orientale Temminck & Schlegel, 1844 (Peristediidae). 

In addition to the 2 major patterns described above, 
genetic differentiation was also found between the 
northwestern Pacific Ocean and Australia: Etmo -
pterus molleri (Whitley, 1939) (Etmopteridae); be -
tween the Pacific Ocean and the North Atlantic: 
Notacanthus chemnitzi (Bloch, 1788) (Notacanthi-
dae); between Australia and the northwestern At -
lantic Ocean: Cryptopsaras couesii (Gill, 1883) (Cera -
tiidae); between the northwestern Atlantic Ocean 
and the Indian Ocean: Synaphobranchus kaupii 
Johnson, 1862 (Synaphobranchidae); and between 
the southeastern Pacific Ocean and the northeastern 
Atlantic Ocean: Deania calcea (Lowe, 1839) (Centro -
phoridae). Diaphus garmani Gilbert, 1906 (Mycto -
phidae) had 2 clades that were distributed sympatri-

89

Fig. 2. Comparison and 
identification of DNA bar-
coding of deep-sea fishes 
from Japanese and Tai-
wanese waters. (A) Inter-
generic Kimura 2-para-
meter (K2P) distance 
between species within 
the same family. (B) Inter-
specific K2P distance 
between species within  

the same genus

Fig. 3. Results of species identification based on the barcode 
index number of the Barcode of Life Data System. See  

Section 2.2 for definitions of cases
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cally around south Taiwan. Neosco pelus microchir 
Matsubara, 1943 (Neoscopelidae) was divided into 4 
lineages; 2 of these lineages showed sympatric distri-
bution in the northwestern Pacific Ocean and South 
Africa. By contrast, a BLAST search indicated that 1 
lineage (1 individual) of N. microchir in South Africa 
was genetically close to N. macrolepidotus Johnson, 
1863 (Neoscopelidae), suggesting that this individual 
might be N. macrolepidotus and was misidentified. 
Note that intraspecific genetic divergences in C. 
phantasma and N. micro chir were supported here 
by  the phylogenetic analyses using multiple sam-
ples from Japanese and Taiwanese waters (Fig. 5, 
Table S4). 

Phylogenetic analyses based on COI sequences 
were also performed for 2 Case IV species, Pyra-
modon ventralis and Hydrolagus mitsukurii (Jordan 
& Snyder, 1904) (Fig. S3), for which sequences were 
obtained from multiple individuals. P. ventralis showed 
2 intraspecific lineages with more than a 2% K2P 
genetic distance (P. ventralis: 7.4%, Table S4). The 2 
P. ventralis lineages are distributed sympatrically in 
Japanese waters (Fig. 5A). 

Thirty species were assigned to Case I. Six of these 
species showed less than a 1% intraspecific K2P dis-
tance among COI sequences despite the samples 
being obtained from the northwestern Pacific Ocean 
and other waters: Pseudotriakis microdon de Brito 
Capello, 1868 (Pseudotriakidae); Dalatias licha (Bon-
naterre, 1788) (Dalatiidae); Zameus squamulosus 
(Günther, 1877) (Somniosidae); Simenchelys parasit-
ica Gill, 1879 (Synaphobranchidae); Epigonus den-
ticulatus Dieuzeide, 1950 (Epigonidae); and Ruvettus 
pretiosus Cocco, 1833 (Gempylidae) (Fig. 6, Table 2). 
D. licha had the same haplotype globally, while R. 
pretiosus had the same haplotype in the Pacific and 
Atlantic oceans. 

3.3.  Phylogenetic and population genetic analyses 
of three deep-sea species using SNP genotyping data 

The DNA barcoding data suggested hidden 
genetic differentiation in 3 species from Japanese 
and Taiwanese waters that showed more than a 
2%  K2P genetic distance (Table 2, Table S4): 
N.  microchir (10.0%), C. phantasma (3.8%), and 
P.  ventralis (7.4%). We also confirmed that the 
sequences of these 3 species were assigned to 2 
BINs: C. phantasma, BOLD ACV8569 and BOLD 
ADM5175; N. microchir, BOLD AAC6768 and BOLD 
ADC8835; P. ventralis, BOLD AAF4259 and an 
unregistered BIN. 

We conducted phylogenetic and population genetic 
analyses of genome-wide SNP data obtained by MIG-
seq to verify whether the results of COI se quences 
were supported by nuclear polymorphisms (Table S2; 
C. phantasma, 129 SNPs; N. microchir, 304 SNPs; 
P. ventralis, 416 SNPs). All 3 species showed 2  lin-
eages in their COI sequences, and the RAxML trees 
based on SNPs also showed 2 lineages (Fig. 5A,B). 
The existence of 2 genetic clusters in each species 
was supported by the ΔK values from the STRUC-
TURE analyses (Fig. 5C); P. ventralis individuals 
were clearly divided into 2 major genetic clusters, 
but the optimal ΔK was for 3 clusters due to the exis-
tence of a minor cluster (Fig. 5C, Fig. S4). 

4.  DISCUSSION 

COI sequences from 115 species from 48 families of 
deep-sea fish species were obtained from waters 
around Japan and southern Taiwan; many of these 
sequences were previously not available for the 
 species nor for northwestern Pacific fish populations. 
Ward (2009) argued that pairs of COI sequences from 
fish species with a genetic distance greater than 2 to 
3% are much more likely to be congeners than con-
specifics. Subsequently, several studies used genetic 
distances (K2P) of 2 to 3% as a criterion for identify-
ing differentiation at the species level (Zhang & Han-
ner 2011, Kenchington et al. 2017). Therefore, more 
than a 2% K2P distance shown in this study is con -
sidered to be an interspecific genetic difference. 
Although there are limits to the numbers of speci-
mens per species due to the difficulty of sampling 
deep-sea fish populations (indeed, this study in -
cludes species for which only 1 individual was avail-
able to calculate interspecific and intergeneric 
genetic differences), our study showed that DNA 
barcoding is an effective tool for identifying deep-sea 
fish species and to resolve specimens that may be 
hard to identify due to damage to identification traits 
and the lack of taxonomic information at each life 
stage. For example, we were able to identify a dam-
aged Myctophidae specimen as Diaphus watasei Jor-
dan & Starks, 1904 (Fig. S4). On the other hand, even 
though Pentaceros japonicus and P. wheeleri have 
distinguishable morphological characters (Fig. S1; 
Kim 2012), their interspecific K2P distances were at 
intraspecific levels (0.9%). There are 3 possible 
explanations for this discordancy: hybridization 
between the 2 species (Bernatchez et al. 1995, Kwan 
et al. 2019), rapid morphological differentiation 
(Sistrom et al. 2012, Albarrán-Lara et al. 2019), and 
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slow COI (or mtDNA) mutation rates (Shearer et al. 
2002, Lavinia et al. 2016). This suggests a degree of 
caution may be necessary for species identification 
using DNA barcoding data, and it is important to 
identify the species based on not only DNA but also 
the morphology of vouchered specimens. 

Four deep-sea fish species that belonged to Case 
III may have been misidentified as closely related 
species in previous studies (D. watasei misidentified 
as D. chrysorhynchus Gilbert & Cramer, 1897; Cory -
phaenoides marginatus misidentified as C. microps; 

Coelorinchus multispinulosus misidentified as C. 
kamoharai; Coelorinchus jordani Smith & Pope, 1906 
misidentified as C. kishinouyei Jordan &  Snyder, 
1900). For example, the downloaded COI sequen -
ces attributed to C. marginatus from BOLD were 
assigned to C. microps (Fig. S2). As these species 
pairs are very similar in morphology, misidentifica-
tions are highly probable. In the present study, at 
least 1 morphologically identifiable specimen of each 
species was used to obtain the sequences. Therefore, 
our findings emphasize the importance of careful 
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Fig. 6. Neighbor-joining trees of cytochrome c oxidase subunit I sequences from 6 widespread deep-sea fishes that belong to 
Case I (see Section 2.2 for definitions of cases). The light orange sea area on the map indicates the distribution of each species.  

Scale bar indicates 2% of the Kimura 2-parameter distance
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morphological identification of the specimens used 
for DNA barcoding of deep-sea fish. 

The DNA barcoding data suggested intraspecific 
genetic differentiation in 20 deep-sea fish species 
(Fig. 4). Most of the genetic differentiation in these 
species occurs along well-known marine biogeo-
graphic boundaries such as between the northwest-
ern and eastern Pacific Ocean, between the north-
western and southwestern Pacific Ocean, and/or 
between the northwestern Pacific and western 
Atlantic oceans (Bowen et al. 2016, Costello et al. 
2017). Among the 20 species (Fig. 4), 11 were meso-
pelagic species. High intraspecific COI genetic dif-
ferentiation in mesopelagic fish within and between 
oceans has been reported previously in several 
waters (Gordeeva 2014, Kenchington et al. 2017). 
Therefore, previous findings, as well as our own, sug-
gest that many mesopelagic fish species that are 
characterized by a worldwide distribution have 
highly divided  population structure or include sev-
eral cryptic species. Nine other species were upper 
continental shelf demersal fish. Among them, multi-
ple cryptic species in Notacanthus chemnitzi are also 
suggested by previous studies (Robertson et al. 2017, 
Poulsen et al. 2018). The other 8 species also showed 
2 or more lineages with a high intraspecific genetic 
differentiation. Overall, our results suggest that 
upper continental shelf demersal fish species might 
contain several cryptic species or an undetermined 
population structure. Many pelagic and demersal 
species have a long floating larval stage (Merrett 
1989, Baco et al. 2016, Priede 2017). Therefore, 
genetic differentiation in species with widespread 
populations is not expected (Smith 2007, Varela et al. 
2012). However, 20 species in this study were found 
to have high genetic differentiation along biogeo-
graphic zones regardless of habitat ecotypes, indica-
ting that there are unknown barriers for gene flow. 
Taken together, our results suggest that some deep-
sea fish have cryptic species or population differenti-
ation regardless of ecotypes, highlighting the need 
for DNA barcoding of widespread deep-sea species 
in an international framework. 

In contrast to the 20 species with high genetic dif-
ferentiation, 6 other species showed low intraspecific 
genetic differentiation, and they included 3 deep-sea 
sharks (Fig. 6). Low genetic differentiation in deep-
sea sharks with worldwide distribution has been 
 suggested to be caused by high migration ability 
(Catarino et al. 2015). Therefore, the 3 shark species 
are expected to have high swimming ability and may 
perform long-range migrations, although ecological 
studies of these species are limited. Future research 

should focus on taxonomical and ecological studies 
of mesopelagic and demersal fish species on the 
shelf-break zone. 

As mentioned above, the combination of our and 
previous DNA barcoding data has suggested some 
possible hidden genetic differentiation in deep-sea 
fish species. However, genetic differentiation within 
a species needs to be verified by genetic analyses 
based on nuclear genetic markers that are informa-
tive for complex genetic structures, such as past 
hybridization events (Watanabe et al. 2020, Suyama 
et al. 2022). To illustrate how this might be accom-
plished, we tested whether the results of DNA bar-
coding were supported by analyses of nuclear SNP 
markers in 3 species: Chimaera phantasma, Neo-
scopelus microchir, and Pyramodon ventralis. Phylo-
genetic analyses of COI sequences of Japanese and 
Taiwanese populations of these 3 species indicated 
allopatric or sympatric genetic differentiation. This 
genetic differentiation was confirmed by phyloge-
netic and population genetic analyses of SNP mark-
ers (Fig. 5) even though these lineages could not be 
distinguished by the reported morphological diag-
nostic traits (Didier et al. 2012, Nakabo 2013). The 
high concordance between the 2 genetic markers 
(COI and SNP) shows the effectiveness of DNA bar-
coding in detecting hidden genetic differentiation. 
The result of C. phantasma showing significant 
genetic differentiation occurred between Japanese 
and Taiwanese populations. This allopatric differen-
tiation between the 2 populations may have occurred 
because of geographic isolation during the last gla-
cial period, as has been identified in some shallow-
water species in the northwestern Pacific (Ni et al. 
2014). Indeed, genetic differentiation in some deep-
sea sharks has been suggested to be caused by  
sea-level changes during glacial−interglacial cycles 
(Catarino et al. 2015, Walter et al. 2017). Moreover, 
the fact that the predominant lineage in Japanese 
waters is also present in the waters of southern Tai-
wan may suggest secondary contact after geographic 
isolation (Fig. 5). In contrast, P. ventralis and N. 
microchir showed 2 lineages that were distributed 
sympatrically around Japanese waters. These find-
ings strongly suggest that there may be other repro-
ductively isolated cryptic species that have not been 
identified morphologically in Japanese waters. 

In summary, our DNA barcoding data of deep-sea 
fish species from the northwestern Pacific Ocean 
suggested the occurrence of many cryptic species 
and the presence of previously unidentified intraspe-
cific genetic differentiation. In addition, a compari-
son of the conclusions from phylogenetic and popula-
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tion genetic analyses of COI sequences and SNPs in 
3 species from Japanese and Taiwanese waters indi-
cated the consistent identification of high levels of 
intraspecific genetic differentiation. The high con-
cordance between these genetic markers indicates 
the effectiveness of DNA barcoding in searching for 
cryptic species and genetic differentiation in deep-
sea fish. 
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