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1.  INTRODUCTION 

Marine phytoplankton accounts for ~50% of global 
primary production (Field et al. 1998, Behrenfeld et 
al. 2001). Diatoms are among the most productive 
phytoplankton groups; their primary production 
accounts for ~40% of total marine production (Nel-
son et al. 1995, Falkowski et al. 1998). Marine 
diatoms are highly diverse (>20 000 species esti-
mated; Guiry 2012), and span tropical, temperate, 
and polar waters (McMinn et al. 2012, de Vargas et 

al. 2015, Malviya et al. 2016). In particular, neritic 
diatoms often form extensive blooms in coastal 
waters (Hallegraeff & Jeffrey 1993, D’Silva et al. 
2012, Yoshida et al. 2018, 2020), controlling coastal 
ecosystems, coastal fisheries (Riley 1947, Cushing 
1989, Tam et al. 2008), ecological functioning (Hasle 
& Syvertsen 1997, Richardson 1997, Anderson et al. 
2000, Sar miento & Gruber 2006, Paerl & Justić 2012), 
and benthic biomass (e.g. bivalves and mussels; 
Peterson 1999, Pernet et al. 2012, Lucas et al. 2016). 
As such, understanding the bloom dynamics of ner-
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itic diatoms is critical to manage coastal fisheries and 
aquaculture (Anderson et al. 2000, Imai et al. 2006, 
Diaz & Rosenberg 2008, Day et al. 2012). 

Among neritic diatoms, the centric cosmopolitan 
diatom genus Skeletonema is the most widespread 
bloom-forming group in coastal environments; it 
has been observed in all coastal waters except for 
the Antarctic coast (Kooistra et al. 2008, Assmy et al. 
2019). Indeed, coastal blooms of Skeletonema have 
been recorded since the 19th century (e.g. Murray 
1897, Hasle 1973, Smayda 1973, Wilson et al. 2021). 
Due to their abundance in coastal waters, their ecol-
ogy and physiology have been actively investigated, 
particularly for S. costatum (Cleve 1900, Kaeriyama 
et al. 2011, Guo et al. 2016, Ogura et al. 2018, Wang 
et al. 2020, Thangaraj & Sun 2021). However, recent 
rDNA and minute electron microscopic surveys 
have reported 8 pseudocryptic species within this 
type species (Medlin et al. 1991, Sarno et al. 2005, 
2007, Zingone et al. 2005). It has been postulated 
that S. costatum (sensu lato) is physiologically plas-
tic, having a global distribution (Hasle 1973, 1997, 
Paasche et al. 1975, see also Kooistra et al. 2008); 
however, the surprising taxonomical finding of the 
pseudocryptic species indicates rather that the high 
physiological plasticity of S. costatum (sensu lato) 
reflects the  physiology of multiple S. costatum-like 
species. To clarify this point, Kooistra et al. (2008) 
investigated the global distribution of each Skeleto -
nema species using extensive culture collections 
from coastal waters worldwide. Kaeriyama et al. 
(2011) examined the growth response to tempera-
ture and irradiance of multiple Skeletonema spe-
cies/strains in the laboratory. Although their work 
was the first to provide insights into the physiology 
of ‘new’ Skeletonema species, their results indicated 
that multiple species have similar physiological fea-

tures; nearly all species could grow at 15−25°C. 
Accordingly, understanding why physiologically 
similar species do not exhibit similar distributions is 
important. Although physical dispersion may some-
what affect distribution (Mc Minn et al. 1997, Barton 
et al. 2010), natural environmental gradients prima-
rily control distribution and population dynamics 
(Sakshaug et al. 1997, Shikata et al. 2009, Bouman 
et al. 2018, Eriksen et al. 2018, Westwood et al. 
2018, Mino et al. 2020). However, the manual 
 enumeration of each Skeletonema species, by visu-
alizing faint morphological differences through 
micro scopy (Sarno et al. 2005, 2007), is not feasible 
particularly under dense bloom conditions (Tomas 
1997, Elder & Elbrächter 2010). Therefore, in this 
study we developed a Skeletonema species-specific 
quantitative PCR (qPCR) method targeting the 
hypervariable 28S rRNA D1−D3 region (Orsini et al. 
2002) to independently discuss the annual dynamics 
of each Skeletonema species in situ. 

Surface-water monitoring was conducted every 
2 wk in the coastal waters of Ariake Sound, Japan, 
between 2019 and 2020. Ariake Sound is a semi-
closed, shallow (20 m depth on average) embayment 
located in western Japan (Fig. 1), with 4 major rivers 
flowing into the sound (Tsutsumi 2006, Orita et al. 
2015). The region actively supports aquaculture of 
the rhodophyte Neopyropia yezoensis (Oohusa 1993, 
Kito & Kawamura 1999, Tsutsumi 2006), a raw mate-
rial of seaweed (nori) papers for sushi. Ariake Sound 
is a suitable location to study Skeletonema, as year-
round Skeletonema blooms have been ob served 
(Ishizaka et al. 2006, Enjoji et al. 2019, Yamaguchi et 
al. 2019, Feng et al. 2020). In particular, winter 
blooms are extremely intense, damaging seaweed 
aquaculture farms (Tsutsumi 2006, Yamaguchi et al. 
2019). Using samples collected every 2 wk, the abun-
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Fig. 1. Sampling stations in the coastal waters of Ariake Sound, Japan
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dance of 7 Skeletonema species recorded in Ariake 
Sound (Yamada et al. 2014, Enjoji et al. 2019) was 
monitored with species-specific qPCR. In addition, 
correlation and multivariate analyses were carried 
out between species abundance and environmental 
variables to clarify species-specific annual dynamics. 
We aimed to develop Skeletonema species-specific 
qPCR techniques to monitor their dynamics in natu-
ral coastal waters such as those of Ariake Sound. 

2.  MATERIALS AND METHODS 

2.1.  Surface water sampling 

Surface seawater sampling was conducted every 
2 wk on spring tides at 2 stations (Stns 355 and 428 
with 4.6 and 5.9 m bottom depth, respectively) in 
the  coastal waters of Ariake Sound aboard RVs 
‘Kamome’ and ‘Chidori’ from 4 June 2019 to 6 August 
2020 (Fig. 1; Table S1 in the Supplement at www.int-
res.com/articles/suppl/m703p031_supp.pdf); sampling 
was not conducted under extreme weather condi-
tions (e.g. typhoons, damaging winds, high waves; 
Table S1). Surface seawater samples were collected 
from an approximately 0.5 m layer at high tide. Ver-
tical temperature and salinity profiles were ob -
tained using a conductivity-temperature-depth probe 
(RINKO-Profiler, ASTD102, JFE Advantech). Tem-
perature and salinity (at 0.5 m) were recorded as sea 
surface temperature (SST) and sea surface salinity 
(SSS). Vertical water-column stability was quantified 
as the density difference between surface (0.5 m) and 
bottom depths, as per Sverdrup et al. (1942): 

                           E ’ = 10−3 Δσt/Δz                           (1) 

where E ’ is the vertical stability of the water column, 
and Δσt and Δz are the differences in σt and depth 
between 0.5 m and bottom depth, respectively. 
Nutrient concentrations (i.e. nitrate + nitrite, ammo-
nium, phosphate, and silicate) were determined 
using an autoanalyzer (QuAAtro39, BL TEC K. K.) 
(Parsons et al. 1984, Hydes et al. 2010). The daily 
average sea surface photosynthetically available 
radiation (PAR, 400−700 nm; PAR(0)) was recorded at 
the Saga Meteorological Observatory and was 
obtained from the Japan Meteorological Agency 
(https://www.jma.go.jp). The PAR diffuse attenua-
tion coefficient, Kd(PAR), was estimated from Secchi-
disk reading as per Poole & Atkins (1929): 

            Kd(PAR) = 1.7/Secchi-disk reading           (2) 

The resultant Kd(PAR) values were used to calculate 
the euphotic zone depth (Zeu) as 1% light depth ref-
erenced to surface incident light intensity (Kirk 
2010). 

2.2.  Microscopy 

Bright-field microscopy was performed to identify 
Skeletonema at the genus level and enumerate the 
corresponding diatom cells. It should be noted, how-
ever, that the solitary species S. menzelii could often 
be overlooked under light microscopy. After surface 
water sampling, unfixed seawater samples were im-
mediately mounted on a 1 ml counting plate (S3600, 
Matsunami). Identification and enumeration of di-
atom cells at the genus level was conducted under a 
light microscope (4× oculars and 10× objective lenses, 
BX51, Olympus), based on Omura et al. (2012). 

2.3.  Species-specific qPCR targeting  
Skeletonema species 

2.3.1.  Unialgal cultures 

Seven available unialgal cultures of Skeletonema 
species, including S. ardens, S. costatum (sensu 
stricto; hereafter S. costatum), S. dohrnii, S. grevillei, 
S. japonicum, S. menzelii, and S. tropicum, were 
obtained from the Microbial Culture Collection of the 
National Institute of Environmental Studies, Japan 
(Table 1). All species were maintained in modified 
SWM-3 medium enriched with 2 nM sodium selenite 
(Na2SeO3) (Imai et al. 1996) in artificial seawater 
(MARINE ART SF-1; Osaka Yakken) at 15°C and 
100 μmol photons m−2 s−1 (white cool lamps). Then, 
50 ml of each algal culture was filtered onto a 25 mm, 
3 μm-pore omnipore polycarbonate filter (Merck). 
Cells retained on the filter were suspended in 200 μl 
of phosphate-buffered saline in a 1.5 ml tube (Ina 
Optika); DNA was extracted from the suspension 
using a Qiagen Blood & Tissue Kit. Briefly, 200 ml of 
the lysis buffer solution were added to the cell sus-
pension and ultrasonicated for 1 min to disrupt algal 
cells. The solution was boiled at 100°C for 5 min to 
retrieve DNA from the filter. Both diatom debris and 
the filter were removed by pipetting and centrifuga-
tion; 200 ml of 100% ethanol (molecular biology 
grade, Wako) was then added to the clean solution. 
The mixture was applied to the spin column from the 
kit, and DNA extraction was carried out according to 
the manufacturer’s instructions. 
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2.3.2.  Field samples 

To monitor the bloom dynamics of the 7 Skele-
tonema species, we developed species-specific 
primer sets to discriminate among them. First, 50 ml 
of surface water samples was filtered onto a 25 mm, 
3 μm pore omnipore polycarbonate filter (Merck). 
The DNA of the cells retained on the duplicated 
 filters were extracted as described in Section 2.3.1. 

2.3.3.  Species-specific primer design 

Species-specific qPCR targeting Skeletonema was 
carried out on the extracted DNA. Seven primer sets 
in the 28S rRNA gene, covering the D1−D3 hyper-
variable domain (Orsini et al. 2002), were designed 
to specifically amplify each Skeletonema species 
(Table 1). Primer validity was checked using the 7 
corresponding unialgal cultures. DNA from unialgal 
cultures was extracted as described in Section 2.3.1. 
Further, unialgal DNA was amplified with the 7 
primer sets to cross-check the specificity of each 
primer set. 

2.3.4.  qPCR standards 

The copy numbers of each Skeletonema species 
were quantified to monitor the annual dynamics of 
each species, through qPCR standards. The target 
sequences of each species were amplified with each 
primer set, and the resultant PCR products were lig-
ated into a linearized vector using a ligation kit 
(pGEM-T easy vector, Promega, WI, USA) following 
the manufacturer’s protocol. The ligated vector was 
inserted into competent Escherichia coli cells (DH5α, 
Takara). After cloning, the extracted plasmids were 
digested with the restriction enzyme EcoRI (Nippon 
Gene) to obtain linearized qPCR standards. The 
DNA concentration of standards was converted 

to  copy numbers, assuming an average molecular 
weight for DNA of 660 g mol−1. 

2.3.5.  Quantitative PCR 

Species-specific qPCR was undertaken with a 
qPCR thermal cycler (Mx3000, Stratagene), using a 
premixed qPCR reagent (Thunderbird SYBR qPCR 
mix, Toyobo) with species-specific primer sets. Tripli-
cate samples were amplified by PCR using a series of 
diluted standards (×10−2 to 10−8); amplification curves 
were calibrated using a reference dye (ROX dye). 
The copy number of a sample was calculated from 
its amplification curve by interpolating the sample 
value into known standard values (r2 > 0.95). 

2.4.  Statistical analysis 

Pearson’s correlation analysis was carried out 
using SigmaPlot ver. 11.0 (SysStat Software) to eval-
uate the relationships between variables assuming 
homoscedasticity. In addition, redundancy analysis 
(RDA) was performed to evaluate relationships 
between physicochemical properties and the copy 
numbers of each Skeletonema species as per Endo et 
al. (2018) and Yoshida et al. (2020). Detrended corre-
spondence analysis was carried out beforehand to 
confirm the validity of the RDA analysis; the physico-
chemical and biological parameter gradients were 
sufficiently low (<3 standard deviations). Moreover, 
Hellinger transformation was conducted to normal-
ize the copy number data (i.e. copy number) of the 7 
Skeletonema species (Legendre & Gallagher 2001). 
Ordinations of environmental parameters and the 
copy number of Skeletonema species were plotted 
on an RDA coordinate plane. To describe the occur-
rence patterns of each Skeletonema species in a 
quantitative manner (discussed in Section 3.5), we 
defined the copy number of a species based on a ‘sig-
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Species                                Strain ID        Forward (5’–3’)                                                  Reverse (5’–3’) 
 
Skeletonema ardens           NIES-2837     CGT TGA ATT GTG GTT TAT AGA AGC    CGA CCC AGG ATA TGA AAA GC 
Skeletonema costatum       NIES-2838     CGT TCT TGC CTG GAA TCA                      GGT AAA GAA AAC CAT TTC GAC AG 
Skeletonema dohrnii          NIES-2839     CGT TCT TGC CTG GAA TCG                     GGG GTA AAG AAA ACC ATT TTC TAA TT 
Skeletonema grevillei        NIES-2840     GAA ACA AGT GTA AAG CGA CG              CGG GGT AAA TAA AAC AAT TTC CTC  
Skeletonema japonicum    NIES-2841     CCG TTC TTG CCT GGA TTT G                   CGA CCC AGG ATA TGA AAA GT 
Skeletonema menzelii        NIES-2842     CCT GGG TTT GTT GTG CTT AA                ACC CAG AAC ATG AAG AGC A 
Skeletonema tropicum       NIES-2537     CGA ATC TGG GTT AAG TGC A                  CCG ACC CAG GAT ATG AAA AAT 

Table 1. Primer sets for Skeletonema species-specific quantitative PCR. The validity of each primer set was confirmed.  
See also Fig. S2 in the Supplement
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nal vs. noise (S/N) ratio’ approach with natural loga-
rithms as follows: (1) calculating the total variance of 
the copy number of a species (Pn: noise); (2) rationing 
the copy number of each data point of a species (Ps: 
signal) as Ps /Pn (i.e. S/N ratio); and (3) defining the 
peak if its S/N ratio was >10−16 × Ps /Pn, which was 
arbitrary in this study. 

3.  RESULTS 

3.1.  PCR specificity 

The 7 species-specific primer sets successfully 
amplified each target species (Fig. S1); moreover, the 
amplification curves confirmed the specificity of the 
primer sets (Fig. S2). The specificity was validated 
through single peaks in the dissociation curves after 
qPCR runs (Fig. S3). A series of standards was prop-
erly amplified with the corresponding primer sets to 
establish a standard curve, which indicated that the 
qPCR protocols were accurately established. How-
ever, we hereafter defined Skeletonema dohrnii as 
S. dohrnii/S. marinoi, as these allied species could 
not be clearly discriminated with our primers (see 
Section 4.1). 

3.2.  Environmental variables 

Dynamic seasonal variations were evident for SST 
and SSS, ranging from 10.5 to 30.3°C and 1.53 to 
31.45 at Stn 355, and from 10.9 to 30.0°C and 2.42 to 
31.82 at Stn 428, respectively. The highest and low-
est SSTs were observed at both stations on 1 August 
2019 and 10 February 2020, respectively (Fig. 2A,D; 
Table S1). During the summer, on 14 July 2020, 
extreme freshening of surface water to the lowest 
salinity was observed at both stations due to heavy 
rainfall on 6 July 2020 (209 mm d−1; Japan Meteoro-
logical Agency recorded at the Saga  Meteorological 
Observatory; https://www.jma.go.jp (Fig. 2A,D). 
Thus, significant negative relationships between 
SST and SSS were observed at both stations (Stn 
355: p = 0.013; Stn 428: p = 0.009; Table 2). In 
 general, the water column was well-mixed and r -
elatively homogeneous in winter, having lower E’ 
values, whereas steep density gradients with high 
E’ values were observed in the summer (Fig. 2B,E). 
The euphotic zone depths (Zeu) ranged from 
approximately 1 to 4 m with marked variations, up 
to 6.5 m between August and September 2019 
(Fig. 2C,D; Table S1). Both solar irradiance and Zeu, 

in general, were high in summer and low in winter 
(Fig. 2C,D; Table S1).  

We also observed dynamic changes in nutrient 
concentrations throughout the sampling period. 
Nitrate and phosphate were sporadically depleted, 
while silicate concentrations were consistently high 
(Fig. 3; Table S1). Interestingly, the highest nutrient 
concentrations were observed only at Stn 428 after 
the extreme surface water freshening event on 14 
July 2020 (Figs. 2D & 3). Nitrate and ammonium con-
centrations were negatively correlated with SSS at 
both stations (p < 0.01; Table 2). At Stn 355, nitrite 
and ammonium concentrations were independent of 
nitrate concentrations (e.g. the nitrite concentration 
exceeded that of nitrate concentration on 17 October 
2019; Fig. 3A); however, nutrients were significantly 
and positively correlated with each other throughout 
the sampling period (p < 0.05, Table 2). Nitrate, 
ammonium, and silicate concentrations exhibited a 
positive relationship with vertical stability at both 
stations (p < 0.05, Table 2); similarly, phosphate con-
centrations were positively correlated with stability 
(p = 0.002, Table 2) at Stn 355 (Fig. 3A). 

3.3.  Diatom and total Skeletonema abundance as 
determined by light microscopy 

Microscopic analysis revealed a wide range in the 
abundance of diatoms and the total Skeletonema 
(Fig. 4). At Stns 355 and 428, diatom abundance var-
ied from 0 to 10 228 cells ml−1 and from 0 to 43 500 
cells ml−1, and that of total Skeletonema ranged from 
0 to 10 200 cells ml−1 and from 0 to 30 900 cells ml−1, 
respectively (Fig. 4; Table S1). We found significant 
correlations between total Skeletonema abundance 
and total diatom abundance at both stations (p < 
0.001, Table 2) as well as between total diatom abun-
dance and SSS at Stn 428 (p = 0.012, Table 2). 

3.4.  Skeletonema species-specific abundance 
(copies ml−1) 

There were dynamic variations in copy number of 
the 7 target Skeletonema species throughout the 
sampling period (Fig. 5). The abundance, repre-
sented as copy number (copies ml−1), ranged be -
tween 1 and 5 orders of magnitude throughout the 
sampling period (Fig. 5). Overall, the abundance 
variations were synchronized between the 2 sam-
pling stations, although to different extents among 
species (Fig. 5). For instance, S. ardens blooms did 
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not concomitantly occur every time; however, the 
increases in November 2019 and January and March 
2020 occurred concurrently at both stations (Fig. 5A); 
as such, synchronization between stations was more 
evident in S. japonicum (Fig. 5E). 

3.5.  Species-specific seasonality and  
occurrence patterns 

In addition to the occurrence patterns, the 7 Skele-
tonema species showed seasonality; S. ardens, S. 
dohrnii/marinoi, S. japonicum, and S. grevillei in -
creased in their copy number primarily in winter 

(Fig. 5A,C−E), while S. costatum, S. menzelii, and S. 
tropicum showed increased numbers in summer 
(Fig. 5B,F,G), although S. tropicum exhibited small 
increases in winter as well (Fig. 5G). Generally, the 
higher copy numbers of autumn/winter species often 
overlapped (i.e. co-occurrence of multiple species), 
whereas those of summer species were relatively 
independent (i.e. occurrence of a single species 
 succeeded by another). No evident blooms were 
observed in spring in March and early winter in 
November (Fig. 5). 

Similarly, the annual variation patterns differed 
among species: S. ardens showed multiple increases 
over a prolonged period from September 2019 to 
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Fig. 2. Physical and optical properties in Ariake Sound in 2019/2020, Annual variations in: (A,D) sea surface temperature (SST) 
and salinity (SSS); (B,E) vertical water column stability (E ’); and (C,F) solar insolation (photosynthetically available radiation, 
PAR(0)) and euphotic zone depth (Zeu). Panels A−C and D−F show the physical and optical data at Stns 355 and 428,  

respectively



Yoshida et al.: Skeletonema species-specific monitoring in coastal waters

April 2020 (Fig. 5A), whereas S. costatum showed 
intense peaks in their copy numbers (i.e. 4 orders of 
magnitude) in August/September 2019 and in 
August 2020 (Fig. 5B). Similarly, S. dohrnii/marinoi 
and S. tropicum showed multiple peaks in copy 
number variations during winter−spring and sum-
mer−autumn transitions (Fig. 5C,G). In contrast, S. 
grevillei, S. japonicum, and S. menzelii showed a 
peak in their copy numbers (Fig. 5D−F); S. menzelii 
only exhibited a summer peak in 2020 at Stn 355 
(Fig. 3F). Interestingly, the peak in copy number of 
S. menzelii was not entirely coupled with the total 
number of Skeletonema cells (Figs. 4 & 5F). In gen-
eral, species which showed saw-toothed variations 
(1 to 2 orders of magnitude, except for the first 
increase in S. tropicum) did so over prolonged peri-
ods; in contrast, species with single peaks showed 
an increase in numbers occurring typically within 
8 wk (Fig. 5) 

3.6.  Relationship between species abundance and 
environmental variables 

The relationships between Skeletonema species 
abundance and environmental variables were gen -
erally similar, apart from some differences, between 
stations. S. ardens copy number was negatively cor-
related with PAR(0) at both stations (p < 0.05) and 
 positively correlated with nitrite concentrations (p = 
0.006, Table 3). The summer species S. costatum had 
positive and negative relationships with silicate con-
centrations and SSS, respectively, at Stn 428; no evi-
dent correlation was observed at Stn 355 (Table 3). 
The winter species S. dohrnii/marinoi was negatively 
correlated with SST at both stations and PAR(0) at 
Stn 355 (p < 0.05); however, the other winter species 
(i.e. S. japonicum and S. grevillei), did not show any 
conspicuous correlation with environmental vari-
ables (Table 3). At both stations, S. menzelii showed 
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(A) Stn 355      SSS     NO3     NO2     NH4    PO4       SiO4   TSkeletonema TDiatom  PAR(0)     Zeu       E ’ 
 
SST               −0.485*       0.153        0.232       0.224       0.220           0.627***       −0.223           −0.012       0.294         0.254        0.356 
SSS                                 −0.525**   −0.274    −0.641*** −0.312         −0.797***       −0.142           −0.306      −0.023        0.415*     −0.789*** 
NO3                                                   0.461*     0.792***   0.916***       0.725***       −0.048           −0.153      −0.368       −0.449*       0.688*** 
NO2                                                                  0.464*      0.500**         0.424*         −0.019           −0.125      −0.463*       −0.295         0.255 
NH4                                                                                   0.77***          0.713***       −0.150           −0.126      −0.301        −0.406*       0.693*** 
PO4                                                                                                        0.606***      −0.263           −0.315      −0.369        −0.269         0.560** 
SiO4                                                                                                                           −0.097           −0.071      −0.001        −0.185         0.751*** 
TSkeletonema                                                                                                                                   0.790***  −0.068        −0.481*     −0.063 
TDiatom                                                                                                                                                           −0.066        −0.425*     −0.131 
PAR(0)                                                                                                                                                                                     0.650***    0.076 
Zeu                                                                                                                                                                                                        −0.334 
 
(B) Stn 428       SSS     NO3     NO2     NH4    PO4       SiO4   TSkeletonema TDiatom  PAR(0)     Zeu       E ’ 

 
SST              −0.491**      0.035        0.073       0.082       0.148           0.66***         −0.004              0.155       0.305          0.437*         0.575** 
SSS                                 −0.552**   −0.164     −0.501**  −0.309        −0.804***       −0.377           −0.474*    −0.077          0.075        −0.913*** 
NO3                                                   0.543**    0.769***   0.854***        0.512**        −0.051           −0.126      −0.277        −0.299          0.507** 
NO2                                                                   0.469*      0.684***        0.228             0.141              0.033      −0.442*       −0.214          0.026 
NH4                                                                                   0.767***        0.472*         −0.107           −0.064      −0.266        −0.246          0.468* 
PO4                                                                                                        0.438*         −0.211           −0.212      −0.376        −0.294          0.280 
SiO4                                                                                                                             0.247              0.289        0.133          0.024          0.794*** 
TSkeletonema                                                                                                                                   0.854***  −0.130        −0.327          0.066 
TDiatom                                                                                                                                                           −0.116        −0.256          0.195 
PAR(0)                                                                                                                                                                                     0.525**       0.221 
Zeu                                                                                                                                                                                                            0.116

Table 2. Correlations between environmental variables during the sampling period at: (A) Stn 355 and (B) Stn 428 in Ariake 
Sound, Japan. Pearson correlation coefficients (r) were calculated to assess the relationships between environmental 
 variables, assuming homoscedasticity. Bold indicates significant relationships (*p < 0.05, **p < 0.01, ***p < 0.001). SST: sea 
surface temperature, SSS: sea surface salinity; NO3, NO2, NH4, PO4, and SiO4: concentrations of nitrate, nitrite, ammonium, 
phosphate, and silicate, respectively; TSkeletonema and TDiatom: total cell abundance of Skeletonema and diatoms enumer-
ated under bright-field light microscopy. PAR(0): averaged daily incident photosynthetically available radiation obtained from 
the Japanese Meteorological Agency; Zeu: euphotic zone depth as the 1% light depth referenced with surface light intensity 
calculated from the Secchi-disk reading, E ’: water-column vertical stability measured as a difference in density (σt) between  

0.5 m and the bottom depth (Δσt/Δz)
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significant positive relationships with PAR(0) (p < 
0.05), while the copy number of S. tropicum was pos-
itively correlated with nitrite concentrations (p < 
0.01, Table 3). Euphotic zone depth and vertical sta-
bility were not correlated with the abundance of any 
Skeleto nema species (Table 3).  

The RDA analysis produced similar results, with 
slight differences between stations; however, each 
axis showed small variances in both RDA panes for 

both stations (Fig. 6). In both RDA panels, the vari-
ance in the first axis may be largely attributed to the 
SST. Only S. costatum showed a significant positive 
score, while S. dohrnii/marinoi, S. grevillei, and S. 
japonicum showed evident negative scores on the 
first axis (Fig. 6). Other remarkable similarities were 
that the copy number of S. ardens was related to 
ammonium levels and S. menzelii followed similar 
directions to the vector of optical properties such as 
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Fig. 3. Nutrient concentrations in surface water in the Ariake Sound in 2019/2020. Annual variations in: (A,C) nitrate (NO3), 
nitrite (NO2), and ammonium (NH4); and (B,D) phosphate (PO4) and silicate (SiO4) concentrations. Panels A,B and C,D  

show the nutrient data at Stns 355 and 428, respectively

Fig. 4. Temporal variations in total Skeletonema and in total diatom cells as determined with bright field microscopy
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PAR(0) and Zeu (Fig. 6). Dominant variables on the 
second axis were optical properties and nutrient 
 levels, although the scores of these variables in the 
panels were reversed (Fig. 6). Consistently, S. men-
zelii and S. ardens showed opposite vectors in the 
second axis with high scores (Fig. 6). Moreover, 
while S. dohrnii/marinoi and S. tropicum had rela-
tively high positive scores in the panel of Stn 355 
(Fig. 6A), other Skeletonema species had low scores 
(Fig. 6). 

4.  DISCUSSION 

4.1.  Primer specificity 

This study is the first to track the in situ annual 
dynamics of 7 Skeletonema species, including 5 
pseudocryptic species previously annotated as S. 
costatum (sensu lato), (i.e. S. ardens, S. costatum 
[sensu stricto], S. dohrnii/marinoi, S. grevillei, and S. 
japonicum), and 2 distinct species (S. menzelii and S. 
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Fig. 5. Temporal variations in the copy numbers of each 
Skeletonema species during the sampling period in 2019/
2020: (A) S. ardens, (B) S. costatum, (C) S. dohrnii/marinoi, 
(D) S. grevillei, (E) S. japonicum, (F) S. menzelii, and (G) S. 
tropicum. Abundance below the detection limit was consid-
ered zero (0 copies ml−1). Highlighted in yellow are the 
peaks that were detected based on the peak definition in  

this study (see Section 2.4 for statistical analysis)
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tropicum) using our novel qPCR technique. This 
technique enables the quantification of pseudocryp-
tic Skeletonema species that are difficult to identify 
with microscopy. In addition, the qPCR approach 

allows absolute quantification of each species in copy 
number ml−1. This cannot be achieved through the 
widely used amplicon sequencing via high-through-
put sequencing, which at best provides the relative 
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                          S. ardens       S. costatum      S. dohrnii/marinoi     S. grevillei       S. japonicum     S. menzelii     S. tropicum 
 
(A) Stn 355 
SST                      −0.207              0.377                 −0.637***                −0.378                −0.379                0.119            −0.130 
SSS                       0.141             −0.266                     0.225                     0.173                 0.122               −0.091             0.182 
NO3                     −0.065             −0.079                   −0.045                    −0.095                −0.009               −0.126            −0.047 
NO2                       0.338              0.017                   −0.093                    −0.127                 0.002               −0.186            0.547** 
NH4                       0.180             −0.053                   −0.039                    −0.125                −0.085               −0.052             0.106 
PO4                       0.059             −0.115                   −0.078                    −0.090                −0.089               −0.173             0.088 
SiO4                     −0.206              0.117                   −0.320                    −0.189                −0.187                0.177            −0.174 
PAR(0)                  −0.444*             0.197                  −0.383*                  −0.124                −0.233               0.509**         −0.365 
Zeu                      −0.165             −0.076                   −0.234                     0.013                −0.202                 0.174            −0.053 
E ’                         −0.242              0.165                   −0.217                    −0.166                −0.121                 0.244            −0.152 

(B) Stn 428 
SST                      −0.100              0.226                  −0.552**                 −0.267                −0.343                0.161             0.037 
SSS                       0.170            −0.467*                   0.216                     0.106                 0.123               −0.095             0.245 
NO3                       0.054             −0.101                   −0.013                    −0.050                −0.024               −0.132            −0.030 
NO2                      0.513**           0.145                   −0.003                    −0.066                −0.016               −0.156            0.588** 
NH4                       0.131             −0.092                   −0.138                    −0.076                −0.107               −0.006            −0.034 
PO4                       0.222             −0.200                   −0.017                    −0.008                −0.093               −0.159             0.153 
SiO4                     −0.211             0.413*                  −0.263                    −0.092                −0.185                0.314            −0.239 
PAR(0)                  −0.450*           −0.025                   −0.218                    −0.075                −0.247               0.441*          −0.155 
Zeu                      −0.121             −0.211                   −0.145                    −0.006                −0.130               −0.050             0.059 
E ’                         −0.245              0.193                   −0.268                    −0.127                −0.158                0.260            −0.272

Table 3. As in Table 2, but between the copy number of each Skeletonema species (copies μl−1) and environmental variables 
during the sampling period at: (A) Stn 355 and (B) Stn 428 in Ariake Sound, Japan. SST: sea surface temperature, SSS: sea  

surface salinity; other abbreviations as in Table 2

Fig. 6. Coordinate plane of the redundancy analysis (RDA) on the copy numbers of each Skeletonema species at: (A) Stn 355 
and (B) Stn 428. The RDA was verified with detrended correspondence analysis that the lengths of gradients of environmental 
parameters were sufficiently small for RDA analysis (<3 SD). The contributions to the total variance (i.e. proportions  

explaining the total variance) are shown for each RDA axis; n = 27 
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contributions of target organisms at the species level. 
We used the housekeeping 28S rRNA, recognized as 
a less variable gene compared with other markers 
(Rimet et al. 2019, Suzuki et al. 2000, Zhang et al. 
2020, Pearson et al. 2021), even if our qPCR results 
might be biased by variations in copy number per 
cell among target species and bloom stages (Vas-
selon et al. 2018). Despite the limitations above, our 
qPCR technique is a powerful tool for the quantifica-
tion of Skeletonema species in natural waters. 

The 28S sequence of S. dohrnii was relatively sim-
ilar to that of S. marinoi, and although to date S. mari-
noi has not been observed in Ariake Sound, Yamada 
et al. (2013, 2014) and Shevchenko & Ponomareva 
(2015) recorded S. marinoi in other Japanese waters. 
We used an S. dohrnii strain; however, these allied 
species might not be firmly discriminated with our 
primers, so here we defined S. dohrnii as S. dohrnii/
S. marinoi (described in Section 3.1). Moreover, the 
annual dynamics of S. menzelii were inconsistent 
between our qPCR and microscopic Skeletonema 
evaluations (Figs. 4 & 5F). We may have missed this 
solitary  species, which is difficult to identify under 
light microscopy. Although our qPCR technique suc-
cessfully quantified this species, its cell abundance 
should be validated by electron microscopy. 

This species-specific molecular survey provided 
novel and significant insights into the annual dynam-
ics of unexplored Skeletonema species; interestingly, 
species-specific annual dynamics were synchronized 
even in complex coastal waters with river inputs and 
disturbances (Fig. 5), despite differences in seasonal-
ity and occurrence patterns (Fig. 5) and their similar 
optimal temperatures according to a previous ex situ 
incubation experiment (Kaeriyama et al. 2011). This 
discrepancy indicates that other environmental vari-
ables control/co-control Skeletonema dynamics in 
natural waters. Biological endogenous rhythmicity 
could be a possible reason, as bloom dynamics were 
less variable compared with the highly variable envi-
ronmental fluctuations (e.g. light insolation and 
nutrient concentration; Fig. 5 vs. Figs. 2 & 3) (Longo-
bardi et al. 2022). 

4.2.  Seasonality 

To discuss the seasonality of the target species, we 
defined summer and winter species based on the 
maximum copy numbers for April−September and 
October−March, respectively. The target Skeleto -
nema species had different seasonality: 3 were sum-
mer species and 4 were winter species (Fig. 7). 

Although summer species showed positive growth 
rates in batch cultures even at <10°C (Kaeriyama 
et al. 2011, Li et al. 2021), they grow at higher tem-
peratures (12.1°C−30.3°C) in coastal waters. In con-
trast, winter species increased their copy number 
at  temperatures lower than their optimal (~25°C; 
Kaeriyama et al. 2011, Shevchenko et al. 2019) in 
the  natural coastal waters of Ariake Sound. These 
different growth responses suggest that parame-
ters other than temperature control their ecological 
success in situ. The different seasonality of the 7 
Skeletonema species indicates differences in their 
phys iology and ecological succession in natural envi-
ronments. The species-specific seasonality observed 
in this study is consistent with another temporal mon-
itoring report which mainly targeted Skeletonema 
using 28S rRNA amplicon sequencing (Canesi & 
Ryanearson 2016). 

4.3.  Occurrence patterns 

The occurrence patterns were briefly categorized 
into 2 groups: (1) intense increase within a single 
peak and (2) moderate sustained increase with spiky 
variations (Fig. 7). The different patterns indicate dif-
ferent ecological strategies for each Skeletonema 
species. The single-peak species exhibited peak 
increases at different time points (Fig. 5D−F), sug-
gesting that these species are ‘short-stay visitors’ that 
undergo an explosive increase under optimal envi-
ronmental conditions, suddenly decreasing their 
numbers after the bloom. Their opportunistic pro -
liferation under temporarily advantageous condi-
tions is ecologically identical to those of copiotrophic 
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Fig. 7. Seasonal dynamics and occurrence patterns of each  
Skeletonema species
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insects and bacteria (Pianka 1970, Kirchman 2012). 
Thus, these Skeletonema species might employ a 
survival strategy based on a single outburst. Alterna-
tively, the multiple-peaked species sustained their 
copy number for a prolonged period, accompanied 
by frequent up-and-down variations (Fig. 5A−C,G). 
Interestingly, the copy numbers of these species gen-
erally overlapped. It has been postulated that ‘long-
lived tenants’ gradually increase in number in a 
mixed assemblage (MacArthur 1972, Odum 1983, 
Kirchman 2012). 

4.4.  Environmental control: summer species 

The summer environment in Ariake Sound is 
highly dynamic, similar to that observed with mod-
erate and extreme freshening events (Fig. 2A,D). 
The river input of low-salinity water concurrently 
prompted a temporary stratification of the water 
column, as shown by the large E’ values (Fig. 2B,E); 
this also provides nutrients to the surface water (i.e. 
negative relationships between nutrients and SSS; 
Fig. 3, Table 2). In addition, solar insolation and 
euphotic zone depth increase during the summer, 
improving light penetration into the water (Fig. 3) 
and positive relationships between Zeu and SSS 
(Table 2). This indicates a short-term stable and 
nutrient-replete environment after rainfall, poten-
tially leading to an increase in the number of sum-
mer pioneer species (i.e. S. menzelii). However, S. 
menzelii was not detected in the summer of 2019 
at Stn 355, although its copy number was signifi-
cant in 2020 (Fig. 5F). It has been reported that 
Skeletonema species form resting cells in sedi-
ments (Hargraves 1976, Sakshaug & Andresen 
1986, McQuoid & Hobson 1996); thus, resuspension 
of resting cells might be another factor driving the 
dynamics. 

On the other hand, the long-lived tenants in sum-
mer, S. costatum and S. tropicum, responded to dif-
ferent environmental variables (Fig. 6, Table 3). The 
RDA outputs suggest that increased temperature 
might be critical for the onset of S. costatum (Fig. 6). 
This is similar to laboratory incubation and amplicon 
sequence results, which demonstrated enhanced 
growth of S. costatum at higher temperatures and in 
summer (Kaeriyama et al. 2011, Canesi & Ryanear-
son 2016). In general, summer species correlated 
with various environmental variables (Fig. 6). This 
notion could be supported by highly dynamic sum-
mer conditions with high river freshwater input and 
anticyclonic tropical typhoons; summer species 

might bloom when the environment is optimal for 
the growth of each species. In addition, biological 
endogenous rhythms (e.g. photoperiodic control) 
could partly drive the dynamics of these summer spe-
cies (Lambert et al. 2019, Longobardi et al. 2022), as 
evidenced by some blooms which lasted several 
months even under highly dynamic environmental 
changes (Fig. 5). 

4.5.  Environmental control: winter species 

The winter species also showed contrasting annual 
dynamics. The copy number of S. ardens was not 
related to SST; however, this species might favor 
low-light conditions like S. dohrnii/marinoi (Table 3). 
Low temperatures and solar insolation were ob -
served in winter (Fig. 2A,C,D,F). Despite the diffi-
culty of evaluating the temperature threshold for 
winter species from our data set, their maximum 
copy numbers were observed at 10−15°C (Figs. 2A & 
5); this was associated with reduced solar insolation 
(Fig. 2C,F). Notably, as with summer species, the 
resuspension of resting cells in sediments affects the 
dynamics of surface water populations, particularly 
S. ardens and S. dohrnii/marinoi, showing multiple 
spikes throughout the winter (Fig. 5A,C). Interest-
ingly, the installation of seaweed culturing structures 
excavates sediment in September/October, which 
may also significantly resuspend this sediment 
(Oohusa 1993, Kito & Kawamura 1999), particularly 
for S. ardens and S. tropicum (Fig. 5A,G). 

As discussed above, Skeletonema form resting 
cells in sediments. Itakura et al. (1997) and Yamada 
et al. (2014) observed abundant viable dormant 
Skeletonema cells in the sediments of Japanese 
coastal waters (104−106 cells g sediment−1). Japanese 
coastal waters are often disturbed by tropical ty -
phoons in the summer, which can resuspend a con-
siderable amount of sediment to the water column. 
During the winter, resuspension of the sediments can 
be caused by increased winter vertical mixing and 
seaweed culturing activities (e.g. installation of sea-
weed culturing structures). Thus, quantifying the 
amount and supply rate of resting cells is required to 
achieve a comprehensive understanding of annual 
Skeletonema dynamics in the future. Moreover, like 
summer species, resuspended dormant cells could 
simply be responding to their biological endogenous 
cycles (e.g. stimulated by the short photoperiod 
and/or intermittent light exposure with strong verti-
cal mixing) (Lavaud et al. 2007, Malviya et al. 2016, 
Longobardi et al. 2022). 
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5.  CONCLUDING REMARKS 

Overall, the target Skeletonema species have spe-
cific seasonality and occurrence patterns (Fig. 5): 
there were summer and winter species, short-stay 
‘visitors’ and long-lived ‘tenants’ (Fig. 7). Kooistra et 
al. (2008) and Kaeriyama et al. (2011) demonstrated 
the distributions and ex situ physiology in detailed 
studies. Our study was the first to investigate in situ 
species succession and annual dynamics using a 
novel qPCR technique. Our in situ species-specific 
monitoring study connects ex situ physiology with 
in situ distributions. In doing this, this study has 
revealed diverse ecophysiology within an important 
cosmopolitan diatom genus.  

However, this study also has several limitations. 
First, zooplankton grazing and viral infections were 
not considered in this study; our qPCR results only 
reflect the abundance of Skeletonema. Further stud-
ies are needed to characterize zooplankton and 
viruses in Ariake Sound. Second, our pilot qPCR 
study was based on single-year results; thus, our 
 species-specific ecological categorization needs to be 
further validated by multi-year observations. Third, 
we developed a species-specific qPCR technique 
 targeting the 28S rRNA gene. However, our primer 
sets could not discriminate between S. dohrnii and 
S. marinoi; thus, primers designed within the 28S 
rRNA gene have limited applications to other Skele-
tonema species. In the future, other gene regions 
should be examined to discriminate Skeletonema 
species in global Skeletonema research. Given the 
scarcity of known Skeletonema genomes, it is diffi-
cult to find a suitable marker gene. Hence, high-
quality Skeletonema genome sequences are needed 
for future research on this diatom genus. 
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