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1.  INTRODUCTION 

Mangrove forests are intertidal ecosystems domi-
nating tropical and subtropical coastlines. Heavily 
threatened by human pressures and climate change, 
they show a decline of ~0.7 to 3% yr−1 on a global 
scale (Polidoro et al. 2010, Duarte et al. 2013, Gold-

berg et al. 2020). Mangrove forests are among the 
world’s most productive ecosystems, playing an im -
portant role in global carbon (C) and nitrogen (N) 
cycles (Bouillon et al. 2008, Kristensen et al. 2008, 
Alongi 2020). Despite their high productivity, man-
groves are primarily nutrient-limited (Reef et al. 
2010). This is due to the refractory nature of the 
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+ production (152:1 vs. 20:1, respectively). This sug-
gests a size−metabolism relationship, different food quality or different coupling of N ex cretion 
and assimilation by the crab holobionts in the 2 systems. Both crab holobionts contributed to net 
denitrification and DNRA, with faster N cycling in A. rubripes in the eutrophic system. Net N2 
fixation was also detected, with nearly 4-fold higher rates in A. rubripes compared to L. thayeri. 
Overall, our results illustrate active and complex N cycling associated with the 2 dominant crab 
holobionts and highlight their potential and overlooked role as important conduits of fixed N, 
which may double N2 fixation rates in the mangrove’s rhizosphere.  
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organic matter that they produce and retain (Woolfe 
et al. 1995, Dittmar et al. 2006) and to their large 
C outwelling, possibly exceeding burial (Cabral et 
al. 2021, Santos et al. 2021). Limitation of nutrients, 
in particular, N, may be alleviated by microbial 
dinitrogen (N2) fixation and intense bioturbation 
by  macro fauna (Woitchik et al. 1997, Cannicci et al. 
2008, Reis et al. 2017). Bioturbating organisms affect 
nutrient availability and microbial processes through 
sediment reworking, burrow construction and bioirri-
gation, feeding and excretion (Kristensen et al. 2012, 
Stief 2013). Additionally, macrofauna can alleviate 
N  limitation by priming the remineralization of re -
fractory N, reducing plant−microbe competition (Lave -
rock et al. 2011, Gilbertson et al. 2012). 

Sesarmid (Grapsidae) and fiddler (Ocypodidae) 
crabs are dominant macrofaunal organisms in man-
grove ecosystems in terms of both abundance and 
biomass (Ribeiro & Bezerra 2006, Kristensen 2008, 
Nagelkerken et al. 2008). Both crabs are herbivores 
and important ecosystem engineers that build and 
maintain intricate burrows in mangrove sediments 
(Kristensen 2008). Through their bioturbation, these 
crabs shape microbial community composition and 
activity, processing organic matter and redistributing 
electron acceptors and nutrients in the intertidal 
muddy banks of mangroves (Thongtham & Kristensen 
2003, Kristensen & Alongi 2006, Cannicci et al. 2008, 
Quintana et al. 2015, Booth et al. 2019, An et al. 2022). 
Notwithstanding, most studies on crabs have ad -
dressed aspects of population biology, behaviour 
and physiology, while their contribution to sediment 
reworking and nutrient cycling has been compara-
tively understudied (Thongtham & Kristensen 2003, 
Nordhaus et al. 2009, Marochi et al. 2018, Rodri gues 
et al. 2021, An et al. 2022). Recent studies have high-
lighted that crabs host diverse microbial communi-
ties, forming discrete ecological units, i.e. holobionts 
(Cuellar-Gempeler & Leibold 2018, Zilius et al. 2020, 
Tongununui et al. 2021), which have a large potential 
to affect N cycling and its supply to the mangrove 
ecosystem (Zilius et al. 2020). 

The diversity and community composition of the 
microbial community colonising the crab exterior and 
interior largely depend on the living and resting 
habitats (Cuellar-Gempeler & Leibold 2018). There 
are differences between fiddler crab and sesarmid 
crab ecology. Sesarmid crabs feed on leaf litter (Gao 
& Lee 2022), whereas fiddler crabs are surface feed-
ers that mainly rely on microphytobenthos and bac-
teria and do not feed on litter (France 1998, Reinsel 
2004). Since the benthic fauna in mangrove forests is 
 sually dominated by burrowing sesarmid and fiddler 

crabs, the analysis of the effect of these 2 holobionts 
on nutrient dynamics is important to understand 
mangrove ecosystem functioning in the face of local 
and global changes (Ribeiro & Bezerra 2006, Lee et 
al. 2017). Indeed, an increasing proportion of man-
grove systems is subject to ever-increasing human 
pressure, resulting in larger inputs of reactive N that 
can potentially offset the dependency of mangroves 
on N2 fixation and crab bioturbation. 

In the present study, we aimed to elucidate the 
contribution of crab holobionts to nutrient turnover, 
with a special focus on different N-cycling pathways, 
in 2 species: the fiddler crab Leptuca thayeri (Rath-
bun, 1900) and the sesarmid crab Armases rubripes 
(Rathbun, 1897). We hypothesised that crabs act as a 
mobile biogeochemical reactor, and thus can deliver 
nutrients needed for mangrove ecosystem function-
ing. In a previous study, we showed that crabs have a 
large potential to affect N cycling and its supply to 
the mangrove ecosystem (Zilius et al. 2020). How-
ever, that study was limited to a single crab species 
and habitat and mostly addressed the genetic po -
tential of crab-associated microbiome in N cycling. 
Here, we quantified solute fluxes and microbial 
N cycling (N2 fixation, denitrification and dissimila-
tory nitrate reduction to ammonium [DNRA]) associ-
ated with the 2 crab species. These processes were 
analysed in 2 mangrove systems, located on the 
southeast coast of Brazil, that differ in background 
nutrient availability and dominant crab species. The 
Cananéia-Iguape estuarine system (hereafter Cana -
néia) is a pristine and oligotrophic mangrove area 
dominated by the fiddler crab L. thayeri, whereas the 
Bertioga estuarine system is heavily anthropized and 
displays higher nutrient levels. We expected a dif -
ferent contribution of the crab holobionts in benthic 
N cycling, reflecting the different de grees of N limi-
tation. In particular, we expected in creasing denitri-
fication potential in Bertioga, along with the higher 
trophic status and nitrate (NO3

−) concentration in 
the water (Asmala et al. 2017). At this site, we also 
expected a lower ratio between denitrification and 
DNRA, as eutrophication and labile orga nic matter 
accumulation favour the onset of chemically reduced 
conditions, which promote N re cycling over N losses 
(Bonaglia et al. 2014). We also hypothesized higher 
rates of N2 fixation in the pristine Cananéia site due 
to stronger N limitation and low nutritional quality of 
the available organic matter. Findings are discussed 
considering how differences in microbial processes 
and rates can result from the interplay among the 
background nutrient levels and the 2 crab species’ 
physiological or be havioural features. 
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2.  MATERIALS AND METHODS 

2.1.  Study sites and sampling 

Sampling was carried out in 2 estuarine systems, 
Cananéia-Iguape and Bertioga, along the southeast 
coast of Brazil. The Cananéia (~200 km2) is a pristine 
estuarine system situated on a sandy coastal plain 
 adjacent to the South Atlantic Ocean comprising an 
intricate set of channels and interconnected coastal 
lagoons. Water circulation in the channels is driven by 
tides (mean semidiurnal amplitude: 0.82 m; Mahiques 
et al. 2009) and variable seasonal inflow of freshwater 
from continental drainage of several rivers (Mahiques 
et al. 2009). The adjacent mangrove forest is primarily 
dominated by the smooth cordgrass Spartina alterni-
flora and the mangrove species Rhizophora mangle, 
Laguncularia acemose and Avicennia schaueriana 
(Cunha-Lignon et al. 2011). In contrast to Cananéia, 
the Bertioga system is located near the industrial 
Baixada Santista Metropolitan Region, where large-
scale petrochemical industry, port activities and 
urban areas exert a large pressure on the coast. The 
site suffers from sludge discharge, urban waste and 
accidental oil spills, which lead to ecosystem deterio-
ration. Channels are under a micro tidal regime, pre-
dominantly semidiurnal, of moderate amplitude (Ber -
nar des & Miranda 2001). As a consequence of these 
differences, nutrient concentrations at the 2 sites are 
markedly different (see Table 1). 

Different crab species were found at the 2 study 
sites, with the dominant being the mangrove fiddler 
crab Leptuca thayeri in Cananéia and the sesarmid 
crab Armases rubripes in Bertioga. L. thayeri is a key 
species in Brazilian estuaries due to its abundance 
and distribution (Melo 1996, Masunari 2006, Ribeiro & 
Bezerra 2006). This species prefers muddy banks in 
shaded areas of the mangrove forest (Masunari 2006, 
Gusmão-Junior et al. 2012), whereas the smaller A. 
rubripes primarily inhabits the roots and vegetation 
stems (e.g. S. alterniflora) as well as cracks and sub-
stratum cavities (Melo 1996). In contrast to sesarmid 
crabs, L. thayeri builds a relatively large sedimentary 
structure in the form of a chimney surrounding its 
burrow (Gusmão-Junior et al. 2012). Given the differ-
ent living habitat, behaviour and diet of L. thayeri and 
A. rubripes, it is likely that the crab-associated micro -
biome is also adapted to both their habitat and feed-
ing preferences, with consequences on their species-
specific contribution to nutrient cycling in mangrove 
ecosystems (Thongtham & Kristensen 2003). 

Specimens of L. thayeri and A. rubripes (n = 30 
per site) were collected on 18 and 21 August 2018 in 

their burrows on the bank of small secondary chan-
nels of Cananéia (25° 2’ 55.50” S, 47° 58’ 31.24” W) 
and in a mangrove of Bertioga in Santos Complex 
(23° 51’ 22.47” S, 46° 9’ 6.00” W) during low tide (Fig. 1). 
Crabs were carefully collected from their burrows 
with minimal handling interaction to minimize distur-
bance of the biofilm on their exoskeleton. The cara-
pace length (CL), carapace width (CW) and dry 
weight (DW) of the collected species were measured 
using a Vernier calliper and an analytical scale, re-
spectively. The mean DW of a single L. thayeri was 
1010.7 ± 95.6 mg (n = 10) and CW ranged from 
18.1−22.6 mm, whereas A. rubripes was much smaller 
with a mean DW of 44.2 ± 5.9 mg (n = 10) and CW of 
6.4−10.8 mm. The average carapace surface area (= π 
× [CL / 2] × [CW / 2]), a proxy for the area where bio-
film can grow, was 179.1 ± 10.2 and 25.3 ± 3.9 mm2 on 
L. thayeri in A. rubripes, respectively. The ratio be-
tween the carapace surface and DW differed by a 
factor of 2.5 between the 2 species (65 ± 6 and 162 ± 
15 mm2 mg−1 DW for L. thayeri and A. rubripes, re-
spectively). At the crab collection sites, intact sedi-
ment cores were also sampled by hand in triplicate 
with Plexiglas transparent tubes (inner diameter 4 cm, 
height 20 cm) to measure dissolved oxygen (O2), inor-
ganic N and dissimilatory nitrate (NO3

–) reduction 
rates (see details in Section 2.2). In addition, 50 l of 
surface water was collected at each site in the chan-
nel in proximity of the crab habitat for subsequent 
experiments. 

2.2.  Biogeochemical experiments 

In the laboratory, crabs were left overnight for ac -
climation in 2 different 20 l tanks, filled with ambient 
water and under continuous aeration and constant 
temperature (19°C), for later gas and inorganic N 
fluxes and NO3

− reduction measurements. The next 
day, crab individuals were carefully transferred into 
separate Plexiglas microcosms with unfiltered water 
(n = 5, volume: 227 ± 3 ml) to measure gas and 
nutrient fluxes between the water phase and crabs 
(Expt 1). In addition, 3 microcosms with water alone 
were prepared to serve as controls. Experimental de -
sign and setup are described in detail in Zilius et al. 
(2020). Briefly, all microcosms were equipped with a 
stirring magnet for continuous water mixing (25 rpm) 
during incubation (~6 h) with gas-tight lids. At the be-
ginning (from the incubation tank, in triplicate) and 
end of the incubations (from each microcosm), 50 ml 
aliquots were transferred to 12 ml exetainers (Labco) 
and fixed with 100 μl of 7 M ZnCl2 for later N2:Argon 
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(Ar) and O2:Ar measurements. An additional aliquot 
of 20 ml was filtered (Frisanette GF/F filters) into 50 ml 
centrifuge tubes and stored frozen for later dissolved 
inorganic nitrogen analyses. After incu bation, crabs 
from all microcosms were removed and anesthetized 
by cooling for 10 min in a freezer before being meas-
ured, dried at 60°C for 48 h and weighed. 

Expt 2 was carried out following a similar setup to 
quantify NO3

− reduction rates (denitrification and 
DNRA) associated with the crab holobionts, using the 
isotope pairing technique (IPT; Nielsen 1992). Briefly, 
6 microcosms (5 replicates containing 1−2 ind. and 1 
control with only filtered water) were incubated. 15N 
labelled NO3

− from a stock solution (20 mM Na15NO3, 
98 atom % 15N, Sigma Aldrich) was added to the 
water column of each microcosm to a final concentra-
tion of 1.0 and 8.2 μM in Cananéia and Bertioga, re -
spectively, reflecting different in situ NO3

− concen-
trations. The microcosms were then capped and 
in cubated in the dark as in Expt 1. Before incuba-
tions, water in the microcosms was filtered (MCE 
 filters, 142 mm diameter, pore size 0.22 μm, MF-

 Millipore™) to remove phytoplankton, suspended 
particles and microorganisms so that metabolic rates 
measured in the incubation could be solely attributed 
to the microbiota living inside the crabs (e.g. in the 
digestive system) or as a biofilm outside the crabs 
(e.g. on the exoskeleton). The incubations lasted ~6 
and ~25 h for the 2 species, respectively. Water 
aliquots (40 ml) were collected from each microcosm 
replicate at t = 0, 2.5 and 6 h for L. thayeri and at t = 
0, 10 and 25 h for A. rubripes. Collected aliquots 
were then in part transferred without headspace into 
12 ml exetainer (Labco) with 100 μl of 7 M ZnCl2 for 
29N2 and 30N2 analysis and in part filtered (0.22 μm) 
and transferred into PE test tubes for ammonium pool 
(14NH4

+ + 15NH4
+) analysis (see Section 2.3 for de -

tails). The subsampled aliquots were replaced with 
the same amount of filtered water from the initial 
stock. Slopes of the linear regression of 29N2 and 30N2 
concentrations versus time were used to calculate 
rates of denitrification, using the equations from 
Nielsen (1992). The slope of the linear re gression of 
15NH4

+ concentration versus time was used to calcu-
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Fig. 1. (a) The sedimentary system within the Cananéia study area at low tide, (b) a close-up of a crab burrow, (c) a fiddler 
crab, and (d) an intact sediment core collected for benthic flux measurements. The sedimentary environment at Bertioga (not  

shown) was similar, but the nutrient level in the water was higher (see Section 2.1)
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late rates of DNRA according to Bon aglia et al. 
(2016). NO3

− reduction rates were then calculated as 
a function of biomass DW. Rates in the microcosms 
with crabs were corrected by subtracting rates meas-
ured in the control. 

In addition to animal incubation, intact sediment 
cores underwent 2 sequential dark incubations to 
determine fluxes and NO3

− dissimilatory processes as 
described by Politi et al. (2021) and Zilius et al. 
(2022). The first incubation aimed at the measure-
ment of net dissolved O2 and inorganic N fluxes, 
whereas the second incubation measured dissimila-
tory NO3

− reduction via r-IPT (Robertson et al. 2019). 
The obtained rates were used to evaluate and com-
pare the role of crab holobionts in N turnover. 

2.3.  Analytical methods 

The concentrations of NO2
−, and NOx

− were meas-
ured on a continuous flow analyser (Technicon Auto-
Analyzer II, SEAL Analytical) using colorimetric 
methods by Tréguer & Le Corre (1975). NO3

− concen-
tration was calculated as the difference between 
NOx

− and NO2
−. Dissolved NH4

+ was analysed spec-
trophotometrically using the method of Tréguer & Le 
Corre (1975). Dissolved N2 and O2 were quantified 
from N2:Ar and O2:Ar ratios measured with a mem-
brane inlet mass spectrometer (Bay Instruments; 
Kana et al. 1994) and corrected for Ar concentration 
and solubility based on temperature and salinity 
(Colt 2012). Isotopic samples for 29N2 and 30N2 pro-

duction were analysed by gas chromatography−iso-
topic ratio mass spectrometry (GC−IRMS, Thermo 
Delta V Plus, Thermo Scientific) at the University of 
Southern Denmark following the protocol described 
by De Brabandere et al. (2015). Samples for 15NH4

+ 
production were analysed by the same GC−IRMS 
after conversion of NH4

+ to N2 by the addition of 
alka line hypobromite reagent (Warembourg 1993). 

2.4.  Statistical analyses 

A t-test was used to check differences in solute 
fluxes, their molar ratio, and NO3

− reduction rates 
between the 2 crab holobionts. Assumptions of nor-
mality and homogeneity of variance were checked 
using Shapiro-Wilk and Cochran’s tests, respectively. 
In the case of heteroscedasticity, data were square-
root transformed. The significance level was set at 
α = 0.05. Results are given as average values and 
standard errors. All statistical analyses were per-
formed using the SigmaPlot 14.0 software. 

3.  RESULTS 

3.1.  O2 respiration and NH4
+ excretion  

by crab holobionts 

On a per-individual basis, Leptuca thayeri respired 
~154 μmol O2 ind.−1 d−1, whereas Armases rubripes 
consumed ~43 μmol O2 ind.−1 d−1. Biomass-normal-
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Fig. 2. Net fluxes of (a) dissolved oxygen and (b) ammonium, and (c) their molar ratios associated with the holobionts of Leptuca 
thayeri and Armases rubripes. Data range (whiskers), upper and lower quartiles (edges), the median (horizontal line), and the  

mean (diamond) are represented (n = 5). Asterisks indicate significant differences in rates between crabs (t-test, p < 0.05)
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ized respiration rates suggest that the smaller A. 
rubripes respired nearly 6.5 times more O2 than the 
larger L. thayeri (983.5 ± 184.4 vs. 152.9 ± 24.4 μmol 
O2 crab g−1 DW d−1, respectively) (Fig. 2a). 

Both crab holobionts actively released NH4
+, with 

rates significantly higher in A. rubripes (t = −6.0, p < 
0.001; Fig. 2b). We measured an NH4

+ release of ~1 
and ~2 μmol N ind.−1 d−1 for L. thayeri and A. 
rubripes, respectively, with a biomass-normalized 
lower NH4

+ release by L. thayeri consistent with its 
lower O2 respiration. The molar ratio between O2 res-
piration and net NH4

+ release for the crab holobionts 
was significantly different (t = 5.2, p < 0.001) with 
ratios of 152:1 and 20:1 for L. thayeri and A. rubripes, 
respectively (Fig. 2c). 

3.2.  Crab holobiont-mediated  
N transformations 

Net NOx
− fluxes in the L. thayeri holobiont were 

negligible, suggesting an equilibrium between NO2
− 

and NO3
− producing and consuming processes (nitri-

fication and denitrification or DNRA) or limited 
micro bial activity in the oligotrophic water column of 
Cana néia (Table 1, Fig. 3a). In contrast, the A. 
rubripes holobiont showed significantly higher rates 
of NOx

− consumption (t = 3.5, p < 0.05), partially off-
setting (−64%) net NH4

+ production. Net uptake of 
N2 was de tected in all microcosms with L. thayeri 
(−13.0 ± 2.9 μmol N crab g−1 DW d−1 or ca. −1 μmol 
N ind.−1 d−1) and A. rubripes (−465.0 ± 59.7 μmol N 
crab g−1 DW d−1 or ca. −20 μmol N ind.−1 d−1) 
(Fig. 3b), suggesting the dominance of N2 fixation 
over N2 production processes in both crab holobionts 
and stressing significantly higher rates in the organ-
ism living at the more eutrophic site. 

Incubations with 15N-NO3
− revealed that denitrifi-

cation and DNRA co-occurred in both crab holo-
bionts (Fig. 3c,d), for the first time reporting NO3

− 
reduction directly associated with crabs. Denitrifica-
tion ranged between 6.6 and 59.8 nmol crab N g−1 
DW d−1, with rates 60% higher in A. rubripes (t = 
−3.2, p < 0.05). DNRA rates varied greatly, from 2.4−
478.1 nmol N crab g−1 DW d−1, with the large vari-
ability masking significant differences between the 
2  holobionts despite higher average rates in A. 
rubripes (t = −1.8, p > 0.05). The ratio of denitrifica-
tion to DNRA was very different in the 2 crab holo-
bionts, with denitrification dominating in L. thayeri 
(66% of total NO3

− reduction through denitrification 
and DNRA) and DNRA dominating in A. rubripes 
(81% of total NO3

− reduction). 

4.  DISCUSSION 

4.1.  Drivers of O2 and NH4
+ fluxes in the  

2 crab holobionts 

Both Leptuca thayeri and Armases rubripes migrate 
between water and land. Their sedimentary habitat 
can be exposed for many hours to the atmosphere or, 
conversely, be completely submerged during high 
tides. In this study, we measured O2 respiration by the 
2 crab holobionts when they were sub merged to in-
vestigate their ability to extract O2 from water 
(Jimenez & Bennett 2005). Results from unpublished, 
preliminary experiments where we in cubated bio-
film-covered crabs with a polished carapace suggest 
that the share of microbial respiration to the total crab 
holobiont O2 consumption is low for the 2 species. 
However, as we discuss below, such tests need to be 
properly designed and realised to quantify the micro-
bial and macrofaunal contributions to the holobiont 
metabolism. Respiration rates of A. rubripes ex ceeded 
by a factor of 5 the rates measured at higher tempera-
tures for the larger sesar mid species Neo epi sarma 
versicolor by Thong tham & Kristensen (2003). Higher 
O2 consumption in the smaller A. rubripes as com-
pared to the larger L. thayeri or N. versicolor aligns 
with the typical inverse relationship between meta-
bolic rates and biomass (e.g. Brey 2010). However, a 
factor of 5−6 between respiration rates might also in-
dicate species-specific metabolism, shaped by the en-
vironment where the species live (surface sediment or 
burrows) or by other ecological constraints. The 
higher ability of A. rubripes compared to L. thayeri to 
use dissolved O2 can be, for instance, an  adaptation to 
a life predominantly spent in terrestrial habitats 
(O’Mahoney & Full 1984). As L. thayeri spends more 
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Water chemistry          Cananéia                     Bertioga 
                                  (oligotrophic)                (eutrophic) 
 
Salinity                               26                                 25 
NH4

+ (μM)                   1.39 ± 0.12                  8.59 ± 0.22 
NO2

− (μM)                   0.09 ± 0.00                  0.82 ± 0.01 
NO3

− (μM)                   0.28 ± 0.01                  9.97 ± 0.31 
DIN (μM)                    1.76 ± 0.11                 19.34 ± 0.54 
DIP (μM)                     0.25 ± 0.03                  0.99 ± 0.12 
DSi (μM)                    13.48 ± 0.86                 68.08 ± 9.17 
DIN:DSi:DIP (molar)      7:54:1                          20:70:1

Table 1. Salinity, nutrient concentrations and their stoichio-
metric ratio in the water column measured in the main chan-
nel of the study sites during low tide. Average ± SE are given 
(n = 3). DIN: dissolved inorganic  nitrogen; DIP: dissolved  

inorganic phosphorus; DSi: dissolved silica
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time in sediment burrows compared to A. rubripes, 
low biomass-specific respiration can be advantageous 
to survive in a niche with limited O2 availability. 

In most aquatic animals, excretion generally occurs 
in the form of NH3/NH4

+, and in crabs, it primarily 
 oc curs during submersion periods, substantially de -
creasing during air exposure (Weihrauch et al. 2004). 
Since our incubations allow measurement of net 
fluxes from the crab holobionts to the surrounding 
water, we cannot rule out that part of the re leased 
NH4

+ was immediately re-assimilated by the biofilm 
growing on L. thayeri crabs, which would result in 

very high O2 respiration to net NH4
+ 

release ratios. Such a mechanism 
would prevent nutrient losses from the 
crab holobionts, which, in an oligo -
trophic habitat such as the Cananéia 
estuarine system, likely include N-lim-
ited primary producers and microbes. 
At the high-nutrient site, the smaller A. 
rubripes holobiont released propor-
tionally more N to the surrounding en-
vironment. There are 2 possible expla-
nations for this difference. First, at 
Bertioga, higher nutrient availability 
can favour the growth of macrophytes 
and opportunistic algae that can sup-
plement the crab diet. Indeed, the C:N 
molar ratio of epiphytic algae, micro-
phytobenthos and cordgrass can vary 
be tween ~6 and ~20 (Sundbäck et al. 
2011, Zhang et al. 2020), which is con-
sistent with the respiration to excre-
tion ratio calculated for A. rubripes 
and suggests a food source alternative 
to mangrove leaves. Future studies 
should focus on the diet of the 2 crabs 
to provide insights on their role in re-
cycling organic matter and nutrients in 
mangrove habitats. Besides excretion, 
another source of NH4

+ by crab holo-
bionts is represented by microbial N2 
fixation and DNRA, as discussed in 
Section 4.2. 

4.2.  A. rubripes holobionts fix and 
recycle more N than L. thayeri 

Our measured net N2 fluxes were al-
ways negative (i.e. from the water to 
the crab holobionts) and suggest active 
N2 fixation in both holobionts exceed-

ing N2-producing processes. These results confirm 
our previous findings on the presence and activity of a 
diazotroph community growing on the carapace of 
fiddler crabs (Zilius et al. 2020) and stress the need to 
explore whether N2 fixation in crab holobionts is a re -
levant process in different species and across habitats. 
Based on mass balance estimations per individual, 
Thongtham & Kristensen (2003) suggested that N2-
fixing bacteria living in association with leaf-eating 
sesarmid crabs did not directly support the growth of 
their host. However, the relevance of N2 fixation 
might vary according to the overall availability of N. 
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Fig. 3. Net fluxes of (a) nitrite and nitrate (NOx
−), (b) molecular nitrogen, (c) 

denitrification, and (d) dissimilatory nitrate reduction to ammonium (DNRA) 
in holobionts of Leptuca thayeri and Armases rubripes incubated sequen-
tially with (a,b) unfiltered and (c,d) 0.22 μm filtered in situ water added with 
15NO3

−. Data range (whiskers), upper and lower quartiles (edges), the median 
(horizontal line), and the mean (diamond) are represented (n = 5). Asterisks 
indicate significant differences in rates between crabs (t-test, p < 0.05).  

DNRA: dissimilatory nitrate reduction to ammonium
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Along with the decomposition of refractory organic 
matter, the initially high C:N ratios tend to decrease 
due to microbial N inputs that increase the nutritional 
value of the litter material (Palmia et al. 2019). As 
such, N2 fixers may contribute to increasing the nutri-
tional quality of the food on which the crabs feed. 

Net NOx
− consumption by the A. rubripes holo-

biont may be driven by assimilative and dissimilatory 
processes that likely coexist in the crab holobionts. 
Genes encoding dissimilatory NO3

−/NO2
− reduction 

pathways are typically transcribed under hypoxic to 
anoxic conditions (Härtig & Zumft 1999), which can 
develop both in the host gut or in biofilms on macro-
fauna exterior surfaces (Stief et al. 2009). 

Weight-specific denitrification rates were relative -
ly low compared to rates reported for other benthic 
macrofauna holobionts from estuarine environments 
(Table 2). Conversely, despite large variability in the 
measurements, DNRA rates in A. rubripes holobionts 
were among the highest found in benthic inverte-
brates such as bivalves and worms, indicating 
favourable conditions for DNRA bacteria in sesarmid 
crabs from Bertioga. The dominance of DNRA over 
denitrification in Bertioga can be explained by low 
NO3

− availability relative to organic matter in man-
grove ecosystems (Tiedje et al. 1983). In Cananéia, it 
is likely that both denitrification and DNRA are 
strongly limited by the low inorganic N availability, 
driving the effects of the crab holobionts on N cycling 
to ward net import, efficient recycling and reuse and 
limited losses. In contrast, in the Bertioga system, N 
re cycling via DNRA dominates over N losses via 
denitrification and promotes a positive feedback to -
wards eutrophic conditions. 

Overall, dissimilatory NO3
− reduction pathways 

were of minor importance over net N2 fixation rates 
in the 2 holobionts, with denitrification and DNRA 
representing <1% of the imported N regardless of 

the site. Future studies should include primary pro-
ducers associated with the crabs and their activity as 
well as measurements of assimilative N pathways. 
Higher N2 fixation and DNRA rates in A. rubripes 
holobionts have the potential to produce and eventu-
ally release to the surrounding environment larger 
amounts of NH4

+ compared to the amounts produced 
by L. thayeri. However, the effect of the 2 crab holo-
bionts at the ecosystem level ultimately depends on 
their local population size. 

4.3.  Methodological limitations and  
future improvements 

In the present study, we incubated crabs covered 
by bio film, as our main aim was to highlight the con-
tribution of crab holobionts to benthic N cycling in 2 
 distinct mangrove areas. Results of our incubations 
re present the net of a number of different co-occur-
ring processes, including the metabolic activity of 
crabs and that of microbes growing inside and out-
side of the crabs. However, measured rates do not 
allow discrimination of the inventory of different con-
tributions. For this reason, we reported rates on a per 
crab holobiont gram DW or a per crab individual 
basis in order to discuss how size can be important 
(emphasizing higher biomass-normalized rates in 
smaller organisms) and to upscale processes (individ-
ual basis, multiplied by the population size). We 
acknowledge that the colonizable surface to DW 
ratio is very different in small and large crabs, but in 
this study, we did not consider the crab surface as it 
is challenging to distinguish between processes 
occurring inside or outside the crabs. In future stud-
ies, we recommend performing another set of in -
cubations on clean crabs (gently brushed to remove 
the exterior biofilms) to separate the contribution of 

microbes growing inside and outside 
the crabs and considering the surface 
to normalize and compare data from 
species of different sizes. 

We also acknowledge that in the 
present study, we were not able to 
separate 2 factors such as ‘species’ and 
‘site’ that simultaneously contribute to 
the differences we have discussed. 
Therefore, we only aimed to describe 
how 2 distinct crab holobionts con-
tribute to benthic N cycling at 2 differ-
ent sites and compare their role not in 
absolute terms, but rather in relation 
to the specific site in which they live. 
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Macrofauna taxa             Denitrification        DNRA          Reference 
 
Chironomus plumosus        38.6 ± 4.7          4.6 ± 0.8        Politi et al. (2021) 
Dreissena polymorpha   1391.9 ± 694.9  749.1 ± 464.8    Marzocchi et al. 
                                                                                               (2021) 
Limecola balthica              116.8 ± 52.7        5.0 ± 2.0        Zilius et al. (2022) 
Marenzelleria spp.            123.2 ± 38.1        8.0 ± 1.5        Zilius et al. (2022) 
Monoporeia affinis         2553.9 ± 1738.8  40.8 ± 11.6      Zilius et al. (2022) 
Leptuca thayeri                   20.6 ± 9.3         10.5 ± 3.1        This study 
Armases rubripes                51.1 ± 3.7      217.9 ± 115.5    This study

Table 2. Summary of NO3
− reduction rates (nmol N g−1 DW d−1) measured in 

benthic macrofauna across different estuarine systems (average ± SE; DW: dry 
weight). Reported references were selected on the basis of the same method  

used to measure rates (15N labelling)
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4.4.  Implication for the  mangrove ecosystem 

Fiddler and sesarmid crabs are the most abundant 
macrofauna species in Brazil’s mangrove ecosys-
tems. Their densities in the Cananéia area are re -
ported to vary from 1−30 ind. m−2 (Ferreira et al. 

2007, de Almeida Duarte et al. 2016). Similarly, crab 
densities in Bertioga vary from 0.8−94 ind. m−2 (de 
Almeida Duarte et al. 2016, Natálio et al. 2017). Con-
sidering a median crab density of 16 and 47 ind. m−2 
in Cananéia and Bertioga, respectively, we upscaled 
our measured rates to the ecosystem level (Fig. 4) to 
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Fig. 4. Schematic representation of N cycling by (a) Leptuca thayeri and (b) Armases rubripes holobionts in mangrove forests. 
N cycling was reconstructed by combining data from holobiont-associated N-fluxes and processes, net fluxes and N-processes 
from the incubation of intact sediments collected in proximity to the crab habitats and from median global N2 fixation rates in 
soil surface reported by Alongi (2020). Mean rates are multiplied by the median density of crab holobionts and expressed as  

μmol m−2 h−1. DNRA: dissimilatory nitrate reduction to ammonium
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analyse the role of crab holobionts (their metabolic 
rates) in the benthic metabolism (sediment−water 
net fluxes, N2 fixation, denitrification and DNRA 
rates) of the 2 study areas. This is relevant to better 
understand the contribution of macrofauna to ben-
thic N cycling in mangrove ecosystems, as suggested 
by Alongi (2020). 

Notably, both crab populations accounted for a 
similar percentage (6−8%) of benthic areal O2 respi-
ration. NH4

+ production measured in the A. rubripes 
and L. thayeri holobionts represented 5 and 3% of 
the net NH4

+ fluxes at the sediment−water interface 
in the Cananéia and Bertioga systems, respectively. 
At both sites, regardless of different nutrient levels 
and metabolic differences between species, the 2 
crab holobionts were marginal sources of NH4

+ to the 
surrounding environment. At both sites, NH4

+ pro-
duction via DNRA by the crab holobionts accounted 
for <0.1% of the net sediment NH4

+ fluxes. These 
findings confirm what we observed in other macro-
fauna species, where microbial NH4

+ production in 
holobionts was negligible compared to NH4

+ produc-
tion by the host via excretion or by the surrounding 
sediments via ammonification and DNRA (Politi et al. 
2021, Zilius et al. 2022). 

The role of crab holobionts in NOx
− turnover was 

different between the 2 mangrove systems (Fig. 4). 
At the oligotrophic Cananéia site, L. thayeri holo-
bionts contributed little (1%) to the NOx

− efflux from 
sediment. Conversely, A. rubripes holobionts signifi-
cantly enhanced NOx

− uptake (7%) at the benthic 
eco sys tem level. However, crab holobionts con tri bu -
ted <0.1% of sediment NOx

− reduction through de -
nitrification. Denitrification measurements suggest 
that the role of crab holobionts in removing N from 
the ecosystem via this route was marginal in the 
investigated tropical mangrove forests. Crabs are 
strong bioturbators and it is likely that they indirectly 
stimulate denitrification rates by burrowing, enhanc-
ing the penetration of NO3

− in sediments or favouring 
coupled nitrification−denitrification, amplifying the 
oxic−anoxic interface surface area in mangrove sed-
iments (Kristensen 2008). We speculate that crabs 
exert a stronger stimulation of NO3

− removal via bur-
rowing at Bertioga due to higher NO3

− concentration 
in the water (Table 1) and likely more labile organic 
C in sediments; however, specific studies should 
address this issue. 

Most notably, N2 fixation rates measured in A. 
rubripes and L. thayeri  holobionts (Fig. 4) are com-
parable or even higher than those measured in sur-
rounding mangrove soils and cyanobacterial mats 
(Alongi 2020). In a global context, our estimations 

show that mean N input via N2 fixation by crab holo-
bionts (nearly 20 μmol N m−2 h−1) can account for 
~90% of root + rhizome N2 fixation (Alongi 2020), 
thus almost doubling this N input to mangrove eco -
systems. Kristensen & Alongi (2006) argued that fid-
dler crabs can improve the growth of mangrove trees 
by oxidizing the sediment and detoxifying it from 
sulphides, while the crabs benefit from access to 
their food sources. In the present study, we show that 
crab holobionts also act as a conduit of key nutrients 
to their ecosystem via N2 fixation by their associated 
microbiome. Interestingly, the rates measured here 
were higher in A. rubripes from the eutrophic site, 
further refuting the long-standing paradigm of N2 
fixation being regulated by the mere concentrations 
of inorganic N in the environment. Differences be -
tween rates of N transformations in the 2 crab holo-
bionts can be ascribed to different environmental re -
gulation (e.g. the quality of the organic matter at the 
study sites, the O2 or nutrient levels, including oligo -
elements) or to different microbiomes. In a previous 
study, we analysed the microbial diversity of L. thay-
eri and demonstrated that the N2-fixing community 
was dominated by the Cyanobacteria genus Geit ler -
inema, performing photosynthetic anoxygenic N2 fix-
ation in the oligotrophic Cananéia system (Zilius et 
al. 2020). We speculate that N2 fixation in A. rubripes 
may be carried out by heterotrophic bacteria, which 
are not limited by the reductant in the eutrophic 
Bertioga system. Future work should examine the 
diversity of the A. rubripes holobiont to confirm or 
refute this hypothesis. 

5.  CONCLUSIONS 

In the present study, we examined the overlooked 
role of fiddler and sesarmid crab holobionts on the N 
cycle in 2 mangrove systems differing in inorganic N 
availability and likely in the macromolecular quality 
of the available organic matter. The impact of crab 
holobionts was site- and species-specific, suggesting 
multiple control of microbial activity by environmen-
tal features and/or by differing crab physiologies and 
behaviours. Future studies should specifically ad -
dress the crab species and trophic level factors that 
are not separated in the present work. However, we 
can conclude from this study that at an oligotrophic 
site, Leptuca thayeri holobionts contributed to in -
creased reactive N availability in a nutrient-limited 
system producing refractory organic matter. At a eu -
tro phic site, the Armases rubripes holobionts played 
a larger role in supplying N to the ecosystem, possi-
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bly exacerbating eutrophication and favouring the 
growth of labile and opportunistic primary produc-
ers. Our findings suggest that the mangrove N cycle 
should be revised, including the contribution of ben-
thic macrofauna to multiple N-cycling pathways and, 
in particular, to N2 fixation. 
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