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1.  INTRODUCTION 

Sea urchins are ecologically important herbivores 
that exert a strong influence on the community struc-
ture of reef ecosystems (Filbee-Dexter & Scheibling 
2014, Ling et al. 2019, Glasby & Gibson 2020, Ste-
neck 2020). Predation is thought to be a key driver 
that regulates urchin populations, with a broad preda-
tor guild observed or assumed to play a significant 

role in controlling urchin populations (Fagerli et al. 
2014, Ling et al. 2019, Trowbridge et al. 2019, Glasby 
& Gibson 2020) and thereby preventing overgrazing 
of macroalgae (Bologna & Steneck 1993, Sheppard-
Brennand et al. 2017, Layton et al. 2020, Kawamata & 
Taino 2021). Macroalgal habitats reportedly support 
a broad suite of associated predators that con-
tribute to significant levels of predation on urchins 
compared with areas where macroalgae is reduced 
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or absent (Bologna & Steneck 1993, Byrnes et al. 
2006, Ling et al. 2009, Sheppard-Brennand et al. 
2017, Layton et al. 2020). Determining whether this 
pattern is general across reefs will inform and 
improve the management of these habitats, particu-
larly the expansion and persistence of urchin-domi-
nated habitats at the expense of macroalgal cover. 
Loss of macroalgae associated with overgrazing by 
urchins is a topic of concern, as seen in the poleward 
range extension of urchins in eastern Australia, 
increases in urchin populations following disease-
driven mass mortality of their predators in western 
North America and overfishing of predators in Japan 
(Ling & Johnson 2009, Byrne & Andrew 2020, Layton 
et al. 2020, Kawamata & Taino 2021, Ling & Keane 
2021, Smith et al. 2022a). 

Overfishing of urchin predators is often implicated 
when urchin numbers increase followed by a de crease 
in macroalgae (Filbee-Dexter & Scheibling 2014, Ling 
& Keane 2021, Cresswell et al. 2022). Lobsters are con-
sidered to be important urchin predators on reefs in 
both the Northern and Southern Hemisphere (Whar-
ton & Mann 1981, Tegner & Levin 1983, Scheibling 
1996, Kawamata & Taino 2021, Ling & Keane 2021). 
Overfishing of lobster populations has been impli-
cated in the increased density of urchins in California 
(Lafferty 2004, Stephens et al. 2006), eastern Canada 
(Mann 1977, Johnson & Mann 1988, Scheibling 1996), 
New Zealand (Babcock et al. 1999, Shears & Babcock 
2002), Tasmania (Pederson & Johnson 2006, Barrett et 
al. 2009, Ling et al. 2015) and Japan (Kawamata & 
Taino 2021). Temporal reductions in lobster abun-
dance associated with annual migrations (Jeffs et 
al.  2013) may also affect urchin density. However, 
despite the keystone paradigm-like contention that 
lobster predation regulates urchin populations, the 
evidence is equivocal (Elner & Vadas 1990, Scheib-
ling 1996). In Atlantic North America, fluctuations in 
urchin abundance on decadal time scales appear to 
be regulated by disease, warm temperature anoma-
lies and other factors (Elner & Vadas 1990, Scheib-
ling 1996, Gendron et al. 2001, Smith et al. 2022b). 
Along the Pacific coast of North America, the preva-
lence of urchins is most recently attributed to cli-
mate-related phenomena and mass mortality of 
predators (e.g. sea stars) (Rogers-Bennett & Catton 
2019, Rogers-Bennett et al. 2022). Large fishes such 
as wrasse and snapper also prey on urchins and have 
been suggested to play a role in controlling urchins 
in Canada (Mann 1977, 1982), California (Cowen 1983, 
Stephens et al. 2006, Foster & Schiel 2010), New Zea -
land (Andrew & MacDiarmid 1991, Shears & Bab-
cock 2002) and Norway (Norderhaug et al. 2021). 

Where predators are considered insufficient to 
control urchin populations, management actions to 
control urchin grazing have been trialled, including 
divers removing them by hand or killing them in 
situ, with limited effectiveness (Tracey et al. 2015, 
Sanderson et al. 2016, Miller et al. 2022). While this 
ap proach is not feasible in the long term (Sander-
son et al. 2016, Miller et al. 2022), it has seen 
some success at small spatial scales when culls are 
performed consistently and repeatedly over time 
(Tracey et al. 2015, Guarnieri et al. 2020, Miller et 
al. 2022, Miller & Shears 2023), but may have un -
intended consequences (Kingsford & Byrne 2023). 
Hence, it is important to understand the dynamics 
and importance of urchin predation before man-
agement action is taken, and a logical starting point 
is to investigate whether urchin control might be 
affected by predators currently present in the 
ecosystem. 

Many studies report that predators including lob-
sters and large fishes (Hughes et al. 1994, Mayfield 
et  al. 2001, Pederson & Johnson 2006) are unable 
or unwilling (Ling & Johnson 2009, Day et al. 2021, 
Smith et al. 2022a) to eat urchins once an urchin body-
size-threshold has been reached (Pederson & John-
son 2006, Ling & Johnson 2009). Small urchins are 
more easily handled by predators (Tegner & Levin 
1983, Sala 1997, Andrew 1999, Pederson & Johnson 
2006, Ling & Johnson 2012, Selden et al. 2017). This 
makes larger urchins more energetically expensive 
to eat, which may discourage predation (Irons et al. 
1986, Snellen et al. 2007). Thus, urchin size demo-
graphics, which can differ appreciably be tween loca-
tions (Ebert et al. 1999, Ebert 2010, Ouréns et al. 
2011) are important in determining the predation risk 
of urchins between locations and habitats (Eurich et 
al. 2014, Day et al. 2021, Smith et al. 2022a). If urchins 
are relatively small with respect to predator size, 
they are more easily removed from crevices (Peder-
son & Johnson 2006, Andrew & Byrne 2007, Powter 
et al. 2010, Ling & Johnson 2012, Byrne & Andrew 
2020) and may be engulfed whole (Tegner & Levin 
1983, Day et al. 2021). In contrast, larger urchins re -
quire more physical manipulation by predators. For 
example, larger lobsters have a greater capacity to 
feed on large urchins by using their front appendages 
to flip the urchins oral-side up (Tegner & Levin 1983). 
Some large fishes use a ramming jaw-action to dis-
lodge and flip urchins oral-side up to feed on them 
(Tegner & Dayton 1981, Andrew 1999, Foster & 
Schiel 2010, Clemente et al. 2013, Day et al. 2021). 
Non-crustacean invertebrates including cephalopods 
(Ambrose 1986) and sea stars (Gianguzza et al. 2016, 
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Rogers-Bennett & Catton 2019, Rogers-Bennett et al. 
2022) also prey on urchins. 

Along the east coast of temperate Australia, the 
large diadematoid urchin Centrostephanus rodgersii 
is an ecologically important herbivorous grazer that 
is responsible for forming barrens patches amongst 
macroalgae at low densities and vast extensive bar-
rens habitats when at high densities (Andrew & 
O’Neill 2000, Flukes et al. 2012, Byrne & Andrew 
2020). The sympatric smaller echinometrid species 
Heliocidaris erythrogramma can also create barrens 
(Wright et al. 2005, Pederson & Johnson 2008, Kee -
sing 2020). Lack of predation on these urchins is 
argued to be a key driver enabling them to reach 
densities that result in overgrazing of macroalgae 
(Pederson & Johnson 2006, Ling et al. 2015, Ling & 
Keane 2021). With respect to predators, options for 
management being considered include augmenta-
tion of the predator guild (Layton et al. 2020, Day et 
al. 2021) by transplanting lobsters into urchin-
affected areas (Redd et al. 2014, Ling & Keane 2021, 
Smith et al. 2022a) and increasing urchin predator 
densities through the implementation of no-take 
marine reserves or fisheries closures (Tegner & Day-
ton 2000, Shears & Babcock 2002, Spyksma et al. 
2017, Kawamata & Taino 2021). For eastern Aus-
tralia, it is unknown which species are the main 
urchin predators (Day et al. 2021). In New South 
Wales (NSW), Australia, known urchin predators in -
clude fishes, such as Achoerodus viridis (eastern blue 
groper) and Chrysophyrus auratus (pink snapper) 
(Lee et al. 2015, Rees et al. 2018, Knott et al. 2021), 
and the lobsters Jasus edwardsii (southern rock lob-
ster) and Sagmarisus verreauxi (eastern rock lobster) 
(Jeffs et al. 2013, Linnane et al. 2015, Woodings et al. 
2018). Here, we contribute to the understanding of 
potential predators in experiments where urchins 
were tethered away from shelter in habitats along 
the south coast of NSW, following similar studies in 
New Zealand, Tasmania and Japan (Pederson & 
Johnson 2006, Ling et al. 2015, Kawamata & Taino 
2021). 

The predation risk that different urchin species 
experience may differ for a range of reasons. For 
example, H. erythrogramma is suggested to experi-
ence a higher risk of predation than C. rodgersii due 
to differences in urchin body size, with H. erythro-
gramma being the smaller species (Ling et al. 2015, 
Sanderson et al. 2016, Sheppard-Brennand et al. 
2017, Day et al. 2021, Smith et al. 2022a). Lobsters 
may also have a feeding preference for H. erythro-
gramma over C. rodgersii (Day et al. 2021, Smith 
et al. 2022a). The difficulty involved with dislodg-

ing urchins from the substratum or crevices may 
also influence predation risk (Ling & Johnson 2009, 
Clemente et al. 2013, Sanderson et al. 2016). 

We tethered C. rodgersii and H. erythrogramma in 
and outside of dense macroalgal habitat at 4 rocky 
reefs along the NSW coast to assess potential preda-
tion pressure and to test the hypotheses that preda-
tion would be greater for (1) urchins tethered in 
macroalgal habitats, (2) H. erythrogramma than C. 
rodgersii and (3) smaller than larger urchins. We 
revisited tethers at set time periods to record sur-
vival, assigning a damage index to describe urchin 
remains left on tethers and infer potential sources of 
predation (lobster, fish or other). 

2.  MATERIALS AND METHODS 

2.1.  Study locations 

Our study was conducted at 4 locations along 
the  NSW south coast: Wollongong (34.42488° S, 
150.8931° E), Bass Point (34.5973° S, 150.8874° E), 
Jervis Bay (35.0481° S, 150.7447° E) and Bendalong 
(35.2280° S, 150.4892° E) (Fig. 1A) from June to 
November 2019. Urchins were tethered in 2 habitat 
types at 3 sites within each location (see below) to 
produce an estimate of the rates of urchin predation 
between habitats and species and across a range of 
urchin sizes (Fig. 1B). Each tethering experiment 
lasted a maximum of 14 d, depending on urchin sur-
vival. We also undertook direct observations of preda-
tors whilst in the field to record the potential predator 
guilds present at each location, where we recorded 
the presence of fish, shark and ray predators as well 
as lobsters and other invertebrates. This work was 
undertaken under a permit from the NSW Department 
of Primary Industries (permit number P13/0037-2.0). 
All experimental apparatus were collected at the end 
of fieldwork. 

Tethered C. rodgersii and H. erythrogramma 
urchins were placed in (1) macroalgal habitats con-
sisting of Ecklonia radiata (golden kelp), Phyllospora 
comosa (cray weed) and Sargassum spp. (gulf weed) 
forming a canopy and in (2) barrens mosaic habitat 
which consisted mostly of bare rock but also had 
coralline turfing algae, Cunjevoi Pyrua praeputalis 
and macroalgae, forming a mosaic. These habitats 
are characteristic of the near-shore benthos in the 
area (Underwood et al. 1991, Curley et al. 2002, 
Glasby & Gibson 2020, Kingsford & Byrne 2023). 
Predatory fishes in the region are known to use the 
mosaic of habitats across macroalgae and barrens as 
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Fig. 1. (A) Locations of the 6 macroalgal and 6 barrens-
mosaic habitats where Centrostephanus rodgersii and Helio -
cidaris erythrogramma were tethered in New South Wales, 
Australia: Wollongong, Bass Point, Jervis Bay and Benda-
long. (B) Sites within these locations included (a) North Wol-
longong (NW1, NW2) and South Wollongong (SW1), (b) 
Bass Point Gravel Loader (BP1, BP2, BP3), (c) Huskisson 
Island (HI), Green Point (GP), Greenfields Beach (GF) and 
(d) Flatrock (FL), West Bendalong (WB) and East Bendalong 
(EB). (C) In each location, 24 urchins were tethered in bar-
rens-mosaic habitats (shown with a black star) consisting of 
(a) bare rock with the presence of macroalgae and turfing 
algae and (b) rock and ascidians (red cover of the benthos) 
with the presence of macroalgae and turfing algae and (c) 
macroalgal habitats (white star) consisting of a dense canopy. 
Two pictures are shown for barrens-mosaic habitats (a and  

b) and one for macroalgal habitat (c)

(Fig. 1 continued on next page)
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their hunting grounds (Curley et al. 2002). To enable 
independent treatments and avoid edge effects, we 
were careful to place brick tethers on the benthos 
approximately in the centre of macroalgal habitats at 
least 5 m from any habitat ‘edge’. Thus, the urchins 
in this habitat were well within the algal canopy. In 
the barrens-mosaic habitat, the tethered urchins 
were placed on bare rock or Cunjevoi, ~2−3m from 
macroalgae or other cover (Fig. 1C). 

To ensure that the urchins used were representa-
tive of the size range in each area, we determined the 
size range of C. rodgersii and H. erythrogramma 
within the 4 locations. Urchins were measured with 
vernier callipers to the nearest 1 mm at 9 sites of 
differing habitat (macroalgae or barrens-mosaic) 
within 4 locations (Fig. S1 in the Supplement at 
www.int-res.com/articles/suppl/m714p071_supp.pdf). 
This work was done on snorkel, with 100 urchins 
haphazardly collected and measured at each site. To 
determine the size distribution for each site, we plot-
ted a cumulative curve (Table S1, Fig. S1). These 
data were used to inform the sizes of urchins used for 
tethering. In the statistical analysis, however, urchin 
size was treated as a continuous variable (see below). 

2.2.  Urchin tethering 

To tether urchins, we modified previous methods to 
reduce potential impacts on the urchins (Fig. S2). 
Rather than using a chain attached to benthos 
(Shears & Babcock 2002), we attached the urchins to 
bricks with spliced synthetic rope and monofilament 
fishing line. In our methodology, a very small hole 
was first made in the test using a titanium drill bit 
(1.25 mm diameter), through which we passed a 
curved mattress needle (1 mm diameter) threaded 
with monofilament (15 kg tensile strength). We then 
tied a bowline in the standing end of the monofila-
ment and used shark clips and swivels to attach 
urchins to the 2 available eyes of spliced rope on 
either side of the bricks. 

To ensure that the urchins were not unduly harmed 
by our tethering method, we undertook a pilot study 
during which we monitored tethered urchins (4 C. 
rodgersii and 4 H. erythrogramma) in aquaria for 
10 d (Fig. S3A,B). These urchins had 100% survival 
with no indication of deleterious effects. Further, to test 
if the tethering process might attract predators, we 
undertook a second pilot study in aquaria where we 
exposed 1 and 2 tethered C. rodgersii to medium-sized 
S. verreauxi (122 and 125 mm carapace length [CL], 
respectively), which are known to be capable urchin 
predators on the basis of body size (Day et al. 2021), 
for a period of 1 wk (Fig. S3C,D). We did not observe 
any predation and there were also no deleterious 
effects of tethering evident on these 3 urchins. 

To assist in keeping track of the tethered urchins, 
we also tagged them with a 20 mm piece of cork 
attached to a size 2/0 (39 mm) fishing hook for large 
urchins and a size 1/0 (34 mm) fishing hook for 
smaller urchins attached to the aboral surface (Tuya 

75

Fig. 1 (continued)

https://www.int-res.com/articles/suppl/m714p071_supp.pdf


Mar Ecol Prog Ser 714: 71–86, 2023

et al. 2003). The efficacy of this tagging method was 
tested in a pilot study with 20 C. rodgersii and 20 H. 
erythrogramma tagged in an enclosed rockpool. 
These urchins were checked daily and showed 100% 
tag retention over 1 wk with no deleterious effects 
(Fig. S3E,F). 

At each of the 3 sites across 4 locations, 8 urchins 
were tethered to a brick weight (4 locations, 3 sites, 8 
urchins per site; 96 total). Each brick had one C. 
rodgersii and one H. erythrogramma attached (Fig. 1). 
To standardize the potential attractiveness of urchins 
as prey, we only used urchins collected locally from 
macroalgal habitat, as past work has suggested that 
urchins taken from barrens habitat are less attractive 
prey (Eurich et al. 2014). We tethered 48 C. rodgersii 
(30−125 mm test diameter [TD]) and 48 H. erythro-
gramma (30−101 mm TD) (Table S2). For C. rodger-
sii, the TD of the small and large individuals tethered 
at Wollongong, Bass Point, Jervis Bay and Bendalong 
were 45−80 and 81−122 mm (Wollongong), 47−65 
and 66−90 mm (Bass Point), 71−95 and 96−125 mm 
(Jervis Bay) and 30−60 and 61−95 mm (Bendalong), 
respectively. For H. erythrogramma at these 4 loca-
tions, the small and large urchins had a TD of 32−50 
and 51−83 mm (Wollongong), 30−60 and 61−85 mm 
(Bass Point), 35−65 and 66−101 mm (Jervis Bay) and 
32−63 and 64−98 mm (Bendalong), respectively. At 
each site, random combinations of urchin sizes were 
deployed to the 4 bricks, with each of the 4 combina-
tions present at each site (Table S2). 

2.3.  Inferring causes of mortality 

Causes of urchin mortality with respect to potential 
predators can be inferred from the remains left on 
tethers (Scheibling 1996, Pederson & Johnson 2006, 
Cook & Vanderklift 2011, Ling & Johnson 2012, Day 
et al. 2021, Delgado & Sharp 2021, Kawamata & 
Taino 2021). Predation by lobsters (S. verreauxi and 

J. edwardsii) on C. rodgersii and H. erythrogramma 
is indicated by the presence of an intact test on the 
tether with the Aristotle’s lantern absent and an 
empty test (Andrew & MacDiarmid 1991, Shears & 
Babcock 2002, Pederson & Johnson 2008, Ling & John-
son 2009, Day et al. 2021). Cephalopod predators can 
leave urchin remains similar to those left by lobsters 
(Ambrose 1986, Day et al. 2021). Predatory fishes can 
leave characteristic remains including cracked urchin 
tests or may leave no remains, since the urchin tests 
may either be cracked in situ, en gulfed completely or 
carried elsewhere (Andrew 1999, Aronson et al.2001, 
Cook & Vanderklift 2011, Delgado & Sharp 2021). We 
only used urchins >30 mm TD, as smaller ones are 
completely engulfed by predators (Pederson & John-
son 2006, Day et al. 2021). Lobsters preying on C. 
rodgersii and H. erythrogramma >30 mm TD in past 
feeding trials left characteristic feeding remains with 
no test-cracking and did not engulf whole urchins 
(Day et al. 2021). As in a past tethering study (Cook & 
Vanderklift 2011), an empty urchin test was taken to 
indicate predation on urchins in situ, absent urchin 
remains where the tethering loop was still intact was 
taken to indicate an urchin that was eaten whole and 
a snapped tether without the tethering loop intact 
was taken to indicate an urchin that was either eaten 
whole or carried off elsewhere. 

Tethered urchins were inspected to record preda-
tion events at 3 time points until Day 14. Tethers 
were assessed on Day 3−4, Day 5−7 and Day 12−14, 
depending on weather conditions and safely gaining 
access to the experimental areas. When inspected, any 
remains of the urchin test were photographed and 
assigned a damage index (DI) to infer the likely feed-
ing predator. This index was assigned to the urchin 
remains as follows: DI-1: snapped tether, tether wire 
with no visible urchin remains; DI-2: broken test, test 
remains still attached to tethers; and DI-3: urchin 
eaten with the test intact (Fig. 2). Where we found 
snapped tethers and no urchin remains (i.e. DI-1), we 

76

Fig. 2. Damage index (DI) of urchin remains. (A) DI-3, intact test of Heliocidaris erythrogramma; (B) DI-3, intact test of Centro - 
stephanus rodgersii; (C) DI-2, broken test of C. rodgersii; and (D) DI-2, broken test of H. erythrogramma
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searched the immediate area for tagged urchins for 
5  min to confirm that these individuals had not 
escaped. During each inspection, we monitored the 
urchins to check that they were effectively attached 
to the bottom by their tube-feet (Fagerli et al. 2014, 
Boada et al. 2015). Over the 14 d (maximum) deploy-
ment, all remaining urchins were attached to the 
substratum with their tube feet. We inferred preda-
tion events and the likely predator responsible 
(invertebrate or fish) based on the remains found (see 
above) (Aronson et al. 2001, Pederson & Johnson 
2006, Cook & Vanderklift 2011, Delgado & Sharp 
2021). During all visits, the experimental area was 
searched on snorkel within a 20 m radius for 10 min 
to visually record the presence of potential urchin 
predators. 

2.4.  Statistical analysis 

We tested the hypotheses that predation on teth-
ered urchins would be greater (1) in macroalgae than 
in barrens-mosaic areas, (2) for H. erythrogramma 
than C. rodgersii and (3) for smaller than larger 
urchins, and that these responses would be general 
across locations. We used generalised linear mixed 
models (GLMMs) and ranked the models using 
Akaike’s information criterion corrected for small 
sample sizes to test these hypotheses and compare 
the statistical significance of predictors. We pre-
dicted that these effects would be general but that 
there may also be interactions among the factors 
of size, species, habitat and location (Ling & John-
son 2009, 2012, Pinna et al. 2012), and therefore 
we assessed all possible interactions in the analy-
sis. Assumption testing was undertaken using the 
‘DHARMa’ package v.0.4.6 (Hartig 2022) in RStudio, 
which showed significant dispersion at an α-level of 
0.05 (dispersion test, p = 0.04), indicating that data 
showed mildly significant deviation from a Gaussian 
distribution; this was confirmed by Q−Q plot residu-
als showing a linear relationship between the ob -
served and expected variables. We expected that this 
difference was due to outliers in the data. Accord-
ingly, non-parametric dispersion and outlier testing 
returned a normal distribution in both cases and 
showed minor outliers at the lower end of the scale 
(outlier test, p = 0.54). Since collinearity testing also 
showed no collinearity between predictors (Pearson’s 
correlation, p > 0.05) and that urchin size data were 
generally normally distributed (Shapiro-Wilks test, 
p > 0.05), we decided to use the GLMM approach. It 
is important to note that our study is large and used 

an orthogonal design to allow statistical power and 
efficiency to be maximised. At the site level, aver-
aged values provided a strong estimate, and the 
design also enabled various interactions to be as -
sessed with reasonable statistical power. In our ana -
lysis, urchin size was treated as a continuous variable, 
and random effects of site were included in the mod-
elling. We chose to use random effects GLMM mod-
els because they are better able to account for site-
level replication compared to other methods (Quené 
& Van den Bergh 2008, Yu et al. 2022). To provide a 
complete picture, comparisons for random effects at 
the site level were also tested where all models 
showed only moderate influences (see Table 1). No 
effect of tethering brick was ob served (Table S3); 
therefore, ‘brick’ was removed from the analyses. In 
our analysis, we used the binomial distribution and 
the associated logit-link function since urchin mortal-
ity was recorded in binomial format (1: urchin eaten; 
0: urchin not eaten). We wanted to know whether the 
patterns we report would be general, so we tested 
locations (Soininen et al. 2007, Crase et al. 2012). All 
statistical analyses and plots were done using the 
statistical program R v.3.6.3 (R Core Team 2021) and 
the associated packages ‘lme4’ v.1.1.23 (Bates et 
al. 2015), ‘MuMIn’ v.1.43.17 (Barton 2020), ‘ggplot2’ 
v.3.3.0 (Wickham 2016), ‘dplyr’ v.0.8.5 (Wickham et 
al. 2023) and ‘emmeans’ v.1.6.2-1 (Lenth 2023). 

3.  RESULTS 

3.1.  Urchin tethering 

In our analyses, location was the only significant 
factor affecting whether urchins had been preyed 
upon by the first inspection, and we did not record 
any of the expected effects of urchin size or habitat 
(Fig. 3, Table 1). Urchins tethered in Wollongong 
showed far lower predation rates (28.1%) than else-
where (Fig. 3A, Table 1), which ranged between 96.9 
and 100% mortality at the first inspection. While a 
significant difference in urchin mortality is predicted 
at the level of location, no similar trend was found 
based on urchin species or habitat (Fig. 3B, Table 1). 
Overall, differences in tethered urchin mortality 
between the 2 species (Fig. 3A) or between habitats 
(Fig. 3B) were negligible. For C. rodgersii, all urchins 
were preyed on first in Bendalong (100% mortality 
by Day 3−4), then Jervis Bay and Bass Point (100% 
mortality by Day 5−7) and Wollongong (100% mor-
tality by Day 12−14) (Fig. 3). Tethered urchins expe-
rienced the lowest predation in Wollongong (Day 
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3−4, 37.5% [barrens-mosaic], 25% [macroalgae]; 
Day 5−7, 37.5% [barrens-mosaic], 50% [macro algae]; 
Day 12−14, 100% [barrens-mosaic and macro algae]). 
Apart from one urchin tethered in Jervis Bay which 
was sighted alive at the first inspection (Day 3−4, 
100% [barrens-mosaic], 87.5% [macroalgae]), all other 
C. rodgersii were killed (Fig. 3, Table S3). Overall, C. 
rodgersii was sighted alive on tethers on 17 occasions 
(18.1% urchins sighted alive from 96 inspections) in 
Wollongong on Days 3−4, 5−7 and 12−14 and in 
Jervis Bay on Day 3−4. 

For H. erythrogramma, a similar pattern was ob -
served, with all urchins preyed on first in Bendalong 
(100% mortality by Day 3−4) then Jervis Bay (100% 
mortality by Day 5−7) and Bass Point and Wollon-
gong (100% mortality by Day 12−14). At Bass Point, 
one urchin was sighted alive during the first and sec-

ond inspections (Day 3−4, 87.5% [barrens-mosaic], 
100% [macroalgae]; Day 5−7, 87.5% [barrens-mosaic], 
100% [macroalgae]), while all other H. erythro-
gramma had been killed (Fig. 3, Table S3). Overall, 
H. erythrogramma was sighted alive on tethers on 
18  occasions (18.8% urchins sighted alive from 96 
inspections) in Bass Point and Wollongong on Days 
3−4 and 5−7 and at Jervis Bay and Bendalong on 
Day 3−4. 

3.2.  Potential urchin predators 

Observations of the DI (species and habitat type 
combined) on tethered urchins showed DI-1 (snapped 
tether) 36 times in barrens-mosaic habitat and 37 
times in macroalgal habitat, DI-2 (broken urchin test) 
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Fig. 3. Percentage of urchin survival at each inspection period by (A) urchin species Centrostephanus rodgersii or Heliocidaris  
erythrogramma and (B) habitat (barrens-mosaic or macroalgae)
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5 times in barrens-mosaic habitats and 6 times in 
macroalgae habitats, and DI-3 (intact, empty urchin 
test) 6 times in barrens-mosaic habitats and 5 times 
in macroalgal habitats. At the site level, we found 
snapped tethers (DI-1) 22, 19, 19 and 15 times in 
Wollongong, Bass Point, Jervis Bay and Bendalong, 
re spectively, broken tests (DI-2) 2, 4, 1 and 4 times 
and snapped tethers (DI-3) 1, 1, 4 and 5 times at these 
sites, respectively (Fig. 4). 

We observed 8 potential predators of the urchins: 
Sagmarisus verreauxi, Achoerodus viridis and Chryso -
phy rus auratus (which were expected) and Hetero -
don tus portusjacksonii (Port Jackson shark), Bathyto -
shia brevicaudata (smooth stingray), Octopus tetricus 
(Sydney octopus), Sepia apama (giant cuttlefish) and 
Gymnothorax prasinus (moray eel), which were un ex -
pected (Fig. 4). At the location level, all predators 
were present except for G. prasinus, which was only 
encountered in macroalgal habitat, and S. apama, 
which was only encountered in barrens-mosaic habi-
tat. We re corded S. verreauxi, A. viridis and S. apama 
in Wollongong, S. verreauxi, A. viridis, O. tetricus, B. 
bre vi cau data, G. prasinus in Bass Point, A. viridis, B. 
bre vi caudata, H. portusjacksonii, O. tetricus and G. 
prasinus in Bendalong and A. viridis, C. auratus and 
H. portusjacksonii in Jervis Bay. At Wollongong and 
Bass Point, the presence of S. verreauxi was inferred 
from the presence of moulted lobster carapaces on 
some checkups. Tethered and tagged urchins were 
observed being attacked by small pomacentrid fish 
and the cephalopods S. apama and O. tetricus in Wol-
longong, H. portusjacksonii in Jervis Bay and G. prasi-
nus in Bendalong. We were able to obtain photographic 
records of H. portusjacksonii and Parma uni fasciata 
(girdled scalyfin) attacking the urchins (Fig. 5). 

4.  DISCUSSION 

Our findings from in situ tethering of Centro -
stephanus rodgersii and Heliocidaris erythrogramma 
at 4 locations along the NSW coast indicate that they 
are preyed upon rapidly when removed from their 
crevice-shelter and physically restricted from return-
ing to refugia. In most locations, the urchins were 
eaten by Day 3−4, except for Wollongong and Bass 
Point, where urchins persisted until Day 12−14. The 
DI and our qualitative observations in the field indi-
cated that the tethered urchins were attacked by a 
broad predator guild. Counter to expectations, there 
was no effect of urchin TD or habitat type on preda-
tion of the 2 species. Predation was similar in dense 
macroalgae and barrens-mosaic habitats. Location 
was the only significant factor affecting whether 
urchins were preyed upon. Our results suggest that 
predation of tethered C. rodgersii and H. erythro-
gramma along the south coast of NSW occurs rapidly 
but varied spatially and potentially in relation to the 
local predator guild. 

The urchins were eaten within a few days of being 
tethered, irrespective of TD, species or habitat type. 
This finding differs from previous tethering studies 
done in Tasmania (Ling & Johnson 2009) and Japan 
(Kawamata & Taino 2021), where tethered urchins in 
macroalgal habitats were preyed upon at a signifi-
cantly higher rate than those tethered in habitats 
with sparse macroalgae. In contrast to the rapid pre-
dation of C. rodgersii in our study (3−14 d), survival 
of tethered C. rodgersii in Tasmania was much 
higher, with the urchins remaining alive for longer 
(5−90 d) (Ling & Johnson 2012). In addition, small 
urchins were eaten first and some large urchins 
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Model                                                                                                df       AICc      ΔAICc      Weight    Log. Lik     R2m       R2c 
 
Mortality ~ Location + (1|Site)                                                         6         39.7        0.00         0.806      −13.36      0.52      0.64 
Mortality ~ (1|Site) (NULL)                                                               3         44.6        4.92         0.069       −19.16            0           0.64 
Mortality ~ Location + Habitat + (1|Site)                                         7         44.6        4.98         0.067      −14.69      0.51      0.65 
Mortality ~ Location + Species + (1|Site)                                         7         46.0        6.29         0.035      −15.34      0.52      0.64 
Mortality ~ Habitat + (1|Site)                                                            4         47.9        8.21         0.013      −19.72      0.02      0.66 
Mortality ~ Species + (1|Site)                                                           4         50.7         11.06         0.003      −21.14      0.05      0.85 
Mortality ~ Location + Habitat + Species + (1|Site)                        8         51.0         11.33         0.003      −16.67      0.51      0.64 
Mortality ~ Location + Size + (1|Site)                                               7         51.6         11.94         0.002      −18.16      0.53      0.65 
Mortality ~ Location + Habitat + Location * Habitat + (1|Site)     10        53.4         13.70         0.001      −15.38      0.46      0.69 
Mortality ~ Habitat + Species + (1|Site)                                           5         54.1         14.40         0.001      −21.70      0.16      0.66

Table 1. Results of model selection within a generalized linear mixed model using Akaike’s information criterion corrected for 
reduced sample sizes (AICc). Outcomes are shown for urchin mortality recorded at the first inspection interval only (Day 3−4). 
Model weights (Weight), logarithmic likelihoods (Log. Lik) and contributions of fixed (R2m) and fixed plus random effects 
(R2c) are shown. Models are ranked from the lowest AICc to the highest, with the lowest model shown in bold. All possible 
interactions were tested and here the top 10 highest-weight models are shown. Models within ±2 AICc of the lowest AICc  

model are significant



Mar Ecol Prog Ser 714: 71–86, 2023

remained alive for the duration of the experiment in 
Tasmania (Ling & Johnson 2012). Tethering studies 
with H. erythrogramma in Tasmania also report sur-
vival of large urchins for the entire experimental 
period (14 d), with small urchins being eaten first 

(Pederson & Johnson 2006). Predation of the 2 species 
in our study occurred up to 10 times faster than in 
Tasmania (Pederson & Johnson 2006, Ling & Johnson 
2009, 2012). That we found no effect of body size on 
vulnerability to predation was surprising because 

large individuals escaped predation 
in Tasmania (Pederson & Johnson 
2006, Ling et al. 2009) and smaller 
tethered H. crassispina and Strongy-
locentrotus spp. are more vulnerable 
to predation in Japan (Kawamata & 
Taino 2021) and California (Tegner 
& Levin 1983), respectively. 

Urchin remains left on the tethers 
or snapped tethers indicated the 
presence of a broad range of preda-
tors. We also observed predators not 
previously confirmed to eat urchins, 
in cluding H. portusjacksonii (Mc -
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Fig. 4. Damage index (DI) counts: DI-1 (snapped tether), DI-2 (test broken) and DI-3 (test intact) at each habitat nested 
within sites. Images of putative urchin predators observed at each location are overlaid to show predator diversity. These 
included Sagmariasus verreauxi (eastern rock lobster), Achoerodus viridis (eastern blue groper) and Chrysophyrus aura-
tus (pink snapper), Bathytoshia brevicaudata (smooth stingray) and Heterodontus portusjacksonii (Port Jackson shark), 
Gymnothorax prasinus (green moray), Sepia apama (giant cuttlefish) and Octopus tetricus (Sydney octopus). Images from  

https://publicdomainvectors.org/ 

Fig. 5. Images captured on video showing (A,B) Heterodontus portusjacksonii 
(Port Jackson shark) attacking large Centrostephanus rodgersii in Jervis Bay, 
and (C) Parma unifasciata (girdled scalyfin) attacking a small Heliocidaris ery- 

throgramma. Cork tags and brick tethers are visible



Day et al.: Predation of tethered sea urchins 

Laughlin & O’Gower 1971, Powter et al. 2010), B. 
brevicaudata (Michael 2006, Powter et al. 2010), O. 
tetricus (Ambrose 1986) and G. prasinus (Wraith 
2007). Overall, tethered urchins were likely eaten 
primarily because they had been removed from shel-
ter and prevented from returning (Shears & Babcock 
2002, Pederson & Johnson 2006, Boada et al. 2015). 
We also consider the broad predator guild present at 
the tether locations as the reason urchins were eaten 
irrespective of species or body size. Varied urchin 
remains were left on the tethers and predation was 
rapid in most instances. Our finding that there was 
no difference in urchin predation in macroalgal com-
pared to barrens-mosaic habitats is consistent with 
other studies that also did not find differences be -
tween habitats with abundant macroalgae compared 
to those with sparse macroalgae (Bologna & Steneck 
1993, Byrnes et al. 2006, Sheppard-Brennand et al. 
2017). Our approach needs to be extended to include 
expansive urchin barrens habitats where macroal-
gae is absent. While it is suggested that macroalgae 
is important in maintaining populations of urchin 
predators (Bologna & Steneck 1993, Byrnes et al. 
2006, Sheppard-Brennand et al. 2017, Layton et al. 
2020), in NSW, these predators avail of a range of 
habitats while foraging (Curley et al. 2002). Testing 
whether the results we report here over small spatial 
scales are also seen over larger spatial scales is an 
important area for future research. 

The different results between urchin tethering 
experiments in NSW and Tasmanian reefs are in -
dicative of higher predation pressure in NSW. In Tas-
mania, the lobster J. edwardsii was the main preda-
tor of tethered C. rodgersii and H. erythrogramma, 
with only 8% of predation attributed to fishes (Peder-
son & Johnson 2006, Ling et al. 2009, Ling & Johnson 
2012). The survival of large urchins was suggested to 
be because small J. edwardsii (<120−140 mm CL) 
were unable to feed on large urchins (Pederson & 
Johnson 2006, Ling & Johnson 2012). In our study, we 
recorded little predation of tethered urchins at -
tributable to lobsters (S. verreauxi), with more evi-
dence for predation by fish (70%) and, in particular, 
species capable of breaking monofilament fishing 
line (15 kg tensile strength) or cracking urchin tests 
(e.g. A. viridis and C. auratus). We regularly found 
snapped and shortened monofilament line with no 
urchin remains attached, suggesting a sudden and 
forceful attack by a large predator (Cook & Vanderk-
lift 2011). Large urchins may be an important food 
source for large fishes such as A. viridis (Gillanders 
& Kingsford 1998, Andrew 1999) and sharks such as 
H. portusjacksonii (McLaughlin & O’Gower 1971, 

Powter et al. 2010). Small, locally abundant fishes 
such as Notolabrus spp. can also eat urchins (Peder-
son & Johnson 2006, Ling & Johnson 2012). We 
acknowledge the caveat that predation on tethered 
urchins may be higher than when they are within 
crevices, as seeking refugia is an important be -
havioural defence against predation (Colman 1972, 
Tegner & Dayton 1981, Tegner & Levin 1983, Gillan-
ders 1995). 

Despite the emphasis in many studies that lobsters 
are the most important urchin predators (Pederson & 
Johnson 2006, Ling & Johnson 2012, Kawamata & 
Taino 2021), this was not indicated in our study. The 
impact of lobsters on urchin populations might be 
less than previously proposed in the region of our 
investigation (Plagányi et al. 2018, Layton et al. 
2020). Recent studies have shown that both the east-
ern and southern lobster species are capable urchin 
predators, but they may be more reluctant to eat 
urchins than first thought or may have wide-ranging 
diets; these studies show that both lobster species 
prefer molluscan prey to C. rodgersii and H. erythro-
gramma (Day et al. 2021, Smith et al. 2022a). It 
appears that the effect of lobsters on urchin popula-
tions in NSW (Provost et al. 2017, Day et al. 2021) is 
less than that reported for Tasmania (Pederson & 
Johnson 2008, Ling et al. 2019); although a recent 
study from Tasmania suggests that lobsters alone 
might not control urchin grazing there (Smith et al. 
2022a). The results of this study (~30% predation of 
tethered urchins attributable to lobsters in NSW 
compared to ~90% in Tasmania) suggests that the 
potential for lobster predation to control urchin pop-
ulations in NSW may be limited compared to else-
where.  

The 2 lobster species in temperate eastern Aus-
tralia differ in their biology and ecology. In NSW, S. 
verreauxi undergoes seasonal migration many orders 
of magnitude greater in distance than that of J. 
edwardsii in Tasmania (Booth 2010, Jeffs et al. 2013, 
Woodings et al. 2018). The southern species J. 
edwardsii also has a much smaller home range and is 
resident in nearshore habitats at large sizes (Kelly 
2001, Gardner et al. 2003). Comparatively, the east-
ern species S. verreauxi travels up to 1000s of km 
seasonally and in NSW are more abundant in deeper 
water than where dense C. rodgersii populations 
occur (Jeffs et al. 2013). Taken together, these as -
pects of lobster ecology may explain the differing 
outcomes for urchin tethering experiments in NSW 
and Tasmania. Moreover, C. rodgersii is newly arrived 
in Tasmania, having extended its range significantly 
poleward over the last 50 yr, and has created a novel, 

81



Mar Ecol Prog Ser 714: 71–86, 2023

dynamic and changing seascape, with increasing 
populations causing increasing barrens habitat (Ling 
& Keane 2021, Cresswell et al. 2022). As a new prey 
source, C. rodgersii does not appear to have a suite of 
predators in Tasmania. In contrast, in its native range 
the C. rodgersii barrens−macroalgae seascape has 
been stable for decades (Andrew & O’Neill 2000, 
Booth 2010, Glasby & Gibson 2020). This is likely 
associated with a predator guild that influences 
urchin population dynamics, as observed in Califor-
nia (Tegner & Dayton 1981, Stephens et al. 2006) and 
Japan (Kawamata & Taino 2021). The potentially 
1000s of years of co-evolved urchin predator−prey 
dynamics along the coast of NSW contrasts with the 
emerging ecosystem outcomes in Tasmania. 

We recorded some interactions between predators 
and tethered urchins, including species not expected 
to be urchin predators. Based on anecdotal reports 
and stomach contents (Gillanders & Kingsford 1998, 
Andrew 1999), we expected that A. viridis would be 
an important predator of the tethered urchins but did 
not observe this species preying on the urchins even 
though they were present at all our sites. We ob -
served 4 species not previously known to eat urchins 
feeding on or attacking tethered urchins. These 
species included one chondrichthyan (B. brevicau-
data), 2 cephalopods (S. apama and O. tetricus) and 
one anguilliform (G. prasinus) species. With respect 
to the shark H. portusjacksonii, our observations of 
predation on C. rodgersii are important, as this 
species has been suggested to eat urchins because it 
possesses sturdy biting and grinding dentition (Col-
man 1972, Powter et al. 2010), with just a single 
report of urchins in its gut contents (McLaughlin & 
O’Gower 1971). Our recording of previously un -
known or little-known urchin predators indicates 
that we have a poor understanding of the breadth of 
the feeding guild that consumes urchins. This is also 
noted in Europe, where urchins are eaten by a broad 
range of predators and not primarily by lobsters 
(Trowbridge et al. 2019). This is congruent with our 
results, where fish played a larger role along with 
other invertebrate or chondrichthyan predators in 
eating tethered urchins compared with lobsters. It is 
important to note, however, that the broad urchin 
predator guild we report here may not be represen-
tative of predation under nonexperimental condi-
tions since the urchins were tethered away from 
crevices, and this may affect vulnerability to preda-
tion (Boada et al. 2015). That said, the striking con-
trast between our results (urchins eaten in ~3−14 d 
and little predation attributable to lobsters) and those 
for tethered urchins in Tasmania (urchins remaining 

alive at >90 d and most predation attributable to lob-
sters) (Ling & Johnson 2012) is an important indica-
tion that these regions differ ecologically. 

Fishing of urchin predators such as lobsters and 
predatory fishes is considered to have a cascading 
ecosystem effect on reducing the vulnerability of 
urchin populations to predation (Ling et al. 2009, 
Ling & Johnson 2012, Kawamata & Taino 2021). This 
was reflected in our study, where location was the 
only significant factor with the greatest predation at 
Jervis Bay and Bendalong followed by Shellharbour 
and Wollongong. This suggests that predator guilds 
vary spatially. Interestingly, the level of predation 
reflects the proximity of the tethered urchins to 
nearshore human populations and the extent of 
activities such as fishing, with the 2 ends of the spec-
trum being Jervis Bay Marine Park (least exposed 
to anthropogenic pressures) and Wollongong (a city 
being most exposed). These observations highlight 
the need to consider the influence of adjacent human 
populations on rates of predation on tethered urchins, 
as in the gravity models used to predict C. auratus 
populations (Rees et al. 2021) and the health of coral 
reefs (Brewer et al. 2013, Cinner et al. 2018). Our ob -
servations suggest a north−south difference in urchin 
predation pressure in NSW, and since this difference 
also coincides with human population/fishing pres-
sure, there is a need to consider this spatial factor in 
the design of predation studies. 

The contrasting findings on predation of C. rod -
gersii in its native (NSW) range where the macro -
algae−barrens mosaic has been stable for decades 
(Andrew & O’Neill 2000, Booth 2010, Glasby & Gib-
son 2020) and extended (Tasmania) range where 
barrens dynamics are increasing rapidly with nega-
tive impacts on local biodiversity (Ling et al. 2009) 
highlights the need for a nuanced (region-specific) 
approach to the management of urchin populations 
(Kingsford & Byrne 2023). Region-specific manage-
ment strategies need to be considered and these will 
likely differ. For NSW, it appears that a broad range 
of predators feed on urchins and so it is unclear if 
a key urchin predator is missing due to past over-
fishing (Byrne & Andrew 2020). Predation on the 
tethered urchins was potentially influenced by the 
impacts of human populations on the local predator 
guild through fishing pressure (Cinner et al. 2018, 
Rees et al. 2021). Importantly, our results suggest that 
the role of lobsters in controlling urchins in NSW may 
be overstated and that many predator species are 
likely to influence population levels (Byrne & Andrew 
2020), as reported elsewhere (Tegner & Dayton 1981). 
As moves to increase the C. rodgersii fishery and ini-
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tiate culling campaigns are being considered as a 
means to transition barrens habitat to a more desirable 
kelp forest state (www.aph.gov.au/Parliamentary_
Business/Committees/Senate/Environment_and_
Communications/Invasivemarinespecies), targeted 
re search is needed to determine whether NSW has 
an urchin problem to begin with. In Tasmania, it is 
notable that no significant decrease in barrens areas 
attributable to commercial harvest have been re -
corded in ~15 yr of fishing C. rodgersii at or near 
maximum sustainable yield (Cresswell et al. 2022). 
Conversely, in NSW, C. rodgersii is an important 
ecosystem engineer that maintains local biodiversity 
(Curley et al. 2002, Kingsford & Byrne 2023) and also 
presents a potentially sustainable fishery resource 
(Blount & Worthington 2002). Hence, any removal of 
this urchin across its native range will need to be 
managed carefully. 
 
Data availability. The data and code that supported the find-
ings of this study are available on request from the corre-
sponding author. Raw data are also supplied in the online 
supplementary material. 
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