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1.  INTRODUCTION 

For centuries, floating objects drifting on the ocean’s 
surface have been known to attract a number of fish 
species, including tropical tunas such as skipjack 
tuna Katsuwonus pelamis, yellowfin tuna Thunnus 
albacares, and bigeye tuna T. obesus (Castro et al. 
2002, Maufroy et al. 2015). As fishermen have noticed 
this behavior, they have used both natural and man-
made floating objects, or drifting fish-aggregating 

devices (dFADs), as a tool for finding and catching 
tropical tunas. The use of dFADs in tuna purse-seine 
fisheries has gradually increased since the 1980s to 
the present time, where vessels using dFADs now 
contribute to 36% of the world’s total tropical tuna 
catch (Fauvel et al. 2009, Davies et al. 2014, ISSF 
2021, Wain et al. 2021). These widespread changes 
in fishing tactics have highlighted the need to better 
understand the potential ecological effects of dFADs 
on tuna ecology and the marine environment in 
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order to ensure adequate management of fish stocks 
and dFAD usage. 

Indeed, the dynamics of how and why tuna associ-
ate with dFADs are still poorly understood. Regard-
ing the reasons behind tuna aggregation at dFADs, a 
number of hypotheses have been suggested (Fréon & 
Dagorn 2000, Castro et al. 2002, Dempster & Taquet 
2004). Of these, 2 have gained traction: the ‘meeting-
point’ hypothesis, which considers that dFADs facili-
tate the encounter between individuals or schools, 
thus constituting larger schools that could benefit sur-
vival rates (Fréon & Dagorn 2000), and the ‘indicator-
log’ hypothesis, by which tunas may be safeguarding 
the survival of their eggs, larvae, and juvenile stages 
by using drifting objects as indicators of areas where 
plankton and food are readily available (Hall et al. 
1992). This second hypothesis has led some authors 
to postulate that man-made dFADs could have detri-
mental effects on tuna populations by creating a so-
called ‘ecological trap’ (Marsac et al. 2000, Hallier & 
Gaertner 2008, Dupaix et al. 2023), which is based on 
3 main premises (Marsac et al. 2000): 

(1) the association of tuna with dFADs is fast, strong, 
and long-lasting; 

(2) dFADs modify the natural movements of tuna 
schools; 

(3) dFADs affect the growth and natural mortality 
of tuna. 

Whether or not an ecological trap is occurring at 
dFADs has been subject to debate, and several authors 
have explored this issue by investigating different 
aspects of the 3 premises presented by Marsac et 
al.  (2000). For example, Hallier & Gaertner (2008) 
found that fish around dFADs were generally in less 
healthy condition than those found unassociated 
with floating objects, thus supporting the third prem-
ise of Marsac et al. (2000). However, Robert et al. 
(2014a) later suggested that this difference in condi-
tion may not be a consequence of aggregating at the 
dFAD, but rather a strategy to improve their body 
condition, whereby the tuna actually obtain some 
benefit from aggregating near the floating object. 
Although many studies have continued to investigate 
the existence of ecological traps in general (Robert-
son & Hutto 2006), and in reference to tuna and 
dFADs (Dagorn et al. 2013), conclusive evidence is 
yet to be found. In fact, most authors generally agree 
that either, or both, the indicator-log hypothesis and 
the meeting-point hypo thesis are at play when tuna 
aggregate at dFADs (Castro et al. 2002, Girard et al. 
2004, Robert et al. 2012, 2013a,b). 

To provide further insight into the reasons driving 
tuna aggregations around dFADs, several studies have 

focused on the temporal aspect of school behavior 
around dFADs (Ohta & Kakuma 2005, Dagorn et al. 
2007, Matsumoto et al. 2016, Tolotti et al. 2020). 
Authors have examined the continuous residence 
time (CRT) of tunas at dFADs, defined as the dura-
tion for which tuna were present at the dFAD without 
day-scale absences; continuous absence time (CAT), 
i.e. the time between 2 consecutive associations with 
dFADs (Ohta & Kakuma 2005); or colonization time 
(CT), the time it takes for tuna to first appear at a 
dFAD (Lopez et al. 2017, Orue et al. 2019b), among 
other indices. In general, results have been highly 
variable. For example, CRT has been found to range 
from <1 to 55 d (Baidai et al. 2020b). Likewise, the 
values of CAT range from 2 to >100 d (Robert et al. 
2012). Marsac et al. (2000) also referred to the tempo-
ral aspect of aggregations in the first premise of the 
ecological trap theory, so it stands to reason that 
studies focused on this issue could shed light on the 
reasons driving tuna behavior around dFADs. Given 
the inherent difficulties of conducting experiments 
in  the open ocean, most research on this subject 
is  based on small-scale studies using electronic or 
acoustic tags to monitor individual tunas at a small 
number of dFADs, which might explain the variabil-
ity in these results. 

However, the dFADs used by tropical tuna purse-
seine fisheries today are generally deployed with 
satellite-linked instrumented buoys equipped with 
one or more echo-sounders, which provide fishermen 
with accurate dFAD positioning as well as estimates 
of aggregated tuna biomass (Davies et al. 2014, Wain 
et al. 2021). Data collected by these buoys provide 
invaluable information for fishermen, but have also 
attracted the attention of the scientific community, 
who have highlighted their potential to provide 
insights in tuna migration and behavior on a global 
scale (Lopez et al. 2016, Moreno et al. 2016, Santiago 
et al. 2016, Orue et al. 2019a, Baidai et al. 2020a). As 
such, recent studies have begun to model and pro-
cess the echo-sounder data provided by these buoys 
to remotely map tuna distribution or investigate pat-
terns in tuna aggregation around dFADs (Baidai et 
al. 2019, 2020b, Orue et al. 2019b, Precioso et al. 
2022). It has been suggested that dFAD data could 
even be used to test the ecological trap hypothesis 
(Dagorn et al. 2010), precisely by providing large-
scale data on the biomass present under the dFAD at 
any given time. 

In this context, here we used data from echo-
sounder buoys deployed on dFADs across the At -
lantic, Indian, and Pacific Oceans to explore global 
temporal patterns in aggregation. To do this, we 
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applied machine learning based models from TUN-AI 
(Precioso et al. 2022) to echo-sounder data to provide 
accurate tuna biomass estimates below dFADs over 
time. We then adapted metrics already present in 
the  literature to account for the fact that our study 
focuses on the entire tuna aggregation around the 
dFAD, as opposed to individual fish. Finally, given 
that TUN-AI can deliver estimated amounts of tuna 
biomass aggregated at the dFAD, not just pres-
ence−absence data, we examined the processes of 
aggregation and disaggregation in more detail, ana-
lyzing the symmetry of these processes. With partic-
ular reference to the first premise of the ecological 
trap (a fast, strong, and long-lasting association; 
Marsac et al. 2000), we specifically tested whether 
the time it takes for the tuna school to depart from a 
dFAD is significantly longer than the time it takes for 
the aggregation to form in the first place. 

2.  MATERIALS AND METHODS 

2.1.  Database description 

The work presented in this paper makes use of an 
extensive amount of data arranged in 3 large data-
bases, classified according to the source from which 
they were obtained. 

2.1.1.  Activity data on dFADs 

The first database contains the activities performed 
by the Spanish tropical tuna purse seine fleet on 
dFADs drifting in the 3 major oceans (Atlantic, Indian, 

and Pacific). These data were provided by the ship 
owners’ association, Asociación de Grandes Atuneros 
Congeladores (AGAC), and contains 120 707 events 
spanning 11 April 2017 to 1 January 2021, out of 
which 35 813 happened in the Atlantic Ocean, 55 819 
in the Indian Ocean, and the remaining 29 075 in the 
Pacific Ocean. Every entry in this database contains 
information on the type of interaction with the dFAD, 
the unique identification number and model of the 
echo-sounder buoy attached to the dFAD, the time-
stamp and geographical coordinates where the activ-
ity took place, and other relevant details (for a com-
plete description of the interaction types, see Ramos 
et al. 2017). The buoy identification number allowed 
us to establish a connection between the human 
interactions associated with a particular dFAD and 
the acoustic measurements recorded by the echo-
sounder (see Section 2.1.2). Fig. 1 displays the spatial 
distribution, at a global scale, of the tuna catch 
events carried out by the Spanish fleet over the refer-
ence period used to train the biomass estimation 
model. 

2.1.2.  Echo-sounder buoy data 

The echo-sounder buoy database assembles the 
data collected from Satlink (www.satlink.es) buoys 
deployed by the Spanish tropical tuna purse seine 
fleet. Altogether, this data set includes information 
from 16 419 different buoys distributed over the 3 
major oceans and spanning the same time frame as 
the events in the activity database (see Section 2.1.1). 
The data set comprises over 70 million observations, 
generally sampled at hourly frequency. 

Fig. 1. Distribution of sets used to train the TUN-AI model, reported by the Asociación de Grandes Atuneros Congeladores  
between 11 April 2017 and 1 January 2021
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Each entry in the database contains the unique 
buoy identification number, the timestamp of when 
the reading was taken, and an estimate of tuna bio-
mass (in t) under the dFAD. These biomass esti-
mates are obtained from acoustic samples taken 
periodically throughout the day, and the average 
back-scattered acoustic response is converted into 
estimated tonnage based on the target strength of 
skipjack tuna. See Lopez et al. (2016) for detailed 
explanations of the process within the buoy and 
Boyra et al. (2018) for the value of the target strength. 
For each reading, the biomass estimates are pro-
vided across 10 equally spaced depth layers, and val-
ues can range from 0 to 63 t per layer. The resolution 
of the information sent by the echo-sounder is 1 t, 
which means that tuna aggregations below this 
threshold are not considered. 

The data set also includes all of the position infor-
mation transmitted by the buoy. These GPS coordi-
nates of the buoy are generally transmitted every 
24 h, although transmission frequency can be modi-
fied by the buoy owner. Besides that, buoys are pro-
grammed to only send biomass estimates when the 
total measurement delivers values above 1 t. Hence, 
if a given buoy sent GPS coordinates but no biomass 
estimates over a certain period, the biomass esti-
mates for that period were imputed to 0 t. Further 
information about the buoy models and the biomass 
estimation process is available in Section 2.1.2 in Pre-
cioso et al. (2022). 

2.1.3.  Oceanography data 

The TUN-AI models are trained to provide accurate 
biomass estimates from echo-sounder data (Precioso 
et al. 2022), but they also need to be fed with several 
oceanographic variables at surface level (depth = 
0.494 m). These data are provided at daily frequency 
by the EU Copernicus Marine Environment Monitor-
ing Service (CMEMS) (Global Monitoring and Fore-
casting Center 2018) (products GLOBAL-ANALYSIS-
FORECAST-PHY-001-024, 1∕12° resolution; and 
GLOBAL-ANALYSIS-FORECAST-BIO-001-028, 1∕4° 
resolution). Each record of the echo-sounder buoy 
database (see Section 2.1.2) is enriched with oceano-
graphic variables for the location and time of the 
measurement. The variables used in this study 
are:  temperature (°C), chlorophyll a concentration 
(mg m−3), dissolved oxygen concentration (mmol m−3), 
salinity (psu), thermocline depth (m, calculated as 
the depth where water temperature is 2°C lower than 
surface temperature), current velocity (m s−1), and 

sea surface height anomaly (SSHa) (m, deviation of 
the sea surface height from the long-term mean). 

2.2.  Data processing 

2.2.1.  Data cleaning 

Prior to analysis, it is necessary to clean the data of 
any records that might pollute or obscure our study. 
To do this, a set of procedures have been established 
to remove potential errors: 

• Duplicate rows and samples with missing buoy 
identification number are dropped from both the 
activity and the echo-sounder databases. 

• Echo-sounder records corresponding to positions 
with less than 200 m depth are removed, as the echo-
sounder signal could be affected by the sea floor. 
This filter also removes all acoustic records reported 
on land. 

• Acoustic readings from buoys on board vessels 
are removed by calculating the mean buoy velocity 
over a day and discarding rows where the buoy 
velocity exceeds 3 knots, following the same criterion 
as Orue et al. (2019a). 

2.2.2.  TUN-AI estimates 

A simple approach for estimating tuna biomass is 
to use only raw acoustic records, like the baseline 
model defined by Precioso et al. (2022). This baseline 
model uses the 72 h echo-sounder window prior to the 
date of the prediction. The window contains 1 acoustic 
record per hour, and each is composed of 1 value for 
each of the 10 layer depths, thus defining a matrix of 
size 72 × 10. As the output of the model (i.e. the over-
all biomass estimation) is a single number, it is neces-
sary to apply a set of aggregation rules on the echo-
sounder window matrix. The rules that performed 
best in terms of accuracy were the maximum of all 
the hours for every layer and then the mean of all lay-
ers. However, there are models that can perform bet-
ter than this baseline, as we explain below. 

The biomass estimates provided by the echo-
sounder may present variations when compared to 
real tuna tonnage under the dFAD (Lopez et al. 2016, 
Escalle et al. 2019a, Orue et al. 2019a). This could be 
due to multiple causes, including the influence of 
oceanographic conditions or the diverse species com-
position under the dFAD. To mitigate this issue, we 
estimated tuna biomass using TUN-AI (Precioso et al. 
2022), which has proven to be more accurate than 
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simply considering the raw acoustic signal provided 
by the echo-sounder (i.e. the baseline model). TUN-AI, 
based on a gradient boosting (GB) algorithm (Fried-
man 2001) and trained using set and deployment 
events from the dFAD logbook, uses information 
from the acoustic records, buoy location, and oceano-
graphic variables to estimate the tuna biomass under 
dFADs. This pipeline includes: 

(1) a binary classification model trained to estimate 
whether the tuna biomass under a dFAD is higher or 
lower than 10 t. This model attained an F1-score of 
0.925, compared to the 0.763 reported by the base-
line model over sets. 

(2) a regression model trained to give a direct esti-
mate of the quantity of tuna biomass under a dFAD. 
This model has a mean absolute error (MAE) of 21.6 t 
and a symmetric mean absolute percentage error 
(SMAPE) of 29.5% when evaluated over sets (see 
Steurer et al. 2021 for detailed definitions of these 
metrics). In comparison, the MAE of the baseline 
model over sets was 30.0 t. 

Both models require a 72 h echo-sounder window, 
containing 1 acoustic record per hour. TUN-AI also 
includes a 3-class classification model that was 
not used in this study. For a detailed explanation of 
TUN-AI, we refer the reader to the original paper 
(Precioso et al. 2022). One of the novelties of our 
analysis with respect to previous studies is the fact 
that using a regression model allows us to examine 
both the aggregation and disaggregation processes 
to dFADs, which would not be possible with a binary 
classification model. 

It is worth noting that 2 strong assumptions are 
considered when building these models: first, the 

total catch captured by the vessel and later recorded 
in the dFAD logbooks corresponds to the entire tuna 
aggregation present at the dFAD; and second, the 
whole tuna school is sampled by the echo-sounder 
beam at any moment of the echo-sounder window. 
Hypotheses of this kind are unavoidable in these 
large-scale studies, and we expect that no significant 
changes in the relative variation of the biomass are 
observed due to these issues after the smoothing pro-
cedures described in Section 2.2.4 are carried out. 

TUN-AI models can provide hourly biomass esti-
mates for each buoy, but this frequency was not ade-
quate for our study due to the noise generated by the 
day−night oscillations in tuna biomass (Escalle et al. 
2019a). To circumvent this problem, we generated 
daily biomass estimates for each buoy, producing 
3 873 531 outputs in total, after the cleaning process 
described in Section 2.2.1 was carried out. Fig. 2 
shows the spatial distribution of these biomass esti-
mates given by TUN-AI. Note that the geographical 
positions of most biomass estimates correspond to the 
areas with high numbers of training data (see Fig. 1), 
so we believe the coverage of the model to be suffi-
cient to obtain good estimates across all 3 oceans. 

2.2.3.  Generating unaltered segments 

To avoid the effects of potential human interactions 
when studying tuna aggregation dynamics under 
dFADs, the time series of each buoy was broken into 
smaller segments in which such processes were not 
altered by any external action, which we call ‘unal-
tered segments’. 
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Fig. 2. Heat map of the number of biomass predictions at a global scale for the 16 419 drifting fish-aggregating devices 
(dFADs) employed in this study, where only the regions in which more than 500 buoy biomass estimates were tracked over  

the reference period are depicted
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To generate the unaltered segments for any partic-
ular echo-sounder buoy, we first merged the TUN-AI 
estimates (for both the binary classification and the 
regression models) with the activity database, using 
the buoy identification number as the primary key. 
Of the activities recorded in the dFAD logbook, only 
deployments, sets, retrievals at sea, recoveries at 
port, and losses were considered to be ‘segment-
generating’, that is, they could directly affect the echo-
sounder readings and the biomass dynamics under 
the dFAD. Visits and modifications were assumed to 
have no effect on aggregated tuna biomass or on the 
echo-sounder readings, so they were not considered 
in this study. Lastly, a period of more than 24 h with 
no information reported by the buoy, which we refer 
to as an ‘empty period’, would also generate an unal-
tered segment, as this could indicate that the buoy 
was switched off or otherwise inoperable. 

We only considered segments longer than 72 h, as 
that is the minimum length of the window that TUN-AI 
needs to estimate biomass. We also omitted segments 
where TUN-AI failed to output an estimate for more 
than 80% of the total segment length. This may hap-
pen for very short segments (not discarded previ-
ously because they are longer than 72 h) or if the 
oceanographic data are not available (for example, 
due to issues on the CMEMS platform or with data 
resolution). Otherwise, missing values from TUN-AI 
were interpolated, in the case of the regression 
model, or propagated based on the last valid esti-
mate, in the case of the binary classification model. 
Finally, after the pre-processing outlined in Section 

2.2.1, and the steps described here, a total of 43 334 
unaltered segments were generated. The process of 
generating the unaltered segments is illustrated in 
Fig. 3. 

2.2.4.  Smoothing the signal 

The outputs of both the binary and regression 
models of TUN-AI are more representative of real 
tuna biomass than the raw estimates provided by the 
buoy. However, some noise is still present in the data, 
likely due to the small-scale changes in tuna aggre-
gations or to the influence of other fish species 
around the dFAD. Since the aim of the current study 
was to identify general trends in the tuna aggrega-
tion processes, we smoothed the resulting series to 
capture general trends while discarding small oscil-
lations. 

For the binary series, isolated estimates of one class 
or another were smoothed according to the values 
recorded for the previous day (Fig. 4). Altogether, 
2.7% of the total binary data were modified by this 
smoothing procedure. 

In the regression model, we applied a constrained 
P-splines approach developed by Navarro-García et 
al. (2023), which captures the trend of the data 
without overfitting the signal while forcing the re -
sponse to be non-negative (as the nature of the data 
requires). To smooth the series following this method-
ology, the open-source Python package ‘cpsplines’ 
was used (Navarro-García 2021). Fig. 5 shows the 
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Fig. 3. Process of generating unaltered segments from the biomass estimates and registered dFAD logbook activities on a sam-
ple echo-sounder buoy over time. (a) A sample buoy’s biomass estimates over time, together with registered activities from the 
dFAD logbook depicted as dashed lines. (b) Generation of the unaltered segments from the activities registered in the dFAD  

logbook, and from a period with no buoy records. Each color represents the resulting individual unaltered segments
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rightmost unaltered segment from Fig. 3b together 
with its smoothed version. 

2.2.5.  Characterization of tuna dynamics  

To characterize the temporal patterns of tuna 
aggregations to newly deployed dFADs, we esti-
mated a number of metrics using the binary classifi-
cation results and unaltered segments beginning 
with a deployment (7368 segments): 

• Soak time (ST): reflects the amount of time a 
given dFAD has been drifting at sea. Thus, it was cal-
culated here as the time elapsed between the initial 
deployment of the dFAD and the end of the unal-
tered segment (Fig. 6). 

• Colonization time (CT): captures the time be -
tween the initial deployment of the dFAD and the 
first detection of tuna (Orue et al. 2019b). Here, we 
estimated it as the time between the initial deploy-
ment of the dFAD and the first day where the binary 
model of TUN-AI predicted a positive output, i.e. tuna 
biomass was greater than 10 t (Fig. 6). 

• Aggregation continuous residence time (aCRT): 
first defined as CRT by Ohta & Kakuma (2005) for 
individually tagged tunas at dFADs, and adapted 
here to consider the entire aggregation, aCRT reflects 
how long a tuna aggregation is continuously de -
tected by the echo-sounder buoy on a given dFAD 
without day-scale (>24 h) ab sences. 
That is, aCRT was calculated here as 
the number of days where TUN-AI 
continuously estimated tuna biomass 
greater than 10 t (Fig. 6). 

• Aggregation continuous absence 
time (aCAT): adapted here to con-
sider the entire aggregation, this 
metric also draws from Ohta & Ka -
kuma (2005). In a similar way, aCAT 
reflects how long the tuna aggre-
gation is continuously absent from 
a  given dFAD without day-scale 
(>24 h) presences, and was calcu-
lated here as the number of days 
where TUN-AI continuously esti-
mated tuna biomass ≤10 t (Fig. 6). 

• Occupancy rate (OR): defined as the proportion of 
time that the tuna school remains at the dFAD after it 
has been colonized, and it can be estimated by 
means of the previous metrics. 

• Percentage of dFADs that are never colonized: 
proportion of dFADs where the presence of tuna has 
never been observed. This metric is useful to contex-
tualize the colonization time statistics. 

Given that the current study also draws from esti-
mates of the total amount of tuna under the dFADs, 
the processes of both aggregation and disaggrega-
tion can be examined. Therefore, we defined 2 novel 
metrics: aggregation time (AT) and disaggregation 
time (DT). To estimate them, we considered the daily 
tuna biomass estimates provided by the TUN-AI 
regression model after smoothing (see Section 2.2.4). 
Using these data, we identified the moments where 
tuna biomass reached a local maximum above 10 t, 
since this is the amount of tuna we considered to be a 
significant aggregation. This was achieved using a 
modified version of the function ‘scipy.signal.find_
peaks’ (Virtanen et al. 2020), and these peaks were 
determined by simple comparison of neighboring 
values of tuna biomass estimates. Any peaks found 
within the first or last 5 d of the unaltered segment 
were discarded, as an extra precaution to avoid the 
effects of any human activity on the biomass esti-
mates. This resulted in all unaltered segments lasting 
less than 10 d to be discarded, so a total of 23 326 

135

Fig. 4. Smoothing procedure for the binary series. Isolated estimates are modified according to neighboring values

Fig. 5. Smoothing process for the regression series. Biomass estimates gener-
ated from the TUN-AI regression model (in pink) are smoothed to show general 
trends with the non-negative P-splines approach (in blue). The smoothed curve 
is less influenced by noise in the original data to better represent general 
trends while providing coherent estimates with the non-negative requirement
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unaltered segments were considered. The final num-
ber of peaks was 71 644. For each peak, AT was then 
calculated as the time elapsed between the first bio-
mass estimate larger than 10 t and the day maximum 
biomass was reached. Likewise, DT was calculated 
as the time between the maximum biomass to the 
next biomass estimate under 10 t. This process is 
illustrated in Fig. 7. 

The binary classification TUN-AI model of Precioso 
et al. (2022) used a 10 t threshold for class discrimina-
tion, which we maintained in this study for several 
reasons. First, as the models were trained over sets 
and only 7.6% of them reported less than 10 t, no sig-
nificant changes were expected. Second, smaller ag -
gregations cannot be discerned due to the errors of 
the models, and hence reducing this threshold would 
not improve the quality of the estimates. Finally, to 
describe the tuna dynamics under dFADs, we were 
mainly interested in how the size of a tuna school 
varies over time and not in its absolute value. 

Regarding the variables estimated from the binary 
TUN-AI biomass estimates and using newly deployed 
dFADs, a summary of statistical metrics, itemized 
by the ocean basin, is displayed, and their distribu-
tions are shown by means of box plots. To better 

examine whether any of the previously mentioned 
metrics varied significantly across oceans, Kruskal-
Wallis tests were carried out and followed by Dunn 
tests to confirm pairwise differences. Likewise, ag -
gregation colonization and absence times (aCRT, 
aCAT), as well as aggregation and disaggregation 
times (AT, DT), were compared using Mann-Whitney 
tests. 

3.  RESULTS 

3.1.  General aggregation metrics 

ST and CT both showed similar patterns between 
oceans (Fig. 8a,b): the longest CT and ST were 
reported in the Pacific Ocean, and the shortest in the 
Indian Ocean, while the Atlantic Ocean showed 
results somewhere in between. Median ST for the 
Pacific Ocean was more than double that of the 
Indian Ocean, while CT was nearly double. Con -
cerning the variability of these variables, the lowest 
standard deviation occurred in the Indian Ocean 
(Table  1), while results were more variable for the 
other 2 oceans. The proportion of dFADs that were 
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Fig. 6. Results obtained by the TUN-AI binary model for a given dFAD and the calculation of aggregation metrics based on un -
altered segments starting with a deployment. ST: soak time; CT: colonization time; aCRT: aggregation continuous residence  

time; aCAT: aggregation continuous absence time

Fig. 7. Calculation of aggregation and disaggregation times from the smoothed biomass estimates delivered by the TUN-AI 
regression model for a representative unaltered segment. The gray-shaded areas represent the days where no peaks are  

considered, and the dashed line represents the 10 t threshold
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not colonized throughout their soak time also pre-
sented considerable variations (27% in the Atlantic, 
16% in the Indian, and 11% in the Pacific). 

Regarding aCRT, aCAT, and OR, consistent pat-
terns were again visible across oceans, although 
trends were different for both ST and CT (Fig. 8c,d). 
In this case, the Indian Ocean showed values for 
aCRT, aCAT, and OR that fell between those of the 
Atlantic and Pacific oceans. Concerning the aCRT, 
the Atlantic Ocean showed the shortest times, and 
the Pacific Ocean showed the longest, while the 
opposite was true for aCAT (Fig. 8c). Hypothesis tests 
showed significant differences for both aCRT and 
aCAT among oceans (Kruskal-Wallis test, p < 0.01), 
and these differences were confirmed in the pairwise 
comparisons between oceans (Dunn test, p < 0.01). 
Median values for both aCRT and aCAT across 
oceans were generally similar, 5−7 and 9−11 d, 
respectively (Table 1). Overall, global aCRT was sig-
nificantly lower than the global aCAT (Mann-Whit-
ney test, p < 0.01), and variability was also consis-
tently higher for aCAT than for aCRT. Lastly, OR was 
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Metric       Ocean     Count     Mean    SD    Median  IQR 
 
ST (d)       Atlantic     1015        124      101       103      136 
                  Indian      1591         92        73         70        84 
                  Pacific      4762        202      129       186      177 

CT (d)      Atlantic     1015         44        43         30        42 
                  Indian      1591         29        25         23        27 
                  Pacific      4762         51        42         40        48 

aCRT (d)  Atlantic     3201         10        16          5          9 
                  Indian      4389         11        16          6         10 
                  Pacific     24408        17        25          7         15 

aCAT (d)  Atlantic     3875         24        33         11        24 
                  Indian      5088         19        23         11        21 
                  Pacific     26552        21        30          9         21 

OR (%)     Atlantic     1015         33        32         24        56 
                  Indian      1591         48        35         45        64 
                  Pacific      4762         53        31         55        48

Table 1. Summary statistics, per ocean, for tuna aggregation 
metrics calculated from unaltered segments starting with a 
deployment using the binary model. ST: soak time; CT: colo-
nization time; aCRT: aggregation continuous residence time; 
aCAT: aggregation continuous absence time; OR: occupancy  

rate; IQR: interquartile range

Fig. 8. Variables estimated from the binary model. Line: median; box: interquartile range [IQR]; whiskers: max./min. values 
<1.5 × IQR above/below box (outliers ≥1.5 × IQR were removed from the figure). (a) Soak time (ST), (b) colonization time (CT),  

(c) aggregation continuous residence and absence times (aCRT and aCAT), (d) occupancy rate (OR)
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globally around 50%, with the lowest median OR 
registered in the Atlantic Ocean at 24% (Table 1). 

3.2.  Aggregation and disaggregation times 

Using the TUN-AI regression model, we were able 
to examine tuna aggregation dynamics around 
dFADs in more detail, estimating both AT and DT. In 
general, AT and DT showed similar patterns across 
oceans, with the shortest median AT and DT being 
registered for the Indian Ocean, and the longest for 
the Pacific Ocean (Table 2, Fig. 9). Globally, DT was 
not significantly longer than AT (Mann-Whitney test, 
p » 0.01). In fact, it is worth noting that the first quar-
tile for both AT and DT was generally similar, while 
more variation was seen for the third quartile, with 
AT generally longer than DT (Fig. 9). Significance 
tests found differences for both AT and DT among 
oceans (Kruskal-Wallis test, p < 0.01) and in the pair-
wise comparisons between oceans (Dunn test, p < 
0.01). Lastly, the distributions for AT and DT were 
positively skewed (i.e. the mean was greater than the 
median), regardless of the ocean where the dFAD 
was deployed. 

4.  DISCUSSION 

By using the data acquired by echo-
sounder buoys attached to dFADs, 
over the course of several years and 
across all oceans, the current study 
aimed to capture the general trends in 
tuna aggregation dynamics at a global 
scale. This was achieved by means of 
a powerful machine learning pipeline, 
TUN-AI (Precioso et al. 2022), which 
processes echo-sounder information 
to deliver estimates of tuna tonnage 
under each dFAD either as a binary 
output (<10 or ≥10 t), or as a direct 
estimate of biomass. To our knowl-
edge, this is the first analysis to exam-

ine typical metrics of tuna aggregation (namely ST, 
CT, aCRT, aCAT, and OR) across all oceans and in 
such detail, providing insight into the processes of 
both aggregation and disaggregation in the coloniza-
tion of dFADs by tuna. 

Using a binary model, and applying a similar ap -
proach with echo-sounder buoys from a different 
manufacturer, Baidai et al. (2020b) quantified several 
metrics related to tuna aggregations around dFADs 
in the Atlantic and Indian Oceans. In terms of soak 
time, their estimates are considerably shorter than 
ours for the same oceans (median values of 44 and 
43 d in the Atlantic and Indian Oceans, respectively), 
likely due to slight differences in definition. While 
Baidai et al. (2020b, p. 2962) defined soak time as 
‘the number of days between the deployment of a 
dFAD equipped with a buoy and the first reported 
operation on it’, our definition captures the length of 
the entire unaltered segment. Per our definition, this 
would likely be longer for buoys where no activities 
other than deployment were registered, which made 
up 27% of our dataset. In the Pacific Ocean, Escalle 
et al. (2021) reported mean drift times of 118 d for 
dFADs included in the Parties to the Nauru Agree-
ment’s (PNA) dFAD tracking trial program, which is 
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Ocean       Count                        Aggregation time (d)                                            Disaggregation time (d) 
                                        Mean              SD             Median            IQR             Mean                SD              Median              IQR 
 
Atlantic     19581              7.60             13.51              3.02               5.64              6.36               10.47               3.00                4.67 
Indian       26806              8.24             13.65              3.63               6.85              7.26               12.48               3.44                5.42 
Pacific       25257               15.45             25.04              5.89                13.99               14.63               25.99               5.49                 11.03

Table 2. Summary of tuna aggregation metrics for the continuous model and decoupled by ocean basin. IQR: interquartile range

Fig. 9. Aggregation and disaggregation time distributions itemized by ocean 
basin. The vertical dashed lines depict the positions of the quartiles for each  

distribution
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shorter than the median 202 d soak time we reported. 
However, Escalle et al. (2021) highlighted that due to 
data-sharing constraints, it is likely that these times 
are underestimated, as information outside of the 
PNA’s Exclusive Economic Zones was not analyzed. 
Fishermen have mentioned that the average lifespan 
of an artificial dFAD is about 5−12 mo (Lopez et al. 
2017), in line with the values registered here. The 
differences in soak time between oceans, while 
likely influenced by the ocean basin itself (with 
longer soak times in larger oceans simply due to the 
space the dFAD has to drift), may also be affected by 
how fleets operate in each ocean (Maufroy et al. 
2015). In both the Atlantic and Indian Oceans, purse-
seiners can be supported by supply vessels, whose 
primary activity is centered around dFADs. Among 
others, these supply vessels monitor and intercept 
dFADs as they drift out of regular fishing zones 
where the purse-seine vessels operate, often recover-
ing and deactivating the buoys associated with these 
dFADs (Báez et al. 2022). The activity of these vessels 
may well have slightly shortened soak times, in com-
parison to what they would be if the dFADs were 
allowed to drift indefinitely. 

Regarding colonization time, it appears that there 
is no general consensus among fishing masters. 
Moreno et al. (2007) interviewed fishing masters 
from the Indian Ocean, of which about one-third con-
sidered that it usually takes a minimum of 1 mo for a 
school to aggregate at a dFAD. Indeed, although 
there is considerable variation in the colonization 
times registered in our study for dFADs across all 
oceans, median values are around 20−40 d, in line 
with the observations of these fishing masters. How-
ever, about 45% of interviewed fishing masters 
believed that colonization of a dFAD by tuna was not 
dependent on time at all (Moreno et al. 2007), an 
observation which was also reflected by Lopez et al. 
(2017), where tuna abundance at dFADs was not pos-
itively correlated with soak time, and further evi-
denced in the large variability for colonization time 
in our own data. Small-scale tagging studies have 
found that local conditions may influence whether or 
not tuna decide to aggregate at a dFAD at all (Girard 
et al. 2004, Robert et al. 2013a), also in accordance 
with the view expressed by almost half of the fishing 
masters interviewed by Moreno et al. (2007), whereby 
the time to form an aggregation of tuna under a 
dFAD is influenced by environmental factors. In -
deed, the basis of the ‘indicator-log’ hypothesis (Hall 
et al. 1992) is that tuna consider the dFAD to be rep-
resentative of local conditions and may thus choose 
to aggregate when those conditions are favorable. 

While we did not analyze the local conditions pres-
ent around each dFAD at the time of colonization, 
instead establishing general trends across ocean 
basins, this should certainly be the focus of future 
studies. 

In the same way that colonization time may be 
affected by local conditions, small-scale studies on 
the time tuna spend at a dFAD (continuous residence 
time) also evidence a number of factors at play (Ohta 
& Kakuma 2005, Schaefer & Fuller 2005, Dagorn et 
al. 2007, Matsumoto et al. 2014, 2016, Rodriguez-
Tress et al. 2017, Tolotti et al. 2020, Chiang et al. 
2021, Govinden et al. 2021). For example, Robert et 
al. (2012) found size-dependent differences in the 
time yellowfin tuna spent around an anchored FAD, 
with smaller individuals (<50 cm fork length) spend-
ing about 4 times as much time around the FAD than 
larger individuals. In a later study, they found differ-
ent behavioral modes of tuna around anchored FADs 
depending on the local conditions (Robert et al. 
2013a). Some tuna would pass by a FAD without 
associating with it, while others made short visits, or 
remained near it for several days in a row. Similarly, 
differences in the continuous residence time of skip-
jack, yellowfin, and bigeye tuna have been observed 
across oceans (Schaefer & Fuller 2005, Tolotti et al. 
2020, Govinden et al. 2021). Some of these factors, 
such as size of individual fish in a school, or the exact 
species composition of the school, are currently over-
looked when using echo-sounder buoy data and 
could help explain the large variability found in 
CRTs and CATs across oceans. Nonetheless, as buoy 
technology improves, it is possible that estimates of 
both size or species composition will become avail-
able, giving further insight into those factors influ-
encing the associative behavior of tuna. 

Even though the massive amount of data that is 
available from echo-sounder buoys attached to 
dFADs may not provide such highly detailed infor-
mation as small-scale studies, there is value in iden-
tifying general trends on how entire tuna aggrega-
tions behave. One of the specific objectives of the 
current study was to examine whether the first prem-
ise of the ‘ecological-trap’ theory, whereby the asso-
ciation of tuna with dFADs is fast, strong, and long-
lasting (Marsac et al. 2000), was evident in our data. 
In the original study, Marsac et al. (2000) based the 
first premise of the ecological trap on a series of ob -
servations, namely tag and recapture events around 
the same dFAD, or reports of ‘fast’ associations, 
where tuna appeared under a dFAD after less than 
7 d. While our data cannot show the movements of 
individual tuna around the dFADs, we do see that in 
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most cases, the time for tuna to colonize the dFAD is 
longer than the 7 d reported by Marsac et al. (2000). 
In our results, 75% of colonization events took more 
than 15 d, and more than 50% took over 20 d, across 
all oceans. Nonetheless, some cases in our data did 
show very short colonization times (minimum was 2 d), 
though these appear to be the exception rather than 
the norm. Secondly, the first premise states that the 
association of tuna to dFADs is ‘strong’. To look into 
this, we applied a regression model to the echo-
sounder buoy data, which allowed for direct esti-
mates of tuna biomass aggregated to the dFAD (Pre-
cioso et al. 2022), and the calculation of 2 derived 
metrics, namely AT and DT. If the association of tuna 
to dFADs were strong, we would generally expect 
aggregation to occur more quickly than departure 
from the dFAD; however, this was not the case in our 
results. We found that DT was not significantly 
longer than AT. In fact, in some ocean basins, DT was 
slightly shorter than AT, although they were largely 
symmetrical. The third part of the first premise states 
that the association is ‘long-lasting’, although the 
length of time considered by the authors for this 
statement is not clear, it seems reasonable to believe 
they refer to at least month-long associations. Our 
results did show considerable variability in continu-
ous residence time, reaching up to 40 d in length in 
the Pacific Ocean, though median values were sub-
stantially shorter: between 5 and 7 d across all oceans. 
Although we recognize that the nature of tuna asso-
ciations with dFADs may not be restricted to a single 
object, as studied here, our results do not evidence a 
clear ‘attraction’ of tuna to dFADs in general terms, 
in line with previous studies (Girard et al. 2004), nor 
a potential trapping effect, at least in temporal terms 
and on individual dFADs. Although these findings do 
not yet provide a complete picture of whether dFADs 
represent an ecological trap, they have important 
implications for the management and regulation of 
dFAD usage. If dFADs do not act as ecological traps, 
management objectives can shift focus onto other 
issues around dFAD usage such as preventing im -
pact on sensitive environments and reducing dFAD 
loss (Dagorn et al. 2013, Escalle et al. 2019b, Imzilen 
et al. 2021). Whether dFAD networks can exert a 
trapping effect on tuna should still be explored, how-
ever, for example by comparing temporal metrics of 
association in areas with higher or lower dFAD den-
sity, in order to fully understand the potential effects 
of dFADs on tuna populations, and fully inform pol-
icy and regulation. 

Through the regression model analysis, we found 
that aggregations occur gradually. That is, arrival 

and departure of tuna to the dFAD does not occur at 
the same time for the entire school: the amount of 
tuna aggregated around a specific dFAD slowly 
grows, reaching a peak after about 5 to 7 d, and then 
slowly decreases, in roughly the same amount of 
time. Gradual increases in biomass under dFADs 
were also noted by Orue et al. (2019b), where tuna 
biomass at dFADs in the Indian Ocean appeared to 
reach a peak after around 30 d at sea. Previous 
research does show synchronicity in departure and 
arrival at dFADs for some individuals, but not all 
(Dagorn et al. 2007), in line with the observations of 
fishing masters, who stated that multiple discrete 
schools of tuna are generally found around dFADs, 
segregated by species and size (Moreno et al. 2007). 
The observations of previous authors (Dagorn et al. 
2007, Moreno et al. 2007, Robert et al. 2014b, Ander-
son et al. 2019) and our own results do appear to sup-
port some social dynamics at play when aggregation 
occurs, in line with the ‘meeting-point’ hypothesis 
(Fréon & Dagorn 2000), at least up until peak bio-
mass is reached. However, it is worth noting that due 
to the smoothing procedures employed in our study, 
abrupt changes in biomass around the dFADs, such 
as those caused when smaller aggregations or ‘sub-
schools’ arrive and depart, could have been over-
looked. Future research could supplement echo-
sounder buoy data with tagging data to provide 
further insight into how individuals and schools 
move around dFADs. Orue et al. (2019b) pointed out 
that there is a lack of research examining the reasons 
for departure of tuna around dFADs. Indeed, exam-
ining the oceanographic context of the dFAD at the 
moment of departure of tuna schools could provide a 
closer view of how and why these schools use the 
dFAD. 

Although echo-sounder buoy data are undoubt-
edly a powerful tool for scientific research, providing 
huge amounts of information that would be other-
wise impossible to procure, special care should be 
taken when using and interpreting data from differ-
ent buoy models and brands. As in our study, Diallo 
et al. (2019) used echo-sounder data from 2 dFAD 
buoy models from a different manufacturer to esti-
mate aCRTs and aCATs in the Indian Ocean. Both 
were shorter than ours, and significant differences 
were found between buoy models (6−8 and 8−9 d, 
respectively, depending on buoy model). This is an 
important factor to consider when comparing the 
results of different studies using echo-sounder buoys. 
Diallo et al. (2019) concluded that the higher sensitiv-
ity of the newer model could be driving the differ-
ences in these metrics, so it stands to reason that 
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buoys from different manufacturers would also regis-
ter biomass differently. For example, the use of dif-
ferent frequency echo-sounders likely impacts the 
biomass estimates provided by different buoy brands 
(Lopez et al. 2014, Moreno et al. 2019). Indeed, fish-
ing masters perceive differences in the biomass read-
ings of different manufacturers (Lopez et al. 2014), so 
these differences should be handled with care. Fish-
ing technology evolves quickly, and it is important 
for researchers to be in line with manufacturers 
when drawing conclusions from technology-derived 
data. This being true, echo-sounder buoys deployed 
with dFADs represent a crucial source of data, deliv-
ering huge amounts of information on vast areas of 
the ocean which are otherwise unfeasible to monitor 
and study using traditional methods. Although these 
data have drawbacks, and should be complemented 
by small-scale and in situ studies, analyses like the 
ones outlined here pave the way for identifying 
general trends and patterns that can inform and 
strengthen policy and regulations aimed at protect-
ing and ensuring the health of tuna populations 
across all major oceans. 

5.  CONCLUSIONS 

• Data from echo-sounder buoys attached to 
dFADs provide important insight into general trends 
and patterns of tuna aggregations to dFADs across 
oceans, though care should be taken when using dif-
ferent buoy brands and models. 

• Across all oceans, the association of tuna with 
individual dFADs does not seem to be ‘fast, strong, 
and long-lasting’, as suggested by the first premise of 
the ‘ecological trap’ hypothesis, according to the 
large-scale echo-sounder data. 

• Future research should test for differences in 
temporal metrics in areas of differing dFAD densities 
to assess the effects of dFAD networks on tuna popu-
lations. 

• Echo-sounder buoy data should be supplemented 
with oceanographic context, or individual tagging 
studies, to provide further insight into whether dFADs 
act as ‘indicator-logs’ or ‘meeting-points’. 
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