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1.  INTRODUCTION 

Open net sea cages, such as those used to farm 
Atlantic salmon Salmo salar along sheltered coast-
lines (Hvas et al. 2021), can attract and aggregate 
wild fish species across large spatial scales (Gian-
noulaki et al. 2005, Goodbrand et al. 2013) and 
increase abundances of local wild fishes (Machias et 
al. 2004, 2005). The physical structure of the cage 
and moorings may provide a common ‘meeting 

point’ for wild fishes (Dagorn & Fréon 1999, Fréon & 
Dagorn 2000) and facilitate schooling, hunting, and 
shelter-seeking behaviours (Beveridge 1984, Soria 
et al. 2009, Izquierdo-Gómez et al. 2015). Addition-
ally, unconsumed waste aquafeed, and potentially 
farm fish faeces (reviewed by Uglem et al. 2014), 
can be consumed directly and indirectly, through 
consumption of cage-associated prey fish, benthic 
invertebrates, and zooplankton (Sanchez-Jerez et 
al. 2008, Fernandez-Jover et al. 2009) that routinely 
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consume farm fish faeces and waste feed them-
selves (Sæther et al. 2012, Callier et al. 2013, Fer-
nandez-Jover et al. 2016). Therefore, regardless of 
consumption route, waste feed should provide a 
predictable energetic subsidy that minimizes con-
sumer foraging time and energetic expenditures 
(Scales et al. 2016). According to classical foraging 
theorems (see Stephens & Krebs 1987), even small 
quantities of waste feed should be highly profitable 
to cage-associated fishes (MacArthur & Pianka 
1966, Charnov 1976) and result in increased growth 
and condition (Skog et al. 2003, Fernandez-Jover et 
al. 2007). However, additional factors such as life 
stage, competition, and predation rates also require 
consideration (Fretwell & Lucas 1969, Dahlgren & 
Eggleston 2000, Craig & Crowder 2002, Bartolino et 
al. 2011) and could affect sea cage habitat quality 
and associated benefits to wild fishes. 

Increased proportions of vegetable oil-based fatty 
acid signatures associated with waste feed composi-
tion, in particular linoleic acid (LA, 18:2n6) and α-
linolenic acid (ALA, 18:3n3), are essential fatty acids 
(EFAs) that assimilate into cage-associated pelagic 
and benthic communities (Fernandez-Jover et al. 
2009, Woodcock et al. 2018, 2019) but cannot be syn-
thesized de novo in marine fish species (Tocher 2003, 
Wu & Chen 2012). Given their rapid assimilation, 
elongated retention times (Torstensen et al. 2004, 
Olsen et al. 2015), and natural rarity in marine eco-
systems (Dalsgaard et al. 2003), LA and ALA have 
been shown to be suitable biomarkers for tracing 
waste feed consumption in cage-associated wild 
fishes (Abaad et al. 2016; reviewed by White et al. 
2017, McAllister et al. 2021). 

We used wild Atlantic cod Gadus morhua collected 
in the direct vicinity of sea cages and reference 
Northwest Atlantic Fisheries Organization (NAFO) 
divisions, either outside the direct vicinity of sea 
cages or completely removed from aquaculture, to (1) 
compare length, weight, and condition of cod ages 
2−4 yr and (2) identify the role, if any, of waste feed 
consumption in explaining differences in length, 
weight, and condition among cage-associated cod. 
Assuming that waste feed represents a significant 
energetic subsidy not available to non-cage-associ-
ated cod populations, we hypothesized that (1) cod 
collected from sea cages would be longer, heavier, 
and in better condition than cod collected from refer-
ence sites and (2) increased LA and ALA concentra-
tions (i.e. biomarkers of waste feed consumption) 
would result in positive correlations with length, 
weight, and condition in younger cage-associated 
cod (2−3 yr old), but correlations would be reduced 

or non-existent in older cod (4 yr old) due to an 
ontogeny-linked reduction in waste feed consump-
tion and dependency (McAllister et al. 2021). 
Together, this study provides empirical evidence of 
the influence of sea cage aquaculture, and particu-
larly waste feed consumption, on the length, weight, 
and condition of cage-associated cod. 

2.  MATERIALS AND METHODS 

2.1.  Wild fish sample collection 

Wild Atlantic cod were separated into ‘cage-associ-
ated’ and ‘reference’ groups based on collection 
location. Cage-associated Gadus morhua were col-
lected between 5 and 8 August 2019 from the imme-
diate vicinity (10−300 m) of sea cages in Pools Cove, 
Newfoundland and Labrador, Canada (n = 72; 
Table 1, Fig. 1) with permission, using a combination 
of hook and line fishing with a rod and benthic long-
line. Reference cod were collected from multiple 
sampling trips that were completed between 31 
March and 18 December 2019, from sites either out-
side the immediate vicinity of sea cages (>10 km), 
hereafter referred to as ‘local division’ (NAFO sub -
division 3Ps: n = 329, 31 March to 18 December; 
Table 1, Fig. 1) or completely removed from Atlantic 
salmon aquaculture, hereafter referred to as ‘outside 
divisions’ (NAFO divisions 3L: n = 546, 28 May to 26 
November; 3N: n = 245, 16 May to 15 October; and 
3O: n = 162, 4 May to 27 September; Table 1, Fig. 1). 
Sampling trips included Fisheries and Oceans Can-
ada (DFO) survey trawls and beach seines. Once 
captured, cod were euthanized by concussion 
(CCAC 2010, MUN ACP no. 20200342) and either 
placed on ice or frozen, prior to measurements of fork 
length and round weight, and the removal of liver tis-
sue (≥250 mg) and sagittal otoliths for fatty acid 
analysis and aging, respectively. 

2.2.  Correction for a common sampling date 

Given the extensive spatial coverage of sampling, 
it was impossible to collect all reference cod on the 
same date as the cage-associated cod. Therefore, 
length, weight, and condition indices for reference 
cod, from both the local division and outside divi-
sions, were adjusted to the sampling month in which 
the cage-associated cod were collected (August), to 
ensure that any effects were not simply due to sam-
pling period (Mello & Rose 2005). 
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This adjustment was made for the 
length and weight of each age class of 
both the local division and outside di-
visions (ages 2−4 yr old; for slope and 
intercept values, see Table A1 in the 
Appendix), using a linear regression 
between measurements that were col-
lected during the spring and  summer 
and at least one additional month dur-
ing the fall and winter seasons (Lam-
bert & Dutil 1997). Percent changes in 
monthly averages were applied to 
each sample from the local division 
and outside divisions (Parrish & Malli-
coate 1995). Corrected length and 
weight values were then used to cal-
culate Fulton’s condition index (FCI) 
as a general measurement of fish con-
dition (reviewed by Nash et al. 2006): 

                                                      (1) 

where W = seasonally corrected fish 
weight (g), and L = seasonally  corrected 
fish length (cm)3. FCI values >1 indi-
cate above-average condition, whereas 
FCI values <1 indicate below-average 
condition. 

K = 
L³ × 100

W
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Groups                 n               Length                     Weight                 Condition 
 
Study site           72                                                                                    
Age 2                  42         23.90 ± 0.42             117.39 ± 7.33           0.83 ± 0.02 
Age 3                  16         35.88 ± 0.77             368.78 ± 23.67         0.78 ± 0.01 
Age 4                  14         44.57 ± 0.84             745.75 ± 46.05         0.83 ± 0.02 
3Ps                     329                                                                                   
Age 2                  43         23.79 ± 0.38             145.01 ± 9.23           1.03 ± 0.02 
Age 3                 142        34.98 ± 0.40             350.41 ± 14.98         0.79 ± 0.01 
Age 4                 144        40.80 ± 0.44             561.19 ± 29.09         0.81 ± 0.02 
3L                      546                                                                                   
Age 2                 190        25.00 ± 0.25             142.09 ± 4.90           0.85 ± 0.01 
Age 3                 182        31.54 ± 0.33             285.68 ± 8.60           0.86 ± 0.01 
Age 4                 174        40.84 ± 0.33             617.59 ± 15.01         0.88 ± 0.01 
3N                      245                                                                                   
Age 2                 107        28.46 ± 0.39             214.83 ± 8.63           0.88 ± 0.01 
Age 3                  64         34.84 ± 0.55             397.17 ± 20.31         0.89 ± 0.01 
Age 4                  74         44.55 ± 0.57             851.39 ± 36.45         0.92 ± 0.01 
3O                      162                                                                                   
Age 2                  75         25.90 ± 0.36             158.32 ± 7.34           0.87 ± 0.01 
Age 3                  62         33.21 ± 0.63             356.23 ± 19.19         0.91 ± 0.01 
Age 4                  25         42.04 ± 1.07             736.30 ± 69.85         0.93 ± 0.02

Table 1. Sample groups, sample sizes (n), and length (cm), weight (g), and Ful-
ton’s condition index (condition) corrected to a common sampling month ± 
standard error (SE) for wild Atlantic cod Gadus morhua ages 2−4 yr old col-
lected from the direct vicinity of sea cages in Pools Cove (study site) and refer-
ence sites removed from aquaculture operations within the local NAFO divi-
sion (3Ps) and outside divisions (3L, 3N, 3O) in Newfoundland, Canada. See 
Table A2 for length, weight, and condition values prior to correction for a  

common sampling month

Fig. 1. Overview of commercial fishing divisions in Newfoundland, Canada, used to represent collection sites for the study. 
Wild cage-associated Atlantic cod Gadus morhua were collected in the direct vicinity of sea cages in Pools Cove (study site) 
with permission from local aquaculture companies, and reference wild G. morhua were collected from sites removed from  

aquaculture operations within the local NAFO division (3Ps) and outside divisions (3L, 3N, 3O)
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2.3.  Thin section preparation and sample aging 

2.3.1.  Thin section preparation 

Sagittal otoliths provide accurate age measurements 
for teleost fish (reviewed by Campana 2001), and are 
most commonly used for microstructure analysis 
(Campana & Neilson 1985). Sample otoliths were re-
moved from cod brain cavities and rinsed, and the 
right otolith from each fish was embedded (Stuers, 
25:3 epoxy: hardener), cured overnight, and sectioned 
(Buehler, Isomet low-speed saw) to identify the core. 
Four blades (0.5 mm), separated by spacers (0.65 mm), 
were used to obtain the otolith core (S. Campana pers. 
comm.). Thin sections were polished in 10 s intervals 
(Gator, 800-grit sanding cloth) to improve microstruc-
ture and growth ring clarity (DFO 2019), prior to 
being photographed (Nikon, SMZ1500). 

2.3.2.  Aging (visual and laser ablation inductively 
coupled plasma mass spectrometry) 

Aging was conducted using 2 methods, visually and 
laser ablation inductively coupled plasma mass spec-
trometry (LA-ICP-MS). For visual aging, sectioned 
annuli rings (i.e. thin sections) were identified under a 
microscope, using offsetting summer (opaque) and 
winter (hyaline) zones and a standard northern hemi-
sphere birth date of 1 January. A double-blind review 
was completed with a trained secondary reader. LA-
ICP-MS was conducted using the ablation process 
and equipment detailed in D’Avignon & Rose (2013). 
Briefly, cod thin sections were fixed horizontally and 
pre-ablated (10 Hz repetition rate). An ultraviolet 
light excimer laser ablation system (Coherent, Geo-
LasHD) with a wavelength of 193 nm was used to ab-
late transects (core−edge) using an energy density of 
4 J cm−2, a scanning speed of 20 μm s−1, and a spot size 
of 50 μm. The laser ablation system was coupled to an 
ICP-MS (Thermo Fisher, Element XR), which meas-
ured elemental concentrations (ppm) of magnesium 
(25Mg), manganese (55Mn), and strontium (88Sr), using 
43Ca as an internal standard (40%) and National Insti-
tute of Standards and Technology 610 as an external 
standard, and United States Geological Survey 
MACS-1 for quality control. Seasonal changes in abi-
otic conditions (i.e. salinity, temperature, oxygen 
availability) and metabolic activity result in consistent 
shifts in otolith magnesium, manganese, and stron-
tium elemental concentration ratios (88Sr:25Mg, 
25Mg:43Ca, and 55Mn:43Ca) that are considered appli-
cable for aging (reviewed by Heimbrand et al. 2020). 

Therefore, seasonal variation pattern peaks in 
88Sr:25Mg, 25Mg:43Ca, and 55Mn:43Ca were identified, 
counted, and used to determine cod age (Hüssy et al. 
2016). 

All cod collected during DFO survey trawls and 
beach seines were aged visually under a microscope 
(n = 1282), whereas all cage-associated cod were 
aged using a combination of microscopy (n = 72) and 
LA-ICP-MS (n = 30). Of the 30 thin sections aged with 
both techniques, no discrepancy in aging was found. 
Elemental concentrations were determined in the Mi-
cro Analysis Facility of the Core Research Equipment 
and Instrument Training network at Memorial Uni-
versity of Newfoundland. 

2.4.  Lipid biomarker extraction 

Waste feed consumption can be detected through 
lipid-based LA (18:2n6) and ALA (18:3n3) concentra-
tions, which were extracted following Parrish (1999) 
and detailed by McAllister et al. (2021). Briefly, liver 
samples (~250 mg) were removed from each cage-
 associated cod and placed in 15 ml glass vials that 
had been previously weighed and muffled to de -
grade any potential contaminants (muffle furnace, 8 
h, 450°C). Samples were covered in 2 ml of chloro-
form (CHCl3, ≥99.9%), and the tube headspace was 
filled with nitrogen (N2, ≥99.9%), before being 
sealed with lipid-cleaned caps (methanol: [CH3OH, 
≥99.9%] and CHCl3 wash repeated 3 times) and 
stored at −20°C until lipid extraction. For extraction, 
samples were homogenized (Omni International, 
Tissue Master 125) using a 7 mm probe in a chilled 
chloroform:methanol (2:1) mixture. Chloroform-
extracted water was added to produce a chloro-
form:methanol:water (8:4:3) mixture. Samples were 
sonicated for 4 min (Fisher Scientific, FS30H) using 
an ice bath, centrifuged for 2 min at 1800 × g (Fisher 
Scientific, 74634H), and the orga nic layer was then 
removed by a double-pipetting technique. A chloro-
form rinse was completed using an extraction vial, 
with each organic layer pooled in lipid-cleaned vials 
(2 ml, 1.5 ml full), and repeated 3 times. Organic lay-
ers were concentrated with nitrogen, capped, and 
sealed, and stored at −20°C until gas chromato -
graphy analysis (GCA). 

For GCA, samples were transesterified for 1 h at 
100°C using sulfuric acid (H2SO4, ≥99.9%) and 
CH3OH to produce fatty acid methyl esters (FAMEs), 
that were analyzed using a gas chromatograph (HP, 
6890) with a 7683 autosampler. The gas chromato-
graph column (Phenomenex USA, ZB wax+) with a 
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30 m length and 0.32 mm internal diameter was 
heated to 65°C for 30 s and 195°C (40°C min−1) for 
15 min and 220°C (2°C min−1) for 45 s. Samples were 
injected (~1.5 ml by volume) with hydrogen gas (H2) 
at 2 ml min−1 using an injector temperature of 150°C 
that was heated to 250°C (120°C min−1) and a detec-
tor temperature of 260°C. Sample peaks were identi-
fied using retention times for standards (Sigma 
Chemical, Supelco 37): component FAME mix 
(47885-U), bacterial acid methyl ester (BAME) mix 
(47080-U), polyunsaturated fatty acid (PUFA) 1 
(47033), and PUFA 3 (47085-U), and chromatograph 
flame ionization detector (FID) accuracy was tested 
with a quantitative standard (Nu-Chek prep, 
GLC490) after approximately 300 samples. Chroma -
tographs of lipid profiles were then developed (Agi-
lent OpenLAB Data Analysis, Build 2.203.0.573). 

2.5.  Statistical analyses 

We tested for the effects of group (cage-associated, 
local division, outside divisions), age (2, 3, 4 yr old), 
and the interaction between group × age on sample 
values for length, weight, and condition using linear 
models and a significance level of 0.05. Given a sig-
nificant interaction between group and age, separate 
models were developed for length, weight, and con-
dition for each age class with group as a fixed effect. 

Further, we used separate models for each age class 
to test for the effect of LA and ALA concentrations on 
length, weight, and condition values of cage-associ-
ated cod. Model assumptions of homogeneity of vari-
ances and normality were checked prior to analyses 
using a Bartlett’s test and a Shapiro-Wilk test, 
respectively. Statistical analyses were completed 
using R statistical software (R Core Team 2021, v. 
4.1.1) with the package ‘emmeans’ (Lenth 2021, v. 
1.6.2-1) used to visualize interactions and compare 
levels within a factor. 

2.6.  Ethics statement 

All research activities were completed under the 
guidelines of the Canadian Council on Animal 
Care − Euthanasia of Animals used in Science 
(Memorial University Animal Care Committee per-
mit 19-01-MA). 

3.  RESULTS 

3.1.  Length, weight, and condition comparisons 

There was no significant difference in length and 
weight between age 2 and 3 Atlantic cod Gadus 
morhua from the cage-associated group and age 2 
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Study site vs.                            Length                                                  Weight                                                Condition 
                                   df                 t                 p                     df                  t                 p                      df                t                 p 
 
3Ps                                                                                                                                                                                                 
Age 2                      4, 452          −0.16            0.87              4, 449             1.80            0.07               4, 449           9.92        <0.001 
Age 3                      4, 461          −0.74            0.46              4, 426           −0.50            0.62               4, 426           0.09          0.93 
Age 4                      4, 426          −2.79         <0.01              4, 358           −2.55         <0.05               4, 358        −0.77          0.44 
3L                                                                                                                                                                                                 
Age 2                      4, 452            1.89            0.06              4, 449             2.06         <0.05               4, 449           1.61          0.11 
Age 3                      4, 461          −3.63         <0.001            4, 426           −2.30         <0.05               4, 426           3.35        <0.001 
Age 4                      4, 426          −2.78         <0.01              4, 358           −1.85            0.06               4, 358           1.67          0.09 
3N                                                                                                                                                                                                
Age 2                      4, 452            7.37          <0.001            4, 449             7.60         <0.001             4, 449           3.03        <0.01 
Age 3                      4, 461          −0.81            0.42              4, 426             0.73            0.46               4, 426           4.30        <0.001 
Age 4                      4, 426          −0.02            0.99              4, 358             1.46            0.15               4, 358           3.14        <0.01 
3O                                                                                                                                                                                                
Age 2                      4, 452            3.05          <0.01              4, 449             3.02         <0.01               4, 449           2.28        <0.05 
Age 3                      4, 461          −2.08         <0.05              4, 426           −0.32            0.75               4, 426           5.27        <0.001 
Age 4                      4, 426          −1.57            0.12              4, 358           −0.11            0.91               4, 358           2.87        <0.01

Table 2. General linear modelling results for length (cm), weight (g), and Fulton’s condition index (condition) for G. morhua 
ages 2−4 yr old collected from the direct vicinity of sea cages in Pools Cove (study site) and reference sites removed from aqua-
culture operations within the local NAFO division (3Ps) and outside divisions (3L, 3N, 3O) in Newfoundland, Canada. Ini-
tial models contained group (G), age (A), and their interaction (G × A). Given a significant interaction  between group 
and age, separate models were developed for length, weight, and condition for each age class with group as a fixed effect  

(shown below)
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and 3 cod from the local division group (Table 2, 
Fig. 2A,B), though age 2 cage-associated cod were, 
on average, ~27.6 g (i.e. 21%) lighter than age 2 cod 
from the local division (p = 0.07; Table 1). However, 
age 2 cage-associated cod were of significantly lower 
condition than age 2 cod from the local 
division (Table 2, Fig. 2C), whereas 
age 3 cage-associated cod were of 
similar condition (Table 2, Fig. 2C). 
Age 4 cage-associated cod were both 
significantly longer (~3.8 cm, 9%), and 
heavier (~184.6 g, 28%) than age 4 
cod from the local division (Table 2, 
Fig. 2A,B), but of similar condition 
(Table 2, Fig. 2C). 

To determine whether length, 
weight, and condition patterns were 
large enough to transcend those of 
surrounding populations, cage-associ-
ated cod were also compared to cod 
from 3 outside divisions. Results of this 
analysis were highly variable among 
traits and age classes, with age 2 cage-
associated cod being significantly 
lighter than age 2 cod from all 3 out-
side divisions (i.e. mean = 19, 59, and 
30% lighter than 3L, 3N, and 3O, 
respectively; Table 2, Fig. 2B). Addi-
tionally, age 3 cage-associated cod 
were of significantly lower condition 

than age 3 cod from all outside divisions (i.e. mean = 
9, 12, and 15% lower than 3L, 3N, and 3O, respec-
tively; Table 2, Fig. 2C). 

3.2.  LA and ALA concentrations vs. length, weight, 
and condition relationships 

There was a significant positive relationship 
between LA and ALA and length and weight for age 
2 cage-associated cod (Table 3, Fig. 3A,B) but no sig-
nificant relationships between LA or ALA and length 
and weight for age 3 and 4 cage-associated cod 
(Table 3, Fig. 3A,B). Similarly, there was no signifi-
cant relationship between LA or ALA and condition 
across all ages of cage-associated cod (Table 3, 
Fig. 3C). 
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Fig. 2. Mean (A) length (cm), (B) weight (g), and (C) Fulton’s 
condition index (condition) values ± standard error (SE), cor-
rected for a common sampling month, for G. morhua ages 
2−4 yr old collected in the direct vicinity of sea cages 
in  Pools Cove, Newfoundland, Canada (cage-associated; 
darkest grey) and reference sites removed from aquaculture 
operations within the local NAFO division (3Ps; lighter grey) 
and outside divisions (3L, 3N, 3O; lightest grey). Asterisks 
denote significant differences (p < 0.05) from the cage- 

associated group 
 

Age (yr)    Measurement       Fixed effects          df          n           t            p 
 
2                     Length            Linoleic acid       1, 24      26        3.05    <0.01 
                                            α-Linolenic acid     1, 24      26        3.24    <0.01 
                       Weight            Linoleic acid       1, 24      26        3.66    <0.01 
                                            α-Linolenic acid     1, 24      26        3.95    <0.001 
                    Condition          Linoleic acid       1, 24      26        1.63      0.12 
                                            α-Linolenic acid     1, 24      26        1.66      0.11 
3                     Length            Linoleic acid       1, 13      15        0.41      0.69 
                                            α-Linolenic acid     1, 13      15        0.52      0.61 
                       Weight            Linoleic acid       1, 13      15        0.23      0.82 
                                            α-Linolenic acid     1, 13      15        0.35      0.74 
                    Condition          Linoleic acid       1, 13      15      −0.93      0.37 
                                            α-Linolenic acid     1, 13      15      −0.87      0.40 
4                     Length            Linoleic acid        1, 6        8       −0.26      0.80 
                                            α-Linolenic acid      1, 6        8       −0.45      0.67 
                       Weight            Linoleic acid        1, 6        8       −0.54      0.61 
                                            α-Linolenic acid      1, 6        8       −0.40      0.70 
                    Condition          Linoleic acid        1, 6        8       −0.66      0.54 
                                            α-Linolenic acid      1, 6        8         0.15      0.89

Table 3. General linear modelling results for length (cm), weight (g), and Ful-
ton’s condition index (condition) and linoleic acid (18:2n6) and α-linolenic acid 
(18:3n3) concentrations (i.e. biomarkers of waste feed consumption) for G. 
morhua ages 2−4 yr old collected from the direct vicinity of sea cages (‘cage- 

associated’) in Pools Cove, Newfoundland, Canada
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4.  DISCUSSION 

When length, weight, and condition of cage-
associated Atlantic cod Gadus morhua were com-
pared to those from outside divisions, weight of age 2 
cage-associated cod and condition of age 3 cage- 
associated cod were the only traits significantly differ-
ent across all outside divisions. Thus, one may con-
clude that the effects of Atlantic salmon aquaculture 
were large enough to suppress weight and condition 
of wild cod; however, this is unlikely to be the case 
here. The lower values for age 2 and age 3 cage-
associated cod are consistent with an average lower 
weight and condition of cod throughout the local divi-
sion, even in the absence of aquaculture operations, 
and thus more likely attributable to consistent re -
duced weight and condition trends of cod from the lo-
cal division (Rideout et al. 2017). Structural ecosystem 
changes, particularly warming water temperatures 
and consequent novel competition from relatively 
warmer-water fishes, such as silver hake Merluccius 
bilinearis (Koen-Alonso & Cuff 2018), has resulted in 
highly variable prey availability for cod from the local 

division when compared to cod from outside divisions 
(DFO 2022). However, even though comparisons 
of length, weight, and condition be tween cage-
associated cod and the local division were mostly non-
significant (p ≥ 0.05), some exceptions were found. 
For example, age 2 cage-associated cod were of lower 
condition than age 2 cod from the local division, 
whereas age 4 cage-associated cod were both longer 
and heavier than age 4 cod from the local division. 

Local division cod migration patterns are complex 
(DFO 2021, 2022), and their stock structure can con-
sist of inshore and offshore components that mix 
amongst divisions (Varkey et al. 2022). However, 
results of a recent tagging study suggested that less 
than 3% of local division cod from Placentia Bay 
were recaptured in adjacent division 3L (Rideout et 
al. 2016). Additionally, interdivisional cod migration 
from both the local division or outside divisions 3L 
and 3N are not of substantial management concern 
(Rideout et al. 2015, Ings et al. 2019, DFO 2022b), 
though limited seasonal mixing of the local division 
and outside division 3O may occur (Rideout et al. 
2015). Lastly, recently tagged cod from our study 
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area, Fortune Bay, were recaptured throughout the 
local division (Varkey et al. 2022). Therefore, our 
cage-associated and reference cod groups are likely 
representative of their respective divisions, as well as 
sufficiently homogeneous on a divisional scale, and 
limited in comparison to large-scale stock mixing 
and migration characteristics of cod populations else-
where (see Nordeide et al. 2011, Cao et al. 2014). 

LA and ALA, used here, and previously (McAllister 
et al. 2021), as biomarkers for waste feed consump-
tion, revealed some contradictory relationships. For 
example, given the significant positive relationships 
between both LA and ALA and length and weight 
among age 2 cage-associated cod, one would have 
expected that increased waste feed consumption 
would have resulted in longer and heavier age 2 cod 
when compared to those from the local division. 
However, this was not the case, as the age 2 cage-as-
sociated cod were of a comparable length and weight 
to age 2 cod from the local division, and of lower con-
dition. Further, despite the absence of any significant 
relationships between LA or ALA and length, weight, 
and condition, age 4 cage-associated cod were both 
longer and heavier than age 4 cod from the local divi-
sion. Waste feed can provide a predictable energetic 
subsidy that minimizes foraging time and energy ex-
penditures (Stephens & Krebs 1987, Scales et al. 
2016), and consequently has been observed to in-
crease length, weight, and condition of wild cage-
 associated fishes (Skog et al. 2003, Fernandez-Jover 
et al. 2007, Dempster et al. 2011). However, the nutri-
tional benefits of waste feed consumption may only 
result in increased growth and condition when the 
cage-associated fish are of a comparable life stage 
and species as the farmed fish (Masagounder et al. 
2016, Hua et al. 2019). Whenever this is not the case, 
such as in our study (i.e. juvenile cod consuming 
adult Salmo salar feed), it is possible that the benefits 
of farm waste consumption may be reduced or non-
existent (Fernandez-Jover & Sanchez-Jerez 2015). 
Rosenlund et al. (2004) determined that optimal 
 juvenile cod nutrition and growth requires increased 
levels of crude protein (500−600 g kg−1) and de-
creased levels of dietary lipid (130−200 g kg−1) when 
compared to optimal salmonid nutrition, due to an in-
ability of cod to metabolize ALA to  eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA) (Tur-
chini et al. 2009). However, while cod can tolerate 
similar vegetable oil-based feed formulations to those 
used for salmonid aquaculture, without reductions in 
growth or condition (Olsen et al. 2015), it requires ad-
ditional supplementation of long-chain marine fatty 
acids, such as EPA and DHA (Hansen & Hemre 2013). 

Modern aquaculture feed is formulated to maxi-
mize the developmental efficiency of the farmed spe-
cies (Encarnação 2016); however, nutritional require-
ments vary by species (Molina-Poveda 2016) and 
change with development (Carter 2015). Therefore, 
aquafeed may not satisfy nutrition and EFA concen-
tration requirements considered critical for proper 
marine fish development (Sargent et al. 1999, Glen-
cross 2009) in some species. For example, increased 
S. salar farming and aquafeed availability has been 
linked to marginally reduced egg and larvae size in 
cod (Barrett et al. 2018), and the lack of long-chain 
marine fatty acids in salmonid aquafeed,  particularly 
EPA and DHA (Nichols et al. 2014, reviewed by Hua 
et al. 2019), has resulted in reduced fertilization 
rates, egg symmetry, and survival to hatching rates 
of cod during laboratory trials (Salze et al. 2005). 
Although previous research has shown S. salar farm-
ing has not influenced spatio temporal spawning 
dynamics of local G. morhua in Norway (Skjæraasen 
et al. 2021), waste feed consumption could nega-
tively affect reproductive success (Skjæraasen et al. 
2022) and fitness and survivorship of offspring later 
in life (Barrett et al. 2018). Furthermore, a lack of 
nutritious food options for young cage-associated cod 
can result in periods of reduced growth, typically 
attributable to poor food quality and restrictive feed-
ing regimens, as well as size-dependent mortality 
(reviewed by Ali et al. 2003), which has been fol-
lowed by a period of accelerated ‘compensatory’ 
growth in cod once conditions improve (Bélanger et 
al. 2002). 

Compensatory growth has been shown to increase 
risk tolerance and consequently predation risk of wild 
fishes (Álvarez 2011), which may contribute to re-
duced size and fecundity consistent with an acceler-
ated life-history strategy (Petrik 2019), in young cage-
associated cod that accept a readily accessible food 
source trade-off for an elevation in predation risk and 
mortality rates (Gilliam & Fraser 1987, Abrahams & 
Dill 1989). Sea cage aquaculture environments appear 
to fulfill food availability, predator protection, and 
complex shelter prerequisites of high-quality nursery 
habitat (Heck et al. 2003), but environmental cues 
produced by sea cages can be misleading and may re-
sult in ecological traps for young wild fishes (Robert-
son et al. 2013). Furthermore, Fernandez-Jover et al. 
(2008) suggested that in creased anthropogenic activ-
ity and pressure around Mediterranean cages may 
explain the re duced growth and size of juveniles as-
sociated with sea cages (Fernandez-Jover & Sanchez-
Jerez 2015) and similar artificial structures (Hallier 
& Gaertner 2008, Zhou et al. 2018). Although it is 
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 unclear whether sea cages act as ecological traps 
(Swearer et al. 2021), the reduction in risk-aversion 
during foraging behaviour (Álvarez 2011) could in-
crease accessibility of juvenile cod to aggregated 
predatory fishes (Serra-Llinares et al. 2013) and local 
fishers (Akyol & Ertosluk 2010). Furthermore, the in-
creased mortality of cod associated with poor nursery 
habitat (Lilley & Unsworth 2014) and reduced life 
span of an accelerated life history strategy in marine 
fishes (Petrik 2019), could further limit young cage-
associated cod maturation and stock recruitment 
 success, and particularly in the susceptible local divi-
sion (DFO 2021, 2022) where cod populations are of 
concern. 

Alternatively, young cage-associated cod could 
provide recruitment to older cod, despite increased 
presence of tertiary predators (Sanchez-Jerez et al. 
2008, Arechavala-Lopez et al. 2013, 2015), predation 
risk (Dempster et al. 2002), and conspecific competi-
tion (Fernandez-Jover et al. 2009). For the young 
cage-associated cod that survive these stressors, our 
results suggest that these individuals may benefit 
from compensatory growth, which has been shown to 
increase feed utilization and growth efficiency (Rus-
sell & Wootton 1992, reviewed by Abdel-Tawwab et 
al. 2006, Yengkokpam et al. 2014), assuming age 4 
cod were also associated with sea cages as juveniles 
and experienced a similar life history (i.e. waste feed 
consumption, growth, and condition patterns) as age 
2 and age 3 cod from our study. Fernandez-Jover et 
al. (2007) found increased condition of cage-associ-
ated horse mackerel Trachurus mediterraneus in the 
Mediterranean and cage-associated saithe Pollachius 
virens and G. morhua in Norway (Fernandez-Jover et 
al. 2011), through predominately adult aggregations 
(Dempster et al. 2002) which experience reduced 
predation risk (Baird et al. 2020), as well as an ener-
getic benefit through the consumption of aggregated 
prey fishes (Sanchez-Jerez et al. 2008, Arechavala-
Lopez et al. 2015). Additionally, cannibalism com-
prises a significant dietary input for cod (Ciannelli et 
al. 2007, Puvanendran et al. 2008) and the consump-
tion of escaped farmed juvenile cod by wild adult cod 
has been observed in the vicinity of sea cages in Nor-
way (Serra-Llinares et al. 2013). Therefore, cannibal-
ism may be associated with an increased mortality 
risk and result in a lower condition of young cage-
 associated cod but an additional energetic benefit to 
older cod. This ontogenetic shift is consistent with 
Bagdonas et al. (2012), who observed that younger 
cage-associated cod in Norway fed directly on waste 
feed, while older cod fed on aggregated prey fishes, 
predominately P. virens. 

Waste feed consumption has been shown to assim-
ilate into cod fatty acid profiles within weeks to 
months (Olsen et al. 2015). Therefore, the lack of LA 
and ALA concentrations overall of age 3 and age 4 
cage-associated cod is somewhat surprising, and 
suggests either insufficient waste feed consumption 
or poor LA and ALA retention and transfer to higher 
trophic levels (reviewed by Dalsgaard et al. 2003, 
White et al. 2017), with indirect consumption and 
limited cage-association capable of obscuring cage-
associated fatty acid signatures (Barrett et al. 2018). 
Therefore, an alternative explanation could be that 
age 4 cod demonstrate limited fidelity to sea cages 
but instead to nearby spawning areas (Skjæraasen et 
al. 2011, 2021), with the majority of wild cod tagged 
around Norwegian cages still present 2−3 mo later 
(Uglem et al. 2008). Alternatively, older cod demon-
strate larger habitat connectivity patterns in coastal 
areas (reviewed by Petitgas et al. 2013), and may 
associate with sea cages opportunistically (reviewed 
by Uglem et al. 2014), with previous research 
demonstrating that most cod associate with sea cages 
for less than 1 wk (Skjæraasen et al. 2022). Further-
more, low rates of waste feed consumption, previ-
ously recorded in only ~20% of cod (Skjæraasen et 
al. 2022), can lead to time frames and/or consump-
tion rates insufficient for LA and ALA assimilation in 
the liver. Additionally, sea cages can alter the distri-
bution of wild fish at spatial scales upwards of 82 km2 
(Giannoulaki et al. 2005), and their structural and 
energetic benefits (reviewed by Callier et al. 2018) 
may attract a disproportionate number of longer and 
heavier transient cod from outside divisions to sea 
cages. 

Although the association of wild fish assemblages 
with sea cages is clear, the results of this study were 
somewhat contradictory, and suggest evaluations for 
costs and benefits of cage association are complex 
(Bacher et al. 2015). Due to an observed variation in 
cod growth and condition patterns in cage-associated 
cod, future research areas should address this varia-
tion in relation to life stage and wild fish species asso-
ciating with sea cages. Identifying older cage-
associated cod natal grounds could improve our un-
derstanding of younger cage-associated cod mortality, 
recruitment rates, and associated life history strate-
gies, and eventually our understanding of species−
ecosystem interactions within these novel environ-
ments. Additionally, oto lith microchemistry has been 
used previously to identify wild fish natal grounds (re-
viewed by Campana 1999, 2005) including cod natal 
grounds within the local division (Stanley et al. 2016), 
artificial habitat use (Andronis et al. 2017), and pollu-
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tant assimilation (Søndergaard et al. 2015). Therefore, 
otolith microchemistry may be a logical next step to 
determine the residency of wild cage-associated fish, 
relative to life stage and species, and consequently to 
determine whether age 4 cage-associated cod in this 
study were associated with sea cages at younger ages 
(2−3 yr old). Moreover, rapid environmental change 
from cage development can increase stress-linked 
glucocorticoid concentrations in fishes (reviewed by 
Sadoul & Geffroy 2019) and suppress growth and con-
dition (Pickering et al. 1991, Sadoul & Vijayan 2016). 
Therefore, an analysis of environmental stress to 
younger cage-associated fish could investigate the 
role, if any, of environmental change, and particularly 
predation risk, on the growth and condition of cage-
associated wild fishes that include G. morhua. Our 
control/impact sampling design was improved 
through the use of multiple control locations, large 
sample sizes (72−546 individuals per control location), 
and sampling variation across months and locations 
(Underwood 1992); however, sampling more impact 
sites (sea cage farms), ideally before and after begin-
ning aquaculture operations or during a fallow 
period, may have proven useful in identifying external 
environmental effects on cage-associated cod. There-
fore, the use of a single impact site in this study should 
be treated as a limitation. 

In conclusion, the significant positive relationships 
between waste feed consumption (i.e. LA and ALA 
concentrations) and length and weight in age 2 cage-
associated cod supported our hypothesis of waste 
feed consumption in younger cage-associated cod; 
however, the effects of waste feed consumption were 
contradictory, as the consumption of waste feed 
resulted in poorer condition in age 2 cod. Further-
more, accelerated growth was demonstrated by age 
4 cage-associated cod, despite no evidence to sup-
port direct or indirect waste feed consumption by age 
4 cod. Nevertheless, effects of waste feed consump-
tion were not consistent enough or of sufficient quan-
tities to disrupt growth- and condition-related pat-
terns across large spatial areas. 
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Appendix. Additional data 

Reference divisions                                              Length                                                                              Weight                      
                                                      m                          b                      R2                               m                            b                        R2 

 
3Ps                                                                                                                                                                                                   
Age 2                                           0.30                     21.36                 0.57                           12.57                     44.47                   0.82 
Age 3                                           1.90                     19.69                 0.92                           50.28                    −51.82                  0.73 
Age 4                                           0.70                     35.16                 0.59                           25.59                    356.45                  0.43 
3L                                                                                                                                                                                                     
Age 2                                           0.88                     17.94                 0.99                           18.40                     −7.77                   0.99 
Age 3                                           1.04                     23.22                 0.80                           36.92                    −10.73                  0.89 
Age 4                                           0.78                     34.57                 0.82                           46.54                    241.88                  0.96 
3N                                                                                                                                                                                                    
Age 2                                           1.02                     20.31                   1                             30.33                    −27.84                    1 
Age 3                                           1.33                     24.20                   1                             55.06                    −43.27                    1 
Age 4                                           1.06                     36.08                   1                             97.51                     71.30                     1 
3O                                                                                                                                                                                                    
Age 2                                           0.91                     18.64                   1                             18.49                     10.42                     1 
Age 3                                           1.41                     21.92                   1                             49.40                    −38.93                    1 
Age 4                                           1.04                     33.72                   1                             66.20                    206.68                    1

Table A1. Slope (m) and intercept (b) values used to correct length (cm) and weight (g) to a common sampling date, and R-
squared (R2) model fit values, for wild Atlantic cod Gadus morhua ages 2−4 yr old collected from reference sites within the  

local NAFO division (3Ps) and outside divisions (3L, 3N, 3O)



McAllister et al.: Effects of sea cages on wild cod 123

Group                        Season                           n                               Length                                Weight                         Condition 
 
3Ps                                                                 329                                                                                                                       
Age 2                         Spring                          41                          22.90 ± 0.38                         94.88 ± 6.5                           0.8 
                                     Fall                              2                            25.0 ± 3.00                            190 ± 0.0                             0.9 
Age 3                         Spring                         102                          28.3 ± 0.43                         183.43 ± 8.3                          0.8 
                                 Summer                          4                            39.3 ± 0.95                                  –                                     – 
                                     Fall                             36                           39.3 ± 0.81                        438.00 ± 89.8                         0.8 
Age 4                         Spring                          67                           39.3 ± 0.69                        496.25 ± 30.3                         0.8 
                                 Summer                         17                           40.1 ± 0.97                                  –                                     – 
                                     Fall                             60                           43.5 ± 0.72                        667.86 ± 59.5                         0.9 
3L                                                                   546                                                                                                                       
Age 2                         Spring                          50                            22.8 ± 0.3                            93.6 ± 4.3                            0.8 
                                     Fall                            140                           27.4 ± 0.4                           193.8 ± 8.5                           0.9 
Age 3                         Spring                          78                            29.3 ± 0.5                          207.1 ± 10.5                          0.8 
                                 Summer                          1                             39.0 ± 0.0                           470.0 ± 0.0                           0.8 
                                     Fall                            103                           35.2 ± 0.5                          407.9 ± 16.0                          0.9 
Age 4                         Spring                          60                            38.8 ± 0.6                          493.2 ± 23.8                          0.8 
                                 Summer                         12                            39.8 ± 0.8                          570.8 ± 33.0                          0.9 
                                     Fall                            102                           43.3 ± 0.5                          769.7 ± 23.2                          0.9 
3N                                                                  245                                                                                                                       
Age 2                         Spring                          47                            25.4 ± 0.5                           123.8 ± 7.5                           0.7 
                                     Fall                             60                            30.5 ± 0.6                          275.5 ± 14.9                          0.9 
Age 3                         Spring                          20                            30.9 ± 1.1                          232.0 ± 27.5                          0.7 
                                     Fall                             44                            37.5 ± 0.6                          507.3 ± 26.6                          0.9 
Age 4                         Spring                          35                            41.8 ± 0.8                          558.9 ± 39.1                          0.8 
                                     Fall                             39                            46.7 ± 0.8                         1046.4 ± 54.9                         1.0 
3O                                                                  162                                                                                                                       
Age 2                         Spring                          28                            23.2 ± 0.5                           102.9 ± 8.3                           0.8 
                                 Summer                          1                             27.0 ± 0.0                           150.0 ± 0.0                           0.8 
                                     Fall                             46                            26.8 ± 0.5                          177.4 ± 10.3                          0.9 
Age 3                         Spring                          46                            29.0 ± 0.7                          208.0 ± 13.4                          0.8 
                                 Summer                          3                             36.3 ± 3.3                         503.3 ± 114.7                         1.0 
                                     Fall                             13                             34.2 ±1.2                           383.1 ± 42.8                          0.9 
Age 4                         Spring                          13                            38.9 ± 1.7                          537.7 ± 90.0                          0.8 
                                 Summer                          5                             44.8 ± 1.4                         906.0 ± 115.0                         1.0 
                                     Fall                              7                             41.9 ± 1.4                          728.6 ± 85.5                          1.0

Table A2. Sample groups, collection season (spring, summer, fall), sample size (n), and mean length (cm), weight (g), and Ful-
ton’s condition index (condition) values ± standard error (SE) for wild Atlantic cod Gadus morhua ages 2−4 yr old collected 
from reference sites removed from aquaculture operations within the local NAFO division (3Ps) and outside divisions  

(3L, 3N, 3O). SE values for condition index were all <0.01
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