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1.  INTRODUCTION 

Animal distributions and habitat use result from 
animals exploiting resources to meet their ecological 

requirements, from their physiological constraints 
and the effects of the environment on them 
(Matthiopoulos & Aarts 2010). Data on where ani-
mals are distributed and how they use the environ-
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ment can inform the management of human activi-
ties to avoid conflicts. In that context, distribution 
models are useful tools to support the identification 
of areas that require management (Runge et al. 
2015). Because different types of data for studying 
species’ spatial ecology may be available, it is impor-
tant to explore whether similar inferences about dis-
tribution and habitat use are obtained. Animal distri-
bution data obtained through different methods 
within an area of interest could, for example, comple-
ment each other to improve the spatial extent of 
information available. 

Population distribution and habitat use can be ex-
plored using a range of data types and analytical 
methods, with outputs partially depending on the na-
ture of the data used (Redfern et al. 2006, Aarts et al. 
2008). Line transect sampling, for example, is de-
signed to estimate density and abundance, and the 
data can be used to infer distribution and habitat use 
through spatial modelling methods (Miller et al. 2013, 
Roberts et al. 2016). In line transect surveys, animals 
are detected along transects, and the effective search 
areas of those transects are estimated from detection 
distances using distance sampling (Buckland et al. 
2001). Line transect data are therefore counts of ani-
mals detected in units of sampled space. 

Animal tracking data, commonly acquired using 
animal-borne tags, can also be used to investigate 
distributions and habitat use. For marine mammals, 
developments to improve equipment and the in -
creasing availability of analysis tools have facilitated 
their application (Aarts et al. 2008, Jonsen 2016, 
 Russell et al. 2016, Trudelle et al. 2016, Elith et al. 
2020, Carter et al. 2022). In contrast to line transect 
surveys, for which the data are both locations where 
animals were detected and, crucially, where they 
were not, the sampling units in tracking studies are 
individual animals, and the data are formed by a 
series of observed locations of the tracked individu-
als. This means that the portion of space that is 
 sampled is only that which is visited by those ani-
mals, meaning that there is no information in the 
data about places that are not visited. Another impor-
tant difference between the 2 data types is that line 
transect data are a snapshot of the location of animals 
at the time of the survey (i.e. cross-sectional data), 
while tracking data consist of a set of repeated meas-
urements of the location of a sample of animals that 
have been tele metered (i.e. longitudinal data, on 
multiple individuals). Despite the above differences, 
the analysis of contrasting data types can provide 
 different views of the underlying distribution of a 
species (Matthiopoulos et al. 2022). 

For telemetry tracking data to be useful for habitat 
use and distribution modelling, the design of analysis 
and interpretation of results must consider many 
potential biases (Elith et al. 2020). For example, the 
distribution of locations can be greatly influenced by 
the distribution of tag deployments, resulting in tag-
ging location bias (Block et al. 2011). Also important 
is the serial autocorrelation in locations along tracks 
because observations are naturally space−time series 
(Matthiopoulos & Aarts 2010). It is crucial to consider 
whether tracked individuals represent a small por-
tion of the population for which inferences are 
intended, meaning that although the sample size of 
locations may appear large (i.e. many locations), 
sample sizes for individuals can be small (i.e. few ani-
mals). This also raises concerns regarding whether 
tracked animals realistically represent their popula-
tion with respect to distribution and habitat use 
(Sequeira et al. 2019). 

Animal distribution and habitat use can be inferred 
using a presence−absence approach. However, such 
an approach requires information on both where ani-
mals were present (i.e. places surveyed where ani-
mals were detected) and where animals were absent 
(i.e. places surveyed with no animals detected). 
Because of the lack of information on real absences 
in tracking data (e.g. Pirotta et al. 2011), ‘pseudo-
absence’ locations, which represent the available 
habitat that was not visited, are needed for pres-
ence−absence distribution modelling of tracking 
data (Elith et al. 2020). When using pseudo-
absences, the number of absences to include in the 
models is controlled by the user, so the ratio of 
pseudo-absence per presence to be used must be 
decided. That decision should be guided by model 
‘coefficient stability analysis’ (when alternative mod-
els with an increasing number of pseudo-absences 
per presence are run to visually investigate the sta-
bility of the output coefficients; see Supporting Infor-
mation S4 in Ventura et al. 2019), while ensuring that 
pseudo-absences have the corresponding fraction of 
the weight of a presence in the models (i.e. the 
weighted sum of presences equals the weighted sum 
of pseudo-absences; Barbet-Massin et al. 2012). 

A decision about how to define the area of infer-
ence is also required. Some studies have used a per-
centage of kernel density estimates to represent 
habitats frequently used by the animals (e.g. Pendo-
ley et al. 2014, Mei et al. 2017, Thorne et al. 2017); 
that percentage is, again, user-controlled. Adopting 
a pre-defined area, where the distribution of and 
habitat use by a population have already been stud-
ied using different data, can contribute to a better 
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understanding of how those animals relate to their 
environment. 

Most humpback whale Megaptera novaeangliae 
populations are recovering after the end of global 
commercial whaling (Zerbini et al. 2019), and the 
population breeding in coastal waters of Brazil during 
winter and spring is no exception (Bortolotto et al. 
2016, Wedekin et al. 2017). However, the coincident 
increase in human activities in Brazilian coastal wa-
ters, especially those related to oil and gas production 
(Bortolotto et al. 2017), means that there is a need to 
understand how these activities may affect distribu-
tion and habitat use to inform whether management 
actions may be necessary to avoid impact on the pop-
ulation. Distribution of this population in the area was 
investigated in the past using descriptive analysis 
(Martins et al. 2001, 2013, Zerbini et al. 2006, Castro 
et al. 2014, Gonçalves et al. 2018), from a difference in 
densities within line transect survey blocks (Andriolo 
et al. 2010) or for very restricted areas (Martins et al. 
2001, Gonçalves et al. 2018). Analysis of line transect 
data to investigate the distribution of humpback 
whales off the coast of Brazil has shown that density 
was strongly related to sea temperature and bathy-
metric features (Bortolotto et al. 2017, Pavanato et al. 
2018). Telemetry data for the species in the area has 
been used to investigate the relative usage of pro-
tected areas (Castro et al. 2014) and movements 
(Zerbini et al. 2006), but not distribution. 

Here, we present distribution and habitat use mod-
els based on telemetry tracking data of humpback 
whales in Brazil and compare model outputs with 
those from a study using line-transect survey data 
(i.e. Bortolotto et al. 2017). Comparing the results on 
distribution and habitat from different approaches 
can strengthen the understanding of important eco-
logical aspects of animal populations, especially 
when the results support each other. Therefore, man-
agement actions, such as spatial planning of natural 
resources exploration (e.g. oil exploration, fishing), 
and the need for conservation strategies for popula-
tions may be better informed. 

2.  MATERIALS AND METHODS 

The area of inference for modelling humpback whale 
distribution and habitat use in this study was deter-
mined by adapting the survey area from Bortolotto et 
al. (2017), originally comprising the continental shelf 
from 5 to 23° S, to allow a direct comparison. The orig-
inal area was restricted considering both the extent 
of spatial covariates available and the distribution of 

tagging locations. Since in a presence/pseudo-absence 
approach for spatial modelling the area of inference is 
assumed to be the habitat available to the animals 
(Aarts et al. 2008), and because the tagging locations 
were not distributed evenly within the original study 
area (Fig. 1), the northernmost portion of the original 
area, originally extending north to Natal (Fig. 4 in Bor-
tolotto Ret al. 2017), was excluded to minimise the 
chances of failing to meet that assumption. 

2.1.  Data acquisition: whale tracking 

From 2003 to 2012, satellite-linked telemetry tags 
were attached to adult humpback whales along the 

Fig. 1. Humpback whale locations used in the distribution and 
habitat use analysis (blue dots) and tagging locations (yellow 
triangles; see Fig. S1 in the Supplement, www.int-res.com/
articles/suppl/m720p161_supp.pdf, for further details). The 
area of inference (black solid line) was adapted from Borto -
lotto et al. (2017) (grey dashed line), considering the uneven 
tagging locations and extent of environmental covariates

https://www.int-res.com/articles/suppl/m720p161_supp.pdf
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coast of Brazil. Tagging operations occurred every 
year between August and December except for 2004, 
when no tagging took place (see Table S1 in the 
Supplement at www.int-res.com/articles/suppl/m720
p161_supp.pdf). Animals were tagged only in good 
weather conditions, with calm seas and light to mod-
erate winds (i.e. sea state less than 4 on the Beaufort 
scale). 

Implantable (n = 108) and Low Impact Minimum 
Percutaneous Electronic Transmitter (LIMPET; n = 5) 
tags from Wildlife Computers were used. Implan -
table tags were attached to the animals using a car-
bon fibre pole or with an Air Rocket Transmitter Sys-
tem (ARTS; Heide-Jørgensen et al. 2001); LIMPET 
tags were attached using a crossbow (Andrews et al. 
2008). The targeted tag location on the animal was 
the base of the dorsal fin because this area is most 
frequently exposed when animals surface to breathe, 
maximising the chances of transmitter−satellite sig-
nal linking. The tagging boat approached target ani-
mals to distances between 3 and 10 m. When the pole 
was used, a maximum distance of 5 m was required. 
Photographs of the tagged animal’s tail fluke, dorsal 
fin and attached tag were taken for individual identi-
fication and quality control of tagging methods. 
Tracking data from tagged whales were obtained 
via  the Argos satellite system (www.argos-system.
org, Collecte Localisation Satellites), and tags were 
programmed to transmit in various duty cycles (e.g. 
transmitting every second day or every 4 d; Table S1), 
to maximise the longevity of animal tracking. Sexes 
were genetically identified from skin biopsies col-
lected with a crossbow and a modified dart (Dalla 
Rosa et al. 2008). 

2.2.  Tracking data processing 

Because the present whale tracks 
were obtained via the Argos satellite 
system, which uses Doppler-based po -
sitioning (Lopez et al. 2015), each loca-
tion was estimated with an associated 
uncertainty. To minimise the number 
of unrealistic locations, a speed filter 
was applied to the whale tracking 
data, implemented with the R package 
‘trip’ (version 1.8.7; Sumner et al. 2009) 
and assuming a maximum swimming 
speed of 12 km h−1 for humpback 
whales (Garrigue et al. 2010). To re -
duce the occurrence of long gaps be -
tween locations, for which no informa-

tion was available, tracks were split into 2 or more if 
time gaps were longer than 10 d (Table S2). To 
account for irregular time intervals and uncertainty 
in estimated locations, humpback whale tracks were 
re-estimated using a hierarchical form of a first-
 difference-correlated-random walk model (DCRW; 
Jonsen 2016). That model was fitted with the R pack-
age ‘bsam’ (version 1.1.2; Jonsen 2016) and used to 
predict 2 locations per day (i.e. time step of 12 h) for 
each track. Default ‘bsam’ package model diagnos-
tics and plots of predicted locations versus original 
locations were inspected to check for both model 
convergence and whether derived locations were 
aligned with observed locations. Data from individ-
uals for which the model did not converge were 
discarded from the analysis. A summary of the data 
used in the analysis is presented in Table 1 (see 
Table S1 for further details). The uncertainty associ-
ated with the estimated locations was not considered 
in the distribution and habitat use models. 

Because the objectives here were related to investi-
gating distribution in the breeding area and to compare 
results to a previous study, derived locations beyond 
the limits of the survey area, e.g. in offshore waters or 
during migration, were censored from the dataset 
(Fig. 1) before the distribution models were built. 

2.3.  Covariates 

Environmental covariate values used in presence/
pseudo-absence spatial models were extracted from 
published datasets for the post-processed track loca-
tions. Candidate covariates considered in the models 
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Year                Tracks   Locations   Initial date   Ending date   Max locations 
 
2003                    8            340            18 Oct           25 Dec                118 
2005                   11           359            11 Oct           27 Nov                 83 
2006                    3             75             12 Oct           10 Nov                 37 
2007                    7            281            08 Sep           18 Oct                 78 
2008                   17           598           27 Aug          03 Nov                 97 
2009                    9            399            14 Sep           09 Nov                 98 
2010                   10           282            18 Sep           06 Nov                 56 
2011                    8            314            29 Sep           20 Nov                 63 
2012                   13           407           08 Aug           17 Dec                 85 
2013a                   1             16             20 Aug          27 Aug                 16 
Total/overall      87          3071               —                   —                     — 
aLocations from a whale tagged in 2012, which returned to the breeding 
ground in the following year

Table 1. Summary of the data set (presences only) used for modelling the 
 distribution of humpback whales off the coast of Brazil. Max locations =  

maximum number of locations per track within a year

https://www.int-res.com/articles/suppl/m720p161_supp.pdf
https://www.int-res.com/articles/suppl/m720p161_supp.pdf
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were chosen to permit comparison to a previous 
modelling study using line transect data from hump-
back whales in the same region (Bortolotto et al. 
2017). Current speed close to the surface (Curr.sp) 
values were extracted from the OSCAR Third 
Degree Sea Surface Velocity dataset (ESR 2009), 
with a resolution of 0.33 × 0.33° (latitude × longi-
tude), in 5 d intervals. Daily values for sea surface 
temperature (SST), with a resolution of 0.01 × 0.01°, 
were extracted from the JPL MUR SST project data-
set (JPL MUR MEaSUREs Project 2010). Daily wind 
speed at the surface of the sea (Wind.sp) values were 
extracted from the Era-Interim dataset (Dee et al. 
2011), with a horizontal resolution of 0.125 × 0.125°. 
Depth values were extracted from ETOPO1 (Amante 
& Eakins 2009), for which the resolution is 0.1 × 0.1°. 
Slope was also derived from ETOPO1. Distances 
from coast (Dist.coast) and from the shelf-break 
(Dist.shelf), represented here by the 500 m depth 
contour, were measured with the ‘gDistance’ func-
tion in the ‘rgeos’ R package (version 0.3-26; Bivand 
et al. 2013). To represent regions within the area 
where animals could be sheltered from rougher 
weather and colder waters, a factor covariate for 
‘shelter’ was created by combining values of SST and 
wind speed in 6 classes, defined by quantiles of these 
covariates, sensu Bortolotto et al. (2017). The loga-
rithm of depth was used in the models. 

Values for the dynamic covariates (i.e. Curr.sp, SST 
and Wind.sp) were obtained by matching the time-
stamps of each location with the nearest (in time and 
horizontal space) covariate value. 

2.4.  Data analysis and modelling 

Processed track locations were considered as pres-
ences in spatial models. To provide contrasting data, 
pseudo-absences were generated randomly within 
the survey area to represent where animals could 
have been, assuming that the survey area was acces-
sible to all tagged animals. To select the most appro-
priate ratio of presence to pseudo-absences, different 
scenarios (i.e. 1:1, 1:3,1:5 and 1:10) were explored to 
verify model ‘coefficient stability’ (see Supporting 
Information S4 in Ventura et al. 2019). In every 
model scenario, weighting was applied so that the 
weight of pseudo-absences followed the correspon-
ding fraction, to ensure that the number of presences 
was equal to the sum of the weights of the pseudo-
absences. The model fitted to the data with 5 pseudo-
absences per presence produced the same fitted 
coefficients as with 10, but different from smaller 

ratios (1:1 and 1:3), indicating that 5 pseudo-absences 
per presence was sufficient to represent the underly-
ing background of the inference area. To match a set 
of 5 pseudo-absences to 1 specific presence, all loca-
tions within a set of 5 pseudo-absences were given 
the same timestamp as the corresponding presence. 

Covariate pairs that were strongly correlated (>0.7), 
or that had high (>10; Hair et al. 2014) variance infla-
tion factor scores (‘vif’ function, ‘car’ R package, ver-
sion 1.2-7; Fox & Weisberg 2019) when together in a 
model, were not included simultaneously in the same 
model. 

Two objectives guided the inclusion of candidate 
covariates in the spatial models. For the distribution 
model (DIM), the objective was to create the best dis-
tribution map possible, so that all available covari-
ates were considered. For the habitat use model 
(HUM), the objective was to investigate the relation-
ship of whale occurrence and important ecological 
characteristics, and all covariates but geographic 
position (latitude and longitude) were considered. 

To compare the present models with those of Bor-
tolotto et al. (2017), latitude and longitude were not 
considered in the HUM. This procedure was adopted 
because these covariates have no logical biological 
interpretation for habitat use, and because they were 
both strongly correlated with SST. The DIM included 
those covariates as potential explanatory terms 
because its objective was to identify those features 
that describe most variability in whale occurrence 
and to generate the best predictive map for poten-
tially informing management. The present DIM map 
was created to be compared to the abundance esti-
mation model (AEM) map of Bortolotto et al. (2017). 

Presence vs. pseudo-absence was modelled as a 
binomial random variable, with probability of pres-
ence a smooth function of the continuous covariates, 
first within a generalised additive model (GAM; 
Wood 2017) framework and then fitting the GAM 
using a generalised estimating equation (GEE; 
Hardin & Hilbe 2013) approach to account for possi-
ble autocorrelation, as detailed below. Continuous 
covariates were included in the models using b-
splines, and a logit link function was used. Weighted 
regression was used, where presences were as -
signed a weight of 1 and pseudo-absences a weight 
of 0.2. Model fitting was done using software R (R 
Core Team 2017), with the functions specified below. 

For both the DIM and HUM, covariate selection 
proceeded in 3 stages. First, the full model (i.e. model 
with all candidate covariates) was fitted, with the 
number and location of knots in each b-spline selected 
using the Spatially Adaptive Local Smoothing Algo-
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rithm (SALSA; Walker et al. 2011), implemented with 
the ‘MRSea’ R package (version 1.0.beta; Scott-
 Hayward et al. 2017). The maximum number of knots 
was restricted to 8 for 1-dimensional smoothers and 
to 20 for 2-dimensional smoothers (i.e. for geographic 
position), to prevent overfitting of smooth terms 
(Wood 2017). Continuous covariates for which no 
knot was indicated as significant, at α = 0.05, were 
not considered in subsequent steps. 

In the second stage, a backwards covariate selec-
tion process was followed. The model from the first 
step was refitted using a GEE to accommodate resid-
ual autocorrelation. For this, the data were organised 
in correlation panels, with a panel for each set of 
presences within a track (1 panel per track) and a dif-
ferent panel for each pseudo-absence (1 panel per 
pseudo-absence). Using this panel structure was 
congruent with the assumption that model residuals 
within a track were correlated, but that residuals in 
different tracks were not, and that residuals for 
pseudo-absences were mutually independent. Model 
fitting used the ‘geeglm’ function within the ‘geepack’ 
R package (version 1.2-1; Højsgaard et al. 2016). The 
quasi-likelihood under the independence model cri-
terion (QICu) score (Pan 2001) of the fitted model 
was calculated. A series of models were then fitted, 
leaving one covariate out at a time, and QICu scores 
were calculated for each of these models. The model 
with the lowest QICu score was retained. If this 
model had fewer covariates than the full model, then 
the process was repeated to drop another covariate. 
This was repeated until dropping covariates did not 
result in any further decrease in QICu. 

In the third stage, the statistical significance of the 
remaining covariates was assessed using marginal  
p-values, via the function ‘getPvalues’ in the ‘MRSea’ 
R package (Scott-Hayward et al. 2017). Any covari-
ates that were non-significant using an α-level of 
0.05 were dropped and the GEE re-fitted. 

For the selected DIM and HUM, model perform-
ance was verified with receiver operating character-
istic (ROC) curves and confusion matrices, as per 
Pirotta et al. (2011), using the R package ‘ROCR’ 
(version 1.0-7; Sing et al. 2009). The ROC and confu-
sion matrix can be used to calculate percentages of 
false positives and false negatives expected for the 
model, by comparing the predicted values to the 
observed values. 

For comparison to the distribution maps presented 
in Bortolotto et al. (2017), prediction grids (8 × 8 km 
cells) containing covariate values from 2008 and 
2012 (the years for which distribution models from 
sighting data were developed in that study) were 

used for predictions using the selected DIM. The 
contribution of each covariate in the final HUM was 
visualised with partial plots, with confidence inter-
vals based on the GEE estimated uncertainty, adapt-
ing custom R code from Pirotta et al. (2011). 

3.  RESULTS 

Data from 113 tags, deployed from 2003 to 2012, 
were available for the analysis. Model outputs from 
the R package ‘bsam’ (e.g. posterior densities and 
model convergence plots) indicated poor model fit 
and/or convergence for whale tracks with fewer than 
12 locations or fewer than 5 days of tracking. Those 
tracks were therefore excluded from the analysis. 
After filtering, interpolated locations from 87 tracks 
were available for investigating distribution and ha -
bitat use (Fig. 1), comprising 62 tracks from females 
(mothers with calves), 19 from males and 6 from ani-
mals of unidentified sex (Table 1). Because 5 pseudo-
absences were created for each presence (i.e. inter-
polated locations within the survey area; n = 3071), 
15 355 pseudo-absences were used, totaling 18 426 
locations to be modelled. 

The final HUM included smooth terms for current 
speed, SST, wind speed, distance to the coast and to the 
shelf-break and the factor variable shelter (Table 2). 
As a result of using GEEs for dealing with autocorrela-
tion in the data, confidence intervals for fitted relation-
ships between the response variable and the covariates 
were very wide (i.e. high uncertainty), except for SST 
(Fig. 2). Depth had no statistically significant knots 
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Covariate                       Tracking data  Line transect 
                                           (present)          data 
                                             HUM    DIM      HUM   AEM 
 
Current speed (m s–1)              *          *            *           * 
Depth (m)                                                                          
Distance to shelf-break (m)    *          *            *           * 
Distance to coast (m)               *          *            *           * 
Shelter                                      *                         *           * 
Slope (°)                                                                            
SST (°C)                                   *                         *             
Wind speed (kt)                       *                                     * 
Latitude and longitude (°)      —         *            —          *

Table 2. Covariates retained in models for both present 
tracking data and for line transect data. HUM: habitat use 
model; DIM: distribution model; AEM: abundance estimation 
model from Bortolotto et al. (2017); SST: sea surface tempera-
ture. Asterisks (*) indicate covariates retained in the final 
model; blank cells indicate covariates not retained; and long 
dashes (—) indicate covariates not considered as candidates
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Fig. 2. Fitted relationships (black solid lines) and 95% confidence intervals (grey areas around fitted lines) for smooth func-
tions of covariates in the final habitat use model (HUM). Error bars in the ‘Shelter’ plot represent 95% normal confidence in-
tervals. co: cold; wa: warm; li: light; mo: moderate; st: strong; Curr.sp: current speed; SST: sea surface temperature; Wind.sp:  

wind speed; Coast.dist: distance to the coast; Shelf.dist: distance to the shelf-break
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when the full model was fitted with SALSA and was 
not considered further. The fitted relationship for the 
SST covariate showed a clear peak around 24−25°C 
(Fig. 2), similar to Bortolotto et al. (2017). 

The final DIM included latitude and longitude, cur-
rent speed and distances to coast and shelf-break 
(Table S4). Shelter and wind had no significant knots 
at the first step of covariate selection, and depth had 
a non-significant marginal p-value in the last step of 
covariate selection for the DIM (Table 2). Overall, 
higher probabilities of encountering whales were 
predicted for the region around the Abrolhos Archi-
pelago and to the south, supporting findings from 
Bortolotto et al. (2017) (Fig. 3). For 2008, 74.7% of the 
tracking data model predictions that were above the 
median (median = 0.44) spatially overlapped with 
line transect model predictions above the median 
(median = 4.01). For 2012, 73.7% of the tracking data 
model predictions that were above the median 
(median = 0.41) overlapped with line transect model 
predictions above the median (median = 5.11). How-
ever, clear differences were observed at a smaller 
scale: in the Abrolhos Bank region, a patch of pre-
dicted lower probability of occurrence for both 2008 
and 2012 overlapped with the area presenting the 
highest densities from Bortolotto et al. (2017). 

Models performed better than random, with confu-
sion matrices indicating 66.2% of correct predictions 
for the HUM, and 63.1% for the DIM, and with areas 
under the ROC curve (AUC) of 0.691 and 0.732, 
respectively (Table 3). 

4.  DISCUSSION 

We investigated humpback whale distribution and 
habitat use off Brazil with spatial models applied to 
locations obtained through animal tracking and to 
spatial covariates. To generalise our results to other 
whale populations, they should be interpreted in 
light of several important specificities of the popula-
tion studied here. For instance, the increasing abun-
dance of this recovering population (Zerbini et al. 
2019, Bortolotto et al. 2021) may have an effect on 
their distribution and on how they use their habitats 
in the area, which was not possible to evaluate here 
because of the nature of the individual tracking data 
(i.e. data from multiple years pooled together). Also, 
because here we considered whales on a breeding 
ground, the imbalance in the reproductive stage (or 
animal sex) in our tracked animals (see Section 3; 
Table S1) very likely prevents them from accurately 
representing the population in general, because ani-

mals in different reproductive stages are known to 
use habitat differently (Cartwright et al. 2012, Derville 
et al. 2018). The scale of the dynamic environmental 
predictors (e.g. current speed, SST) and the effect of 
environmental variability in other systems, such as 
their feeding grounds, must also be considered. 
However, here we focus on describing mainly the 
differences in the implementation and interpretation 
of modelling of either data from individual tracking 
or from line transect sampling. 

4.1.  Model considerations and constraints 

Spatiotemporal correlation in track locations and 
other common issues in applying presence/absence 
modelling for distribution and habitat use (Aarts et 
al. 2008) were carefully considered in the analysis. 
Despite differences in the sampling unit of the track-
ing and survey data (individual vs. space) and statis-
tical tools used, some of the outputs from modelling 
track locations in a presence/pseudo-absence model-
ling approach support findings from distribution mod-
els fitted to line transect data (Bortolotto et al. 2017). 
Although the uncertainty in most of the covariate−
response (telemetry data) relations fitted here was 
much higher (Fig. 2), SST showed a clear peak around 
the same range of temperatures in both the present 
study and in the line transect  modelling (Fig. S3), 
which probably reflects how strongly habitat use for 
these animals is related to temperature in their 
breeding grounds (see Bortolotto et al. 2017 for a dis-
cussion on the role of SST in habitat use by hump-
back whales). The apparent agreement between the 
2 methods is not only reassuring for what is known 
about habitat use for this population, but also shows 
that similar, possibly complementary, conclusions 
can be drawn regardless of which of the 2 methods is 
used, given a sufficient sample size and careful con-
sideration of potential sources of bias. However, dif-
ferences, such as the patch of present lower probabil-
ity of whale occurrence that overlapped with the 
area presenting the highest densities from Bortolotto 
et al. (2017), need to be considered at smaller scales. 

It is important to note that by creating pseudo-
absences from random locations in the entire area, it 
was assumed that the entire survey area was avail-
able to the animals at any time (Soberón & Peterson 
2005). This is an arbitrary decision and the available 
area from the animals’ perspective could be different 
(Aarts et al. 2008, Hazen et al. 2021). For example, an 
animal tagged in the vicinity of the Abrolhos Archi-
pelago (Fig. 1) would take at least 2 d to reach the 
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Fig. 3. (a,b) Occurrence probability surfaces, predicted using the present distribution model (DIM) of tracking data. (c,d) 
Abundance estimation model (AEM) maps adapted from Bortolotto et al. (2017), showing humpback whale density surfaces,  

for comparison. See Fig. S2 for uncertainty maps of present DIMs
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southernmost portion of the survey area, swimming 
in a straight line at 12 km h−1 (i.e. the maximum 
travel speed [Garrigue et al. 2010] used as a criterion 
in the data pre-processing/filtering). 

The restriction of the area of inference (survey 
area) in comparison to that of Bortolotto et al. (2017) 
(compare north extents of the upper and the lower 
panels of Fig. 3) was adopted to reduce the effects of 
violating the area availability assumption (Hazen et 
al. 2021). Further restrictions could be investigated at 
the expense of inferring over a smaller region and 
considering fewer data. Another possibility to reduce 
issues from non-uniformly distributed tagging loca-
tions could be to truncate the first days from each 
track. This was not adopted here because many 
tracks presented relatively short periods of locations 
within the survey area, and such truncation would 
eliminate a substantial amount of information from 
the dataset. The extent of the area of inference also 
has a major influence on where pseudo-absences are 
randomly placed to represent the background envi-
ronment where animals were not observed. The 
restriction of the area considered in this study poten-
tially also minimised the effects related to that issue, 
because areas further north from the limits of the sur-
vey area (Fig. 1) were visited by only 2 animals (out 
of 113). Also, because of the imbalance in the tagging 
locations and number of animals tagged across years 
(Table 1), data from all years were pooled to model 
distribution. Therefore, it was impossible to evaluate 
temporal variation in distribution and habitat use 
patterns. Data were assumed to be representative for 
the population as a whole and for the period between 
2003 to 2013. Year was not considered as a covariate 
in the analysis, and inferences presented here must 
be interpreted as the overall distribution pattern for 
that population. Investigating temporal variation in 
distribution could help us understand the potential 

expansion of population range in the 
breeding area (Pavanato et al. 2018), 
but spatiotemporally balanced data 
within the area of inference are needed 
for that. One possible option is to re -
strict the area of inference in ways that 
allow meeting the above criteria, at 
the expense, again, of reducing the 
amount of data to be analysed. There 
is evidence that this population was 
in creasing near the upper limit of the 
rate expected during the period con-
sidered here (Wedekin et al. 2017), 
and we suggest that the potentially 
resulting distributional shifts would be 

better assessed with line transect data modelling 
(Table S5). To investigate the potential expansion of 
the breeding range, however, tracking data could 
indicate areas used by animals that were not designed 
to be surveyed. 

The first step of covariate selection (i.e. observing 
‘robust standard errors’ from model fitting with 
SALSA) led to discarding covariates that were not 
estimated precisely enough to be considered signifi-
cant, even before the residual autocorrelation was 
accounted for. Because serial autocorrelation may 
cause non-important covariates to appear more sig-
nificant (Aarts et al. 2008), GEEs permit realistic esti-
mation of uncertainty for covariate−response rela-
tions. However, such fitted relations can be difficult 
to interpret (Pirotta et al. 2011), especially for those 
covariates with wide confidence intervals in their fit-
ted relationships (Fig. 2). The second step of covari-
ate selection (observing the QICu scores) has been 
used in previous studies analysing similar data to the 
present and is a reasonable way to account for the 
residual auto-correlation issue (Pirotta et al. 2011, 
Jones et al. 2017). The last step of covariate selection 
(marginal p-values) was the final check for contribu-
tion of covariates to the models. The combination of 
the 3 criteria adopted improves the chances of only 
retaining important covariates related to animal dis-
tribution. Despite the above criteria, all covariates 
but SST presented large confidence intervals in their 
fitted relationships (Fig. 2), precluding detailed inter-
pretation of those results. 

4.2.  Habitat use from humpback whale  
tracking data 

Like the model used by Bortolotto et al. (2017) to 
investigate habitat use, latitude and longitude were 
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Model                                                   HUM                       DIM 
Correctly predicted                            66.2%                    63.1% 
AUC                                                     0.691                      0.732 
Confusion matrices                          Observed               Observed 
                                      Predicted          1             0                      1             0 
 
                                             1               1871       5022                2330       6063 
                                             0               1200      10333                741        9292 

Total observed                                     3071      15355               3071      15355 
Percent of observed            1             60.9%    32.7%             75.9%    39.5% 
                                             0             39.1%    67.3%             24.1%    60.5%

Table 3. Performance of models fitted to telemetry tracking data of humpback 
whales. HUM: habitat use model; DIM: distribution model; AUC: area under  

the receiver operating curve
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not considered in the HUM. The present final HUM 
adds wind speed to the already identified important 
covariates related to habitat use by humpback 
whales in the area (Martins et al. 2001, Bortolotto et 
al. 2017, Pavanato et al. 2018). However, the combi-
nation of SST and wind speed, represented by shel-
ter, had been already identified as important in the 
line transect models. Using autoregressive models 
applied to line transect data, Pavanato et al. (2018) 
identified bathymetry and distance to the shore to be 
related to the occurrence of humpback whale groups 
in the area. Wind speed was also considered as a 
candidate covariate in that study, but it was not 
retained in that final model. In the present study, it is 
unclear what is the relation between wind and whale 
occurrence from the partial plot for that covariate 
(Fig. 2) or from its estimated coefficients (Table S3). 
Looking at the fitted coefficients for shelter (Fig. 2), 
wind seems to be important when the water is rela-
tively colder. However, present results for shelter 
suggest a contradicting interpretation of its impor-
tance than from the line transect data models of Bor-
tolotto et al. (2017), which is likely due to the high 
uncertainty in the shelter coefficients (Fig. 2). Other 
covariates in the final HUM include current speed 
and distance from the shelf-break and to the shore, 
which may be related to calf survival probabilities, 
protection against predators or habitat selection for 
specific reproduction-related groups (Corkeron & 
Connor 1999, Félix & Botero-Acosta 2011). Here, 
tracking data were used to investigate the population 
distribution overall; therefore, sex and other individ-
ual characteristics were not incorporated in the mod-
els. The reason for not using this information was 
that there is no clear way to allocate sex and other 
individual characteristics to pseudo-absences within 
the GEE framework. One option would be to fit mod-
els separately for males and females because this 
information is available (Table S1). However, sex 
was unbalanced in the present data, with most ani-
mals being females. Distribution patterns found by 
Bortolotto et al. (2017), and now supported here, are 
consistent with what could be expected for popula-
tion distribution driven by female habitat selection. 

Alternative approaches to investigate habitat use 
from tracking data include inferring animal behav-
iour, which can be related to specific biological and 
environmental features (McClintock et al. 2015, Jon-
sen 2016, Roncon et al. 2018, Jonsen et al. 2019). 
There are also methods to study spatial distribution 
from tagging data which do not require creating 
pseudo-absences, such as point process models (John-
son et al. 2013) or by considering animal tracks in a 

grid over the study area as a result of a Markov pro-
cess (Whitehead & Jonsen 2013). Movement models 
can be used to quantify the relationship between 
covariates and the probability of animals being in 
specified behavioural states (Roncon et al. 2018, Jon-
sen et al. 2019), and therefore, to investigate habitat 
use, not necessarily from a spatial perspective. In that 
sense, direct comparisons to line transect models 
(Table S5) as presented here would be more chal-
lenging. For instance, that type of model would be 
very useful to investigate habitat use in more dy -
namic systems, such as humpback whale feeding 
grounds where whales are constantly tracking suit-
able foraging conditions (Bamford et al. 2022) in rela-
tion to highly dynamic ocean features (i.e. up wellings, 
eddies, fronts).  

4.3.  Management implications 

It is certainly important to investigate the potential 
effect of human activities on the occurrence of 
whales in the area (Pavanato et al. 2018). To evaluate 
this, data from before the presence of such activities 
are needed, or drastic enough changes in their distri-
bution or intensity must happen before being able to 
identify a redistribution, coinciding with the change 
in activities. However, the fact that the 2 methods 
considered here agreed in terms of distribution and 
habitat use inferences means that either could be 
used to inform conservation or management actions. 
Alternatively, a simpler analysis of overlap between 
whale distribution and the distribution of potential 
harmful human activities (Martins et al. 2013) could 
also contribute to such an investigation. 

Modelling animal distribution using line transect 
data may have some important advantages in data 
collection, survey design and modelling techniques, 
such as being able to control the places visited in the 
survey design (Table S5). Line transect surveys also 
allow abundance estimates to be derived when the 
assumptions of distance sampling are dealt with 
(Buckland et al. 2015). In contrast, satellite tagging of 
whales allows data to be collected remotely, meaning 
that the field work necessary for the method is 
restricted to that of tagging the animals. Also, the 
data may allow different approaches for investigat-
ing habitat use and distribution, because they in -
clude information about movement of individuals 
over time (Matthiopoulos & Aarts 2010). Because 
close proximity to the animal is required for tagging, 
other useful detailed information may also be simul-
taneously collected. For example, it is common to col-
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lect skin and blubber biopsies during the tagging 
procedure. Important information such as sex, hor-
mone levels and contaminants can be determined 
from those samples (Heide-Jørgensen et al. 2006, 
Reisinger et al. 2014). Tagging whales is a more inva-
sive field procedure (Alves et al. 2010, Andrews et al. 
2019), but provides data that are impossible to obtain 
from line transect surveys only. 

The 2 methods compared here are complementary 
and may be used in conjunction to expand the spa-
tiotemporal coverage of studies on distribution or 
habitat use, therefore providing better information to 
evaluate the need for, and to implement, conserva-
tion and management actions when needed. Survey 
efforts to investigate distribution of a population can 
be split between tagging some animals in one por-
tion of the area of interest and surveying another por-
tion, enhancing data collection while reducing logis-
tical costs. Therefore, distribution and habitat use 
investigations aiming at informing conservation of 
large whales can be more easily and realistically 
implemented. 
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