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1.  INTRODUCTION 

Growth rates of individual coral colonies are a key 
demographic trait which can reveal fundamental 
changes in population health and resilience, the abil-
ity to absorb a disturbance and recover (Pratchett et 
al. 2015), and will affect the future abundance, size 
structure and viability of coral populations. For colo-
nial coral species, growth mostly occurs by addition 
of coral polyps (Madin et al. 2020), although it is also 

possible that some polyps die or are lost, effectively 
reducing colony size. When the incidence or extent 
of this partial mortality exceeds the rate of coral 
growth, then colonies will get smaller over time, 
reducing their reproductive and recovery potential 
(Pisapia et al. 2020). 

Net growth of coral colonies (accounting for both 
growth and partial mortality) may vary spatially, tem-
porally and taxonomically (Kuffner et al. 2013, Man -
zello et al. 2015, Madin et al. 2020), depending on 
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environmental conditions and disturbance regimes. 
Im portantly, acute disturbances and chronic anthro-
pogenic and natural pressures not only increase rates 
of partial mortality, but may also constrain rates of 
coral growth (Ortiz et al. 2018). For some coral species, 
growth can be suppressed immediately after acute 
heat stress (Cantin & Lough 2014, Gold & Palumbi 
2018, but see Crabbe 2009), irrespective of whether 
corals bleach (Carilli et al. 2010, Neal et al. 2017). 
Elevated turbidity and inorganic nutrients can also 
suppress growth (Dodge et al. 1974, Dodge & Vaisnys 
1977, Crabbe & Carlin 2007) and increase the preva-
lence or extent of partial mortality (Vega Thurber et 
al. 2014, Jones 2022). Elevated turbidity may exacer-
bate (Anthony & Connolly 2004) or mediate (Caccia-
paglia & van Woesik 2016, Rippe et al. 2018) the 
effects of heat stress, thereby differentially affecting 
net growth rate (Helmle et al. 2011, Cooper et al. 
2012), while elevated heterotrophic feeding rates of 
some species on turbid, inshore reefs can enhance 
lipid reserves and stimulate the recovery of colonies 
with partial mortality (Manzello et al. 2015). On high-
latitude reefs, coral colonies are further subject to 
temperature and irradiance constraints, which may 
limit growth or increase partial mortality (Grigg 
1981, Logan & Tomascik 1991, Anderson et al. 2015). 
Under climate change, however, high-latitude reefs 
have been posited as potential refugia for corals 
(Beger et al. 2014), but population viability hinges on 
the growth and survival of individual colonies, par-
ticularly re cruits. With climate change altering envi-
ronmental conditions and disturbance regimes on 
coral reefs (Nyström et al. 2000, Mellin et al. 2019, 
Pratchett et al. 2020), identifying spatial, temporal 
and taxonomic variation in net coral growth is funda-
mental in understanding the changing structure and 
dynamics of coral populations and communities. 

The predominant method used in long-term stud-
ies to account for both growth and partial mortality is 
to measure changes in the planar area of individual 
coral colonies (e.g. Crabbe 2009, Pratchett et al. 2015, 
Gold & Palumbi 2018, Madin et al. 2020). Proportional 
changes in planar area generally decline with in -
creasing colony size, partly due to increasing preva-
lence and extent of partial mortality in larger colonies 
(Tanner 1995, Dornelas et al. 2017, Madin et al. 2020, 
Fong & Todd 2021). While long-term studies have 
found that most colonies have net growth, particularly 
in small size classes (Dornelas et al. 2017, Brito-Millán 
et al. 2019), high rates of colony fission or shrinkage 
may occur following acute disturbances or environ-
mental stress (Riegl & Purkis 2015, Riegl et al. 2017). 
Hughes & Tanner (2000) found two-thirds of surviving 

Orbicella annularis shrank in a 6 yr period (1987−
1993) in Jamaica, and Edmunds et al. (2004) found 
25% of juvenile corals shrank or did not grow over 
1 yr in the Florida Keys, USA. These findings show 
that apparent stability in colony density or coral cover 
may belie fundamental changes in demography that 
undermine population viability and resilience. Meas-
uring planar growth may therefore capture intrinsic 
differences and the impact of extrinsic factors which 
cause partial mortality, such as acute disturbances 
and chronic pressures (Neal et al. 2017, Gold & Pa -
lumbi 2018, Rippe et al. 2018, Madin et al. 2020). 

In the high-latitude Southeast Florida Coral Reef 
Ecosystem Conservation Area (ECA), heat stress and 
stony coral tissue loss disease caused mass coral mor-
tality from 2014 to 2017 (Walton et al. 2018, Jones et 
al. 2022), with the natural recovery capacity largely 
dependent on the most abundant remaining coral 
species. Moderate increases in coral cover were seen 
on some ECA reefs from 2007 to 2014, prior to these 
major disturbances (Jones et al. 2022), but in most 
locations, coral colonies were and remain small. It is 
unclear whether this results from slow growth rates, 
high partial mortality or high turnover. To assess this, 
we tracked coral colonies of the 3 most abundant 
species (Montastraea cavernosa, Porites astreoides 
and Siderastrea siderea) between 2000 and 2020. We 
quantified interannual net growth rates, which incor-
porate increases (i.e. growth) and decreases (i.e. par-
tial mortality) in colony size, partial mortality preva-
lence by species, colony size and colony age, and 
recorded incidences of whole colony mortality of in -
dividual coral colonies. Using these data, we asked 
(1) How do net growth rate, partial and whole colony 
mortality prevalence vary by species, colony size and 
colony age? (2) Are spatial and temporal factors 
influencing net growth rates and whole colony mor-
tality? To further understand the preponderance of 
small colonies, we compared the maximum (poten-
tial) and mean (realized) net growth rates of colonies 
which recruited during the study, to assess whether 
they are reaching their potential size. 

2.  MATERIALS AND METHODS 

Variation in net coral growth and in partial and 
whole colony mortality was examined from 2000 to 
2020 by annually tracking 136 coral colonies of 3 spe-
cies (Montastraea cavernosa, Porites astreoides and 
Siderastrea siderea) in fixed quadrats at 19 sites 
across 3 reef habitats (inshore, mid-reef and off-
shore) in southeast Florida (26.3114 to 26.0042° N; 
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Table S1 in the Supplement at www.int-res.com/
articles/suppl/m721p059_supp.pdf). Each individual 
colony was tracked for 5 to 21 yr, with colonies added 
or removed as they recruited or died. All colonies 
were photographed in the same orientation every 
year. No surveys were conducted in 2009 due to 
funding constraints. A 5 yr minimum continuous time 
period was selected to avoid assessing colonies that 
appeared visibly healthy but had underlying condi-
tions leading to immediate mortality and restricting 
growth; moreover, this timespan was hypothesized to 
sufficiently capture interannual variation and trends 
in growth of each colony. Surveys were typically con-
ducted from October to December in each sample 
year. Habitats varied with depth and distance off-
shore. The inner reef habitat, 275−780 m offshore at 
a depth range of 4−10 m, comprises the nearshore 
ridge complex and linear inner reef. The middle reef 
habitat is 770−2000 m offshore at 11−16 m depth. The 
outer reef habitat is 1500−3000 m offshore at 16−
18 m depth. Sites were also assigned to 1 of 3 sub-
regions, separated by latitude/by ports and inlets 
as per Jones et al. (2020). The Deerfield sub-region, 
furthest north, is between Boca and Hillsboro inlets 
(~9 km); the Broward/Fort Lauderdale sub-region is 
between Hillsboro Inlet and Port Everglades (~18 km); 
and the Hollywood/Miami sub-region is furthest 
south, between Port Everglades and the Broward/
Miami-Dade County line (~13 km). 

2.1.  Study species 

The 3 study coral species were expected to have 
different growth and mortality rates, influenced by 
their life-history traits. M. cavernosa is a massive, 
gonochoric broadcast spawning coral, which domi-
nates cover in the study area. Despite being consid-
ered relatively stress tolerant (Darling et al. 2012), 
recent bleaching and disease events have resulted in 
significant declines in M. cavernosa density and 
cover in the ECA (Walton et al. 2018, Jones et al. 
2020). P. astreoides is a brooding, encrusting species, 
which has increased in cover and density on the ECA 
in recent years (Jones et al. 2020) and has previously 
been classified as resilient to disturbances and weedy 
(Darling et al. 2012). S. siderea is a massive, gono-
choric broadcast spawning species, is considered 
stress tolerant (Darling et al. 2012), was not heavily 
impacted by recent disease and has a high recruit-
ment rate in Florida (Hayes et al. 2022). Each species 
grows primarily in the horizontal plane in southeast 
Florida (Goldberg 1973, Lirman 2000). 

2.2.  Coral health and growth rate 

Replicate colonies of M. cavernosa (n = 53), P. 
astreoides (n = 46) and S. siderea (n = 37) were sur-
veyed over successive years in the ECA. Photo-
graphic images of each colony were taken annually 
using a digital camera in an Ikelite housing mounted 
at a fixed distance onto a 0.75 m2 quadrat parallel to 
the colony surface. A scale bar of known width was 
attached to the edge of the quadrat, which was 
aligned with the uppermost surface of the colony 
when photographed. Incidences of partial or whole 
colony mortality were recorded in situ. It was not 
possible to distinguish whether all injuries occurred 
in the last year; therefore, incidences of interannual 
decline in colony size were calculated from net growth 
measurements using images. The interannual change 
in colony size was not calculated in a year that a 
colony died. Images were qualitatively inspected for 
skew, distortion or obstruction of the colony bound-
ary, and images with inferred high parallax error or 
that did not capture the colony boundary were re -
moved. Fifteen colonies were omitted from quantita-
tive growth analysis due to high parallax error. 

To calculate coral growth rate, the living tissue pla-
nar area of the remaining 121 colonies was measured 
annually from photographic images (M. cavernosa: 
n = 42, P. astreoides: n = 42, S. siderea: n = 37). Planar 
live tissue area was measured using Image J soft-
ware (Schneider et al. 2012). Images were calibrated 
using the scale bar, and the outline of the colony was 
carefully traced to calculate the total area of living 
tissue at each timepoint (cm2). From this, the arith-
metic mean radius (AMR, cm), colony diameter (cm) 
and net growth rate of each colony were calculated 
(Eq. 1). Net growth rate was calculated as both the 
relative change in live tissue area (% yr−1), which ac -
counts for variation in colony size, and linear exten-
sion as the change in AMR (cm yr−1). The colony diam-
eter at each timepoint was calculated from the AMR: 

                                                                   (1.1) 

                                                                   (1.2) 

                                                                   (1.3) 

The AMR was calculated from the live tissue area 
(Eq. 1.1). Net growth rate was calculated as relative 
growth rate in percent per year (Eq. 1.2) and linear 
extension in cm per year (Eq. 1.3), where t0 is the live 
tissue area in year X, t + n is the live tissue area at the 

AMR = 
� t0
�

Growth Rate =
([t+n]–t0)/n

t0
� 100

Linear Extension =
([AMR + n] – AMR0)

n
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next timepoint, AMR0 is the AMR in year X, AMR + 
n is the AMR at the next timepoint, and n is the time 
between monitoring periods. 

Potential vs. realized growth of juvenile colonies 
(<5 cm diameter and recruiting during the study 
period) was assessed by comparing the potential in -
crease in AMR with the realized increase in AMR, 
where the potential increase in AMR is calculated 
as the mean of the maximum interannual change in 
AMR measured per colony and assumes isometric 
growth over time. The realized increase in AMR is 
the measured increase in AMR over time of juvenile 
colonies. Realized growth of juvenile colonies was 
specifically quantified to elucidate the long-term 
growth potential of recruits entering the system 
naturally or introduced as small colonies through 
restoration. 

2.3.  Statistical analysis 

Statistical analysis was conducted in R (R Core 
Team 2022). Linear mixed effects models (LMMs) 
were used to assess variation in annual relative 
growth rate (% yr−1; n = 1317) and change in AMR 
(cm yr−1; n = 1317) using the ‘lme’ function in the 
‘nlme’ package (Pinheiro et al. 2017). LMMs were 
used as growth rates and were normally distrib-
uted. Relative growth rate was assessed in relation to 
all factors: Species, Minimum Colony Age, Colony 
Diameter, Survey Year, Habitat and Sub-region. 
Change in AMR was assessed in relation to Species, 
Colony Diameter and Survey Year, to assess whether 
the preponderance of small colonies was linked to 
variation in partial mortality with colony size and to 
identify temporal factors that may be causing colony 
shrinkage. Species (3 levels), Survey Year (19 levels), 
Habitat (3 levels) and Sub-region (3 levels) were con-
sidered as categorical, fixed effects (Table S2). Mini-
mum Colony Age (recorded as the number of years 
the coral was surveyed, not the exact age of the 
colony) and Colony Diameter (cm; calculated from 
projected area and considered at any given year 
as  the diameter of live tissue in the previous year) 
were included as continuous, fixed effects. Repeated 
measurements of the same colony were accounted 
for by incorporating Colony ID as a random intercept 
in all models. A constant plus power variance struc-
ture was added to the relative growth rate model 
using the ‘varConstPower’ function (Pinheiro & Bates 
2000), which incorporated heterogeneity in the vari-
ance of both Colony Diameter and Species (Eq. 2) fol-
lowing the protocol in Zuur et al. (2009): 

        Var(εij) = σ2 × (δ1 + |Speciesij |Diameterij|δ2)2    (2) 

Residual variance (ε) is proportional to the constant 
δ1 plus the power of the variance covariates Species 
and Colony Diameter. 

For relative growth rate, the full model consisted 
of all fixed effects, the interaction between Species 
and each fixed effect and the random effect Colony 
ID (Eq. 3). Interactions between other fixed effects 
were not assessed, as many model combinations 
failed due to lack of convergence, and the data sug-
gested the main interactions were interspecific. For 
change in AMR, the full model consisted of the 
fixed factors Species, Colony Diameter and Survey 
Year, their interactions and the random effect Colony 
ID (Eq. 3): 

                    Growth Rateij ~ Gaussian(μij)             (3.1) 

                                      εij ~ N(0, σ2)                           (3.2) 

Relative Growth Rateij = Speciesij + 
  Sub-regionij + Habitatij + Survey Yearij +  
  Minimum Colony Ageij + Colony Diameterij + 
  Speciesij × Sub-regionij + Speciesij × Habitatij +  (3.3) 
  Speciesij × Survey Yearij + Speciesij ×  
  Minimum Colony Ageij + Speciesij ×  
  Colony Diameterij + Colony IDi + εij 

                           Linear Extension ij =  
                  Speciesij × Colony Diameterij ×           (3.4) 
                  Survey Yearij + Colony IDi + ε ij 

                           Colony ID ~ N(0, σ2)                    (3.5) 

Growth rate (both relative growth rate and linear 
extension) was modeled with a Gaussian distribution 
(Eq. 3.1), assuming residuals (ε) are normally distrib-
uted with mean 0 and variance σ2 (Eq. 3.2). LMMs 
examined variation in relative growth rate, where 
growth rate ij refers to the j th observation at Colony 
ID i (Eq.  3.3). LMMs also examined the variation 
in  linear extension, expressed as change in AMR 
(Eq. 3.4). Random intercept Colony ID is assumed to 
be normally distributed with mean 0 and variance σ2 
(Eq. 3.5). 

Term selection to find the fitted minimum adequate 
model (MAM) was conducted via backwards selec-
tion from the full model, using Akaike’s information 
criterion (AIC) scoring of multiple candidate models 
fitted by maximum likelihood. In the event of equiv-
alent models (i.e. within an AIC score of 2; Burnham 
& Anderson 2004), the simplest model was selected. 
The MAM was validated by plotting standardized 
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residuals against fitted values and standardized resid-
uals against each fixed effect. The MAM was run by 
restricted maximum likelihood to give estimates of 
the coefficients and allow for model interpretation. 

Post hoc pairwise assessment of retained fixed 
effects in the MAM was conducted using the pack-
age ‘emmeans’ and the Tukey method, where dif -
ferences in the response variable were analyzed 
be tween levels of a fixed effect (e.g. Species) or 
interaction (e.g. Species × Minimum Colony Age) 
based on model predictions (Lenth 2019). Emmeans 
linear contrasts were used to assess significant varia-
tion in levels of a fixed effect against the mean value. 
For interactions between categorical and continuous 
fixed effects (covariates), the ‘emtrends’ function was 
used to assess covariate trends between levels of the 
categorical, fixed effect. 

3.  RESULTS 

3.1.  Colony health 

Of the 136 coral colonies monitored between 2000 
and 2020, 33% died and a further 61% experienced 
partial colony mortality (n = 45 and n = 83, respec-
tively; Fig. 1). Only 5 Montastraea 
cavernosa and 3 Side rastrea siderea 
colonies exhibited no partial mortal-
ity. All Porites astreo ides had whole 
and/or partial colony mortality. Of the 
45 colonies that died, 37 died be -
tween fall 2013 and 2016: 17 M. cav-
ernosa colonies died from 2014 to 
2015 and 7 from 2015 to 2016; 7 P. 
astreoides colonies died from 2015 to 
2016; and 4 S. siderea colonies died 
between 2013 and 2015. Of the 91 
colonies still alive in 2020, 12% had 
declined in size: 2 M. cavernosa on 
the inner reef, 2 P. as treoides on the 
inner reef, 1 P. as treoides on the mid-
dle reef and 3 S. siderea on each of 
the middle and outer reefs. Only 58% 
of the 45 colonies surveyed in 2000 
survived until 2020: 50% of M. caver-
nosa colonies (12 of 24), 45% of P. 
astre oides colonies (5 of 11), but 90% 
of S. siderea colonies (9 of 10). 

Coral growth rate was quantitively 
assessed on 121 colonies. For all 3 
species, the average net growth rate 
was negligible and not significantly 

different from zero (Table 1, Fig. 2). Of these colonies, 
86 were still alive in 2020, and 76 had a net increase 
in size (AMR) from their first to last survey point: 21 of 
23 M. cavernosa, 29 of 31 P. astreoides and 26 of 32 S. 
siderea. The mean (±SE) increase in AMR (i.e. linear 
extension) in the 76 colonies with net growth was 
0.13 ± 0.02 cm yr−1 for M. cavernosa, 0.2 ± 0.02 cm 
yr−1 for P. astreoides and 0.12 ± 0.01 cm yr−1 for 
S. siderea. 

3.2.  Coral growth rate 

Relative growth rate (assessed as proportional 
change in planar live tissue area, % yr−1) varied 
among species, by colony diameter, minimum 
colony age, habitat and survey year (LMM; Table S3). 
Model coefficients indicated that the interaction be -
tween species and colony diameter had the biggest 
effect size on coral growth rate (Table S4). M. caver-
nosa growth rate varied little with colony diameter 
(estimate = −0.23, 95% CI: −0.52, 0.06), but some 
small colonies grew quickly (Fig. 2). S. siderea and P. 
astreoides growth rates declined with colony diame-
ter (estimate = −3.04, 95% CI: −4.33, −1.76; estimate 
= −1.78, 95% CI: −2.63, −0.93; Fig. 2). M. cavernosa 
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and P. astreoides growth rate declined with mini-
mum colony age (estimate = −1.24, 95% CI: −1.98, 
−0.49; estimate = −1.25, 95% CI: −2.25, −0.24; 
Fig. S1). S. siderea had relatively consistent growth 
rate with minimum colony age, but this was around 
zero (estimate = 0.31, 95% CI: −0.63, 1.24). 

Spatial variations in growth rate were less pro-
nounced; the minimum adequate model suggested 
a mild effect of habitat on growth rate, but no sig -
nificant effect of sub-region. M. cavernosa and P. 
astreoides growth rates did not significantly vary by 
habitat, but M. cavernosa growth rates were margin-
ally lower on the inner reef than the mean growth 
rate for all colonies (emmeans linear contrasts, esti-
mate = −4.1 ± 2.09% yr−1 [SE], t = −2.0, p = 0.07), 

largely due to increased partial mortality prevalence 
and extent on larger colonies on the inner reef. S. 
siderea growth rate was significantly higher on 
the inner reef than the outer reef (estimate = 18.05 ± 
5.5% yr−1, t = 3.3, p = 0.04). 

Linear extension (assessed as change in AMR, cm 
yr−1) varied by species, colony diameter and survey 
year, with a significant 3-way interaction (LMM; 
Fig.  S2). During most years, linear extension de -
clined with colony diameter in all 3 species (estimate: 
M. cavernosa = −0.008 ± 0.003 [SE]; P. astreoides = 
−0.17 ± 0.01; S. siderea = −0.12 ± 0.02; Fig. S3). Juve-
nile M. cavernosa and P. astreoides colonies (<5 cm 
diameter) generally had less partial mortality than 
larger colonies, but partial mortality in S. siderea was 
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Species                              Relative growth            Planar change            AMR (cm)           Change in               Max. change 
                                             rate (% yr−1)             in area (cm2 yr−1)                                   AMR (cm yr−1)         in AMR (cm yr−1) 
 
Montastraea cavernosa        8.42 ± 28.8                  −1.11 ± 43.2                5.1 ± 5.1             0.03 ± 0.6                  0.48 ± 0.26 
Porites astreoides                 18.6 ± 39.1                   4.18 ± 17.5                2.2 ± 1.3             0.17 ± 0.6                  0.75 ± 0.36 
Siderastrea siderea              20.1 ± 42.3                    2.04 ± 7.3                  1.6 ± 1.2             0.12 ± 0.3                  0.51 ± 0.18

Table 1. Annual growth rates for the 3 coral species (mean ± SD). Relative growth rate: mean percentage change in planar 
area per year; AMR: arithmetic mean radius of colonies at their initial survey timepoint; max. change in AMR: species mean of  

the maximum change in AMR per colony

Fig. 2. Relative growth rate (proportional change in colony area) vs. colony size (colony live tissue diameter). Blue regression 
line represents trend in mean relative growth rate (linear mixed effects model [LMM] for relative growth rate vs. colony diameter: 
Montastraea cavernosa: estimate = −0.23% yr−1, t = −1.5, p = 0.1; Porites astreoides: estimate = −1.78% yr−1, t = −4.1, p < 0.0001, 
Siderastrea siderea: estimate = −3.04% yr−1, t = −4.63, p < 0.0001); shaded area represents 95% confidence interval. Points 
represent the relative growth rate of each coral colony during each timepoint (LMM for relative growth rate vs. minimum 
colony age: Montastraea cavernosa: estimate = −1.24% yr−1, t = −3.6, p = 0.001; Porites astreoides: estimate = −1.24% yr−1, t =  

−2.4, p = 0.02, Siderastrea siderea: estimate = 0.31% yr−1, t = 0.64, p = 0.5)
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more consistent with colony size (Table 2). Older, 
larger colonies of all 3 species experienced interan-
nual declines in AMR more frequently than smaller 
conspecifics (Table 3), and all large colonies de -
creased in size during at least 1 interannual period 
(t0 to t + n; Table 2). 

3.3.  Interannual growth pattern 

Growth rate and linear extension fluctuated greatly 
between years (Fig. 3). For M. cavernosa, the an -
nual growth rate (±SE) ranged from 0.42 ± 3.5% yr−1 
in 2017−2018 to 16.6 ± 32.5% yr–1 in 2018−2019. For 
P. astreoides, annual growth rate was lowest (−1.05 ± 
5.0% yr−1) from 2019 to 2020 and highest (53 ± 13.1% 
yr−1) from 2006 to 2007. S. siderea growth rate 
ranged from −8.4 ± 7.7% yr−1 from 2005 to 2006, to 
45.8 ± 12.8% yr−1 from 2010 to 2011. M. cavernosa 
growth rate from 2019 to 2020 exceeded that from 
2015 to 2016 (Tukey, p = 0.02). P. astreoides and S. 
siderea growth rates did not significantly vary 
between any time points (Tukey, p > 0.05). Growth 
rates were negative (but not significantly so) for M. 
cavernosa from 2004 to 2005 (emmeans linear con-
trasts, estimate = −7.4% yr−1, t = −1.9, p = 0.10) and 
strongly negative from 2015 to 2016 (emmeans linear 
contrasts, estimate = −8.8% yr−1, t = −2.4, p < 0.05). 
P. astreoides growth rates were significantly higher 
than the mean from 2006 to 2007 (emmeans linear 
contrasts, estimate = 17.9% yr−1, t = 3.2, p = 0.03). 

Growth rates were marginally lower than the mean 
for S. siderea from 2005 to 2006 and strongly nega-
tive from 2006 to 2007 (emmeans linear contrasts, 
estimate = −17.1% yr−1, t = −2.7, p = 0.06 and −20.1% 
yr−1, t = −3.1, p = 0.04). 

Regionwide, M. cavernosa linear extension ranged 
from −0.73 ± 0.36 cm yr−1 (SE) from 2015 to 2016 to 
0.20 ± 0.08 cm yr−1 from 2019 to 2020. P. astreoides 
linear extension ranged from −0.14 ± 0.15 cm yr−1 
from 2019 to 2020 to 0.54 ± 0.12 cm yr−1 from 2006 to 
2007. S. siderea linear extension ranged from −0.22 ± 
0.16 cm yr−1 from 2005 to 2006 to 0.25 ± 0.06 cm yr−1 
from 2001 to 2002. M. cavernosa linear extension 
from 2003 to 2004, from 2009 to 2010 and from 2019 
to 2020 was significantly higher than from 2015 to 2016 
(Tukey, p < 0.05). P. astreoides linear extension from 
2006 to 2007 and from 2010 to 2011 was significantly 
greater than from 2019 to 2020 (Tukey, p < 0.05). S. 
siderea linear extension was significantly lower from 
2006 to 2007 than from 2019 to 2020 (Tukey, p = 0.04). 
In all 3 species, survey years with significantly lower 
linear extension had strong de clining trends in linear 
extension with colony diameter (Fig. S3). 

3.4.  Realized vs. potential growth 

Linear extension of 81 colonies tracked as juveniles 
(<5 cm diameter) declined with colony age for all 3 
species, most noticeably in P. astreoides (Fig. 4). 
Mean maximum annual linear extension of juveniles 
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Species                                                                           Colony size class  
                                             Juvenile: <5 cm (%)       Small: 5−10 cm (%)       Medium: 10−20 cm (%)        Large: >20 cm (%) 
 
Montastraea cavernosa                     61                                    73                                       79                                      100 
Porites astreoides                               25                                    51                                       75                                      100 
Siderastrea siderea                            71                                    65                                       67                                      NA

Table 2. Percentage of colonies which declined in arithmetic mean radius (AMR) during at least 1 interannual period by size 
class (colony diameter). Note: While some colonies declined in size multiple times, each unique colony is only counted once  

per size class; NA: not applicable, as no S. siderea colonies larger than 20 cm diameter were surveyed

Species                        All colonies (±SE)             Diameter (cm ± SE)         Minimum colony age (yr ± SE) 
                                         Diameter           Minimum             Increased           Decreased              Increased            Decreased 
                                             (cm)           colony age (yr)            AMR                   AMR                      AMR                     AMR 
 
Montastraea cavernosa  11.3 ± 0.4            8.8 ± 0.2              10.2 ± 0.5            13.8 ± 0.9                8.6 ± 0.3               9.3 ± 0.4 
Porites astreoides             8.3 ± 0.2            7.8 ± 0.2               7.9 ± 0.2             9.5 ± 0.4                7.1 ± 0.2                10.4 ± 0.5 
Siderastrea siderea          4.9 ± 0.1            7.7 ± 0.3               4.8 ± 0.2             5.2 ± 0.3                7.4 ± 0.3               8.7 ± 0.5 

Table 3. Mean colony diameter and minimum colony age during every interannual growth rate record, mean colony diameter 
(calculated from projected colony area) and mean minimum colony age during each increase or decrease in net arithmetic  

mean radius (AMR) per time period
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(i.e. the mean of the maximum annual linear exten-
sion per colony, ±SE) was 0.46 ± 0.01, 0.72 ± 0.1 and 
0.52 ± 0.01 cm yr−1 for M. cavernosa, P. astreoides and 
S. siderea, respectively, but mean annual linear exten-
sion was substantially lower (0.13 ± 0.02, 0.23 ± 0.0 and 
0.12 ± 0.02 cm yr−1, respectively). After 20 yr, realized 
increases in colony size were 3 times lower than their 
potential growth (assuming isometric growth), such 
that after 20 yr, the mean AMR of juveniles was only 
3.27 ± 0.6 cm (SE) for M. cavernosa, 5.0 ± 0.0 cm for 
P. astreoides and 3.7 ± 0.8 cm for S. siderea. 

4.  DISCUSSION 

Coral growth recorded from 2000 to 2020 in the 
Southeast Florida Coral Reef ECA was very limited 
for Montastraea cavernosa, Porites astreoides and 

Sider astrea siderea, which are the 3 most abundant 
corals in this region. This was primarily due to excep-
tionally high prevalence and extent of partial mortal-
ity, particularly in larger or older colonies, which lim-
ited realized growth and constrained colony size. 
Aside from moderate rates (33%) of whole colony 
mortality, 61% of surviving colonies had partial mor-
tality, and 85% of all colonies surveyed reduced in 
size during at least 1 interannual period. Every large 
colony (>20 cm diameter) reduced in size during at 
least 1 interannual period, and 12% of the colonies 
still alive in 2020 were smaller than at the start of 
monitoring. Of these, 19% of S. siderea had shrunk, 
and no colonies observed here grew into the largest 
size class (>20 cm diameter). As a result, there is a 
predominance of small colonies, and our findings 
suggest that under current conditions, few natural 
colonies, or those introduced through restoration, are 
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Fig. 3. Interannual growth pattern of the 3 coral species. (a) Mean relative growth rate ± SE, based on proportional change in 
planar area (% change yr−1). (b) Mean ± SE change in arithmetic mean radius (AMR) (cm yr−1). Major acute disturbances, 
namely bleaching (red lines) and hurricanes (blue lines), during the study period are noted. Multiple hurricanes impacted the 
Southeast Florida Coral Reef Ecosystem Conservation Area (ECA) in 2005, and Hurricane Irma impacted the ECA in 2017.  

Stony coral tissue loss disease (SCTLD; green arrow) was prevalent in the ECA from 2014 to 2017
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going to attain large sizes (>20 cm diameter), mean-
ing long-term recovery is unlikely. 

Colony growth (measured as change in AMR) de -
clined with size in all 3 species, most evidently dur-
ing periods with acute disturbances. Small, relatively 
young M. cavernosa and P. astreoides colonies had 
generally less partial mortality than older, large 
colonies, giving them significantly increased growth 
capacity. This may lead to short-term increases in 
coral cover, but sustained increases in colony size 
appear to be prevented by cumulative stress and 
acute disturbances (Hughes & Jackson 1985, Pisapia 
& Pratchett 2014). Growth rates of S. siderea declined 
with colony size, but not minimum colony age, main-
taining a population of small, potentially old colonies 
(Elahi & Edmunds 2007). This may explain the high 
abundance of small, fecund colonies found in south-
east Florida (Moyer et al. 2003, St Gelais et al. 2016) 
but may prevent this species from contributing 
greatly to reef growth. 

Whole and partial colony mortality were most preva-
lent following years with known acute disturbances 
or disease outbreaks, which effectively slowed the 
growth rate of the reef-building species M. cavernosa 
and S. siderea. This study spanned multiple acute 
disturbances that impacted the ECA: El Niño-related 

bleaching in 2005, 2014 and 2015, major hurricanes in 
2005 and 2017 and a severe disease outbreak, stony 
coral tissue loss disease, which peaked in 2016 
(Hayes et al. 2022, Jones et al. 2022). Whole colony 
mortality was primarily observed rapidly after acute 
disturbance (i.e. the year of or after acute disturbance). 
Of the 45 colonies that died, 82% died from late 2013 
to 2016, and M. cavernosa and S. siderea growth 
rates were lowest following acute disturbances. 

Interspecific differences in growth rate suggest 
variable resilience to acute disturbances which align 
with their predicted life-history strategies (Darling et 
al. 2012) and susceptibility to temperature stress in 
the ECA (Jones et al. 2020). M. cavernosa linear 
extension was lowest from 2015 to 2016 and growth 
rate lowest from 2017 to 2018, with the greatest 
decline in live tissue planar area in the largest and 
oldest colonies. Heat stress in combination with local 
environmental stress has previously been suggested 
to limit M. cavernosa growth rate in the Florida Keys 
(Manzello et al. 2015) and coupled with disease has 
limited growth in the ECA (Walton et al. 2018). De -
spite this, M. cavernosa colonies that survived were 
growing faster at the end of the study period than at 
any point in the previous 20 yr. M. cavernosa growth 
rate was highest from 2018 to 2019, linear extension 
was highest from 2019 to 2020, and the growth rate 
from 2019 to 2020 was significantly higher than from 
2015 to 2016. Potential explanations include that 
colonies resistant to heat stress and disease or re -
cruited during the thermal stress event have intrinsic 
resilience (Darling & Côté 2018, Madin et al. 2020), 
or that environmental conditions are facilitating 
increased growth rate (Cooper et al. 2012). Mean and 
minimum sea surface temperature have risen in the 
ECA since 2007 (Jones et al. 2020), and with no ex -
treme thermal stress events experienced since 2015, 
higher mean annual temperature may be facilitating 
increased growth (Lough & Barnes 2000, Cooper et 
al. 2012, Manzello et al. 2015). Whether this increase 
in growth and linear extension is resulting in in -
creased calcification requires further investigation 
(Helmle et al. 2011), but this does suggest that M. 
cavernosa may have increased capacity to recover 
during inter-disturbance periods. 

S. siderea growth rate and linear extension were 
lowest following heat stress from 2005 to 2006 and 
both remained low from 2006 to 2007. S. siderea is 
generally considered to be resistant to acute distur-
bance, often maintaining growth rates despite ther-
mal stress (Darling et al. 2012, Kuffner et al. 2013, 
Rippe et al. 2018). Our evidence suggests that in the 
ECA, intense thermal stress may reduce S. siderea 
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Fig. 4. Potential vs. realized size progression with minimum 
colony age of juveniles (colonies < 2.5 cm arithmetic mean 
radius [AMR] at first measurement). Dashed lines (potential 
AMR) represents mean maximum potential increase in AMR 
(mean of maximum change in AMR per colony; Table 1) 
with time. Solid lines represents mean measured AMR over  

time of juveniles (shading = ±1 SE)
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growth rate and kill whole colonies, potentially ac -
counting for mortality of 4 colonies in late 2013 to 
2015, but most colonies persist and growth rate gen-
erally recovers within several years. 

No clear effect of acute disturbance on P. astreo -
ides growth rate was detected here, but 16% of 
colonies surveyed between 2015 to 2016 died and 
growth rates subsequently remained low, suggesting 
that despite initial increased thermal tolerance, 
repeated heat stress has negatively impacted the P. 
astreoides population (Grottoli et al. 2014, Manzello 
et al. 2015, Jones et al. 2020). Growth rates were 
highest for P. astreoides, increasing their recovery 
potential, but partial mortality was exceptionally 
high for larger colonies, suggesting the population 
will continue to be dominated by small colonies. 

Acute disturbances correlated with some interan-
nual declines in M. cavernosa and S. siderea growth 
rate and most instances of whole colony mortality, 
but low growth rates and high rates of partial mor -
tality were observed even during supposed inter-
 disturbance periods, suggesting local pressures, either 
related to the high-latitude environmental condi-
tions, or locally elevated sedimentation and eutroph-
ication (Jones 2022), are contributing significantly to 
limited net growth (Hughes & Jackson 1980, Elahi & 
Edmunds 2007, Crabbe 2009, Ortiz et al. 2018). For 
instance, P. astreoides growth rate and linear exten-
sion were lowest during the inter-disturbance period 
from 2019 to 2020, when M. cavernosa and S. siderea 
growth rates were high. P. astreoides has an encrust-
ing growth form, which increases its susceptibility to 
overgrowth interactions with macroalgae that in -
crease in cover during periods devoid of major hydro -
dynamic action (Lirman 2000, Mumby et al. 2005). 

Growth rates of M. cavernosa and P. astreoides 
were consistent across all locations studied, while 
S. siderea exhibited slight inshore−offshore varia-
tion. In the Florida Keys, the local climate has been 
suggested to buffer S. siderea from reduced growth 
in nearshore areas during heat stress events (Rippe 
et al. 2018). Our study suggested that S. siderea 
also grew faster at inshore sites in the adjoining 
high-latitude ECA, but 60% of the colonies alive in 
2020 had still shrunk in at least 1 interannual period. 
M. cavernosa and P. astreoides growth rates were 
slightly lower on the inner reef and higher on the 
middle reef, but this is likely largely a function of 
colony size (Pratchett et al. 2015, Dornelas et al. 
2017). Despite accounting for colony size in the 
model, most large M. cavernosa and P. astreoides, 
which experienced the greatest decline in live tissue 
planar area from partial mortality, are found on the 

inner reef. Huston (1985) found M. cavernosa growth 
rates were highest at 16−25 m depth (linear exten-
sion = 0.36 to 1.1 cm yr−1), and in our study, twice as 
many M. cavernosa and P. astreoides colonies died 
on the inner reef as on the outer reef (~18 m depth), 
suggesting there may be some depth-related stress 
resistance (Bongaerts & Smith 2019). No clear pat-
tern in growth rate variation by sub-region was seen 
for any species, reflective of minimal difference in 
latitude within the ECA which may influence changes 
in growth rate (Cooper et al. 2012). 

In conclusion, low net growth rates are primarily 
due to high partial colony mortality, which has fur-
ther resulted in a preponderance of small colonies 
for each of the 3 most abundant coral species in 
the ECA. Maximum growth rates of M. cavernosa, 
P. astreoides and S. siderea in the ECA align with 
growth rates recorded in the tropical western At -
lantic (e.g. Hughes & Jackson 1985, Huston 1985, 
Elahi & Edmunds 2007, Crabbe 2009), but these 
growth rates are rarely sustained long-term. This has 
important implications for natural recovery and as -
sisted recovery via restoration, where the fragmenta-
tion of large colonies and subsequent reattachment 
to maximize growth has become commonplace (Page 
et al. 2018). Our findings suggest that while initial 
growth rates of small or juvenile corals may be high, 
these are rarely sustained due to acute disturbances 
and chronic pressures. Without significant change in 
the environmental conditions, high rates of partial 
mortality will persist, constraining growth and result-
ing in a coral assemblage dominated by small colonies 
with limited recovery capacity. 
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