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1.  INTRODUCTION 

Seasonal changes in community structure and 
habitat use are prevalent in marginal reef systems 
experiencing significant environmental seasonality 
(Ate weberhan et al. 2006, Afeworki et al. 2013). 
Subtropical rocky reefs are subject to considerable 
seasonal environmental variation, as compared to 
more stable tropical reefs (Ferreira et al. 1998, 

Cordeiro et al. 2020), and upwelling events are 
especially important as they can exacerbate sea-
sonal variation. Cold and nutrient-enriched waters 
from upwelling influence tropical and subtropical 
reef environments throughout the globe by sub-
stantially affecting water visibility, temperature 
and primary productivity (Perry & Larcombe 2003). 
Upwelling can influence herbivory in several ways, 
especially affecting the availability and nutritional 
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quality of primary production, but also decreasing 
fish feeding rates due to low water temperature 
(Ferreira et al. 1998, Zemke-White & Clements 
2004, Mendes et al. 2009). Herbivorous fishes can 
compensate for temporal changes in food sources 
(primary producers) by targeting different algal 
species or other benthic sources to satisfy nutritional 
requirements (Horn et al. 1986, Clements & Choat 
1993, Zemke-White & Clements 1999). 

Different techniques have been employed to 
track variation in ecosystem resources and its con-
sequences for nutritional ecology. While dietary 
analysis provides a detailed description of ingested 
food items (Mendes et al. 2018, Pimentel et al. 
2018), results generally reflect scales of hours or 
days. Problems with identifying the ingested food 
items in the guts of some herbivorous fishes, espe-
cially in parrotfishes, can also limit resolution of 
the diet (see Cocheret de  la Morinière et al. 2003, 
Dromard et al. 2015, Clements et al. 2016). The 
complementary use of different approaches such 
as stable isotope analysis provides a broader per-
spective on diet and thus enables a more informed 
view of species’ nutritional ecology and tropho -
dynamic roles (Andrades et al. 2019a, Johnson et 
al. 2020, Grainger et al. 2023). Herbivorous fishes 
are conspicuous inhabitants of tropical and sub-
tropical reef systems in terms of biomass (Choat & 
Clements 1998, Poore et al. 2012, Cordeiro et al. 
2016), and have been the focus of intensive studies 
regarding their effects on benthic communities, 
especially their role as algal consumers (Bellwood 
et al. 2004, Tebbett et al. 2023). However, these 
fishes ingest a variety of items, from macroalgae 
and detritus (Choat et al. 2002) to epilithic and 
endolithic microscopic photoautotrophs (Clements 
et al. 2016, Clements & Choat 2017, Nicholson & 
Clements 2020). Low sea temperature was sug-
gested as a factor limiting the capacity of herbivo-
rous fishes to digest seaweed, i.e. the temperature 
constraint hypothesis (TCH) (Gaines & Lubchenco 
1982, Floeter et al. 2005, Behrens & Lafferty 2007, 
2012, Bennett & Bellwood 2011). The TCH predicts 
that cold water constrains the efficiency of diges-
tion of macroscopic algae by herbivorous fishes, 
inducing a diet shift towards more protein-rich 
food sources (e.g. animal matter) so that species 
can meet nutritional demands (Floeter et al. 2005, 
Behrens & Lafferty 2007, 2012). However, sampling 
over latitudinal gradients has revealed little rela-
tionship between low temperature and digestive 
constraint in temperate herbivorous fishes (Trip et 
al. 2014, 2016, Johnson et al. 2020). 

In Brazil, subtropical rocky reefs occur along ca. 
2000 km of the south and southeastern coasts (Fer-
reira et al. 2004). The southeastern Brazilian coast is 
marked by significant seasonal variations in temper-
ature, including upwelling events that are usually 
more frequent and stronger during spring and sum-
mer. Previous studies on these reefs indicated that 
temperature alone does not explain the seasonal 
variation observed in feeding rates of nominally her-
bivorous fishes (Ferreira et al. 1998), suggesting the 
need to investigate food sources and nutrient assimi-
lation in more detail. Given that herbivores are 
important components of the reef fish fauna in the 
region, we examined seasonal variation in the nutri-
tional ecology of 3 species with different diets and 
food-processing modes on a subtropical rocky reef 
subject to seasonal upwelling. We sought to under-
stand how seasonal variation in sea surface tempera-
ture and associated upwelling events affected the 
nutritional ecology of these species. We used diet 
analysis at 2 magnifications and stable isotope analy-
sis (SIA) to assess fish responses to seasonal varia-
tion. Specifically, we asked (1) do diet and stable iso-
tope signatures of the 3 species vary among species 
and seasons, and (2) how do upwelling events influ-
ence variation in trophic niche? 

2.  MATERIALS AND METHODS 

2.1.  Study area 

Fish and algae collections were carried out for 2 yr 
(April 2015 to June 2017), with sampling being done 
seasonally every 3 mo. Sampling was conducted 
at Arraial do Cabo, southeastern coast of Brazil 
(22° 58’ S, 42° 00’ W), in the state of Rio de Janeiro. 
The region is a multiple-use marine protected area 
and represents a hotspot for biodiversity, harbouring 
both tropical and subtropical biota (Ferreira et al. 
2001, Cordeiro et al. 2016). Seasonal upwelling 
events associated with prevailing NE and N winds 
occur mainly from spring to autumn. Local rocky 
reefs are predominantly covered by a rich epilithic 
algal community and zoanthids, with a veneer of 
sponges, massive corals, fire corals and other sessile 
invertebrates (Cordeiro et al. 2014, Rogers et al. 
2014). Several macroalgae, such as Sargassum, a 
common genus in the diet of some herbivorous fishes 
(Clements & Choat 1997, Mendes et al. 2018), are 
known for their seasonality in Arraial do Cabo 
(Yoneshigue-Valetin & Valentin 1992, Gui maraens et 
al. 2008). 
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2.2.  Water temperature 

Temperature, as a proxy for upwelling occur-
rence, was monitored in situ during the sampling 
period using a HOBO TidbiT v2 temperature logger 
deployed (~6 m depth) at 2 sites (Anequim Bay: 
22° 58’ 49.6” S, 41° 59’ 01.4” W, and Eastern Tip: 
22° 58’ 42.8” S, 41° 58’ 47.4” W) within the sampling 
area. Temperature was registered hourly, and the 
data were pooled to obtain an average for each sea-
son: autumn (March to May), winter (June to Au -
gust), spring (September to November) and summer 
(De cember to February). The occurrence of up -
welling was inferred from recorded temperatures 
<18°C throughout the sampling period (Fig. S1 in 
the Supplement at www.int-res.com/articles/suppl/
m722p125_supp.pdf. We used daily minimum tem-
perature instead of mean because it is a better indi-
cator of upwelling events (Valentin 2001). 

2.3.  Specimen selection and sampling 

We selected 3 species of nominally herbivorous 
reef fishes: doctorfish Acanthurus chirurgus (Bloch, 
1787) (Acanthuridae), endemic grey parrotfish 
Sparisoma axillare (Steindachner, 1878) (Labridae) 
and brassy chub Kyphosus vaigiensis (Quoy & 
Gaimard, 1825) (Kyphosidae). These are abundant 
and widely distributed species along tropical and 
subtropical Brazilian reefs (Ferreira et al. 2004) 
and display distinct diets and food-processing 

modes (Ferreira & Gonçalves 2006, Mendes et al. 
2018). Specimens were collected by spear between 
2 and 8 m depth and immediately preserved on 
ice. We minimised ontogenetic and size-related 
variation in diet and SIA by collecting only adult 
individuals (Table 1). In the laboratory, stomach 
contents (for dietary analysis) and dorsal muscle 
tissue (for SIA) were removed from all specimens. 
As parrotfishes lack a gastric stomach (Clements 
& Bellwood 1988), dietary content was removed 
from the proximal portion of the intestine in S. 
axillare. Stomach contents were preserved in 10% 
formalin, and muscle tissues were frozen, freeze-
dried and ground to powder. Algae samples were 
collected throughout the seasons, concomitant 
with fish sampling, to represent the most abundant 
food items: brown algae (Phaeophyceae) Dictyota 
spp. and Sargassum spp.; red algae (Rho do phyta) 
Geli dium pusillum (Stackhouse) Le Jolis, 1863 and 
Plocamium brasiliense (Greville) M. Howe & W.R. 
Taylor, 1931; and turfs. Turfs in this system consist 
of epilithic filamentous algae and microalgae such 
as dinoflagellates, diatoms and cyanobacteria, a 
complex and heterogeneous matrix also rich in 
detrital components (Ferreira et al. 1998, Connell 
et al. 2014, Mendes et al. 2018). Turfs were 
scraped from the substratum using a spatula and 
stored in Falcon tubes for transport to the labora-
tory. To avoid confounding isotopic signatures, 
samples were washed to remove excess sediment, 
particulate matter and as sociated invertebrates 
and retain only the filamentous and calcareous 
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Family                                  Season        N             TL (mm)                  TW (g)               δ13C (‰)          δ15N (‰)         CR       NR 
  Species                                                                                                                                                                                          
 
Acanthuridae                                                                                                                                                                                   
  Acanthurus chirurgus     Summer      22        309 (262−369)       762 (490−1226)      −18.5 ± 0.5       12.4 ± 0.4       1.91     1.23 
                                            Autumn      17        302 (279−320)          685 (570−805)        −18.6 ± 0.7       12.5 ± 0.4       3.58     1.33 
                                             Winter        17        307 (270−360)       686 (440−1031)      −18.7 ± 0.8       12.3 ± 0.3       2.92     1.70 
                                             Spring        14        279 (235−328)          476 (240−720)        −19.1 ± 1.0       12.1 ± 0.5       3.74     1.74 
Labridae                                                                                                                                                                                          
  Sparisoma axillare           Summer      20        344 (237−500)       772 (258−1610)      −15.9 ± 0.3       10.7 ± 0.3       1.10     1.01 
                                            Autumn      13        340 (277−422)       832 (385−1479)      −16.0 ± 0.2       10.9 ± 0.3       0.49     0.94 
                                             Winter        19        333 (267−450)       619 (267−1280)      −15.9 ± 0.3       10.6 ± 0.4       1.21     1.60 
                                             Spring        13        356 (260−475)       686 (115−1985)      −16.1 ± 0.5       10.9 ± 0.4       1.55     1.74 
Kyphosidae                                                                                                                                                                                     
  Kyphosus vaigiensis        Summer      20        307 (241−359)          510 (260−902)        −16.5 ± 0.9       10.7 ± 0.8       3.13     3.09 
                                            Autumn       6         350 (261−389)       984 (404−1317)      −17.6 ± 0.9       11.9 ± 0.5       2.67     1.43 
                                             Winter        17        274 (190−338)          400 (120−841)        −16.3 ± 1.4       10.4 ± 1.0       4.58     3.55 
                                             Spring        16        275 (177−394)           392 (50−986)         −16.5 ± 1.2       10.6 ± 0.4       4.33     1.53

Table 1. Number (N) of sampled individuals; mean (range) of total length (TL) and total weight (TW); mean ± SE of stable iso-
tope signatures of carbon (δ13C) and nitrogen (δ15N); and the calculated range of variation for both δ13C (CR) and δ15N (NR) for  

each species in each season

https://www.int-res.com/articles/suppl/m722p125_supp.pdf
https://www.int-res.com/articles/suppl/m722p125_supp.pdf
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algae. Turf algae mostly comprised the red cal-
careous Am phiroa spp. and Jania spp. These were 
often associated with filamentous epiphytes (Her-
posiphonia spp., Polysiphonia spp., Bryopsis spp. 
and Clado phora spp.) and cyanobacteria, which 
were re tained for analysis due to their potential 
importance for the nutrition of the study species 
(Clements & Choat 2017, Nicholson & Clements 
2022, 2023). 

For each season, data were pooled across years, 
thereby excluding interannual variation and avoid-
ing single-season bias in describing and charac-
terizing species’ nutritional ecology. Evaluating 
interannual variation was beyond the scope of this 
work. 

2.4.  Characterizing diets 

Grazing acanthurids usually ingest small-sized 
particulate material which is triturated in a gizzard-
like stomach, and parrotfishes grind ingested food 
using a pharyngeal mill. This makes the identifica-
tion of items challenging (Clements et al. 2016). To 
minimise this problem, contents were analysed in 2 
steps (adapted from Choat & Clements 1992). The 
first step (hereafter ‘macro-analysis’) used a stereo-
microscope at 4× magnification for the 3 species. The 
gut content was spread in a Petri dish marked with 
50 equidistant (10 mm) fixed points. The second step 
(hereafter ‘micro-analysis’) aimed to identify items 
ingested by A. chirurgus and S. axillare at 40× maxi-
mum magnification under an optical microscope. 
Micro-analysis was unnecessary for K. vaigiensis, as 
all dietary items could be resolved with the macro-
analysis. The content used in the macro-analysis was 
filtered through a 60 μm mesh, and what passed 
through the mesh was analysed using a microscope 
slide marked with 30 equidistant (5 mm) fixed points. 
For both approaches, items at each marked point 
were identified to the lowest possible taxonomic 
level and used to calculate percentage contribution 
to the whole diet. Identified algae were classified a 
posteriori into functional groups adapted from Ste-
neck & Dethier (1994). Sponge spicules comprised 
~41% of ‘sediment’ in the macro-analysis and ~95% 
in the micro-analysis. No sponge tissue was observed 
in either the macro- or micro-analysis (sediment was 
not detected in K. vaigiensis). Spicules were in -
cluded in the sediment category as they are mostly 
composed of silicate, have no nutritional value and 
were likely ingested as sediment while targeting 
epilithic material. 

2.5.  Stable isotope analysis 

Stable isotope ratios were determined in dry sam-
ples (~0.4 mg), using a Delta V Advantage isotope 
ratio mass spectrometer interfaced with a Conflo IV 
and linked to a Flash 2000 Elemental Analyzer 
(Thermo Scientific). Pee Dee Belemnite carbonate 
and atmospheric nitrogen were used as standard val-
ues for the carbon and nitrogen analyses, respec-
tively. The analytical precisions were ±0.1‰ for δ13C 
and ±0.2‰ for δ15N (triplicate samples of every fifth 
sample). Accuracy was assessed through the analy-
sis of Elemental Microanalysis Protein Standard 
OAS/isotope certified material 114859. Mean recov-
ery values were always ≥95% of the certified value. 
Stable isotope ratios were expressed in δ notation as 
parts per thousand (‰) deviations from the interna-
tional calibration standards. To avoid biased values 
from fish muscle caused by high lipid content, δ13C 
results were corrected following Post et al. (2007) 
when considering lipid-rich tissues (i.e. C:N > 3.5). 
Calcareous material was not acidified to avoid possi-
ble disruption in δ15N signatures, which would affect 
trophic position estimations, and because post-treat-
ment changes in the δ13C signatures tend to be too 
discrete (Ng et al. 2007, Pires-Teixeira et al. 2021) to 
interfere in our inter- and intraspecific comparisons. 

2.6.  Data analysis 

2.6.1.  Water temperature 

Daily minimum temperature data were compared 
among seasons (summer, autumn, winter and spring) 
using a Kruskal-Wallis test followed by Dunn’s multi-
ple comparison test. 

2.6.2.  Dietary analysis 

Percentage contribution of each item was submit-
ted to permutational multivariate analysis of variance 
(PERMANOVA) to determine seasonal dietary differ-
ences within and between species. PERMANOVA 
design was set as a resemblance matrix with Euclid-
ean distance, Type III sum of squares, with residuals 
under a reduced model and 9999 permutations. 
Results from macro- and micro-analyses were com-
pared among seasons using a design with 2 factors: 
‘Season,’ fixed with 4 levels (i.e. summer, autumn, 
winter, spring), and ‘Species,’ fixed with 3 levels (i.e. 
A. chirurgus, S. axillare, K. vaigiensis). Posterior 
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pairwise tests among levels of each factor were per-
formed. PERMANOVA was also used to conduct a 
seasonal comparison for each item comprising the 
diet of each species. This analysis was performed 
separately for each species. 

Principal component analysis (PCA) was performed 
on dietary data using percentage composition of each 
item separately for macro- and micro-analyses to vi-
sualize and understand seasonal and interspecific di-
etary variation. In addition, we calculated the Shoener 
index (Wallace 1981) to verify possible dietary 
overlap between each pair of species within seasons 
and between each pair of seasons for each species. 

2.6.3.  Isotopic niche analysis 

The isotopic signature of each fish species and 
algal group was evaluated using Stable Isotope 
Bayesian Ellipses in R (SIBER). Bayesian ellipses 
(95% credibility interval) were calculated to describe 
isotopic variation among seasons. We also used 
SIBER to calculate the overall range (variation) in 
δ13C and δ15N signatures (CR and NR, respectively) 
(Layman et al. 2007). Isotopic composition (δ13C and 
δ15N concentrations, separately) was tested among 
seasons with PERMANOVA using the same design 
used for dietary analysis. 

PERMANOVAs were performed in Primer 6 with 
PERMANOVA+ add-on (Anderson et al. 2008). All 
other analyses were conducted in the R environment 
(R Core Team 2020) using the packages ‘stats’ (R 
Core Team 2020) and ‘FSA’ (Ogle et al. 2019) for sea-
water temperature tests; ‘SIBER’ (Jackson et al. 2011) 
for SIA; ‘stats’, ‘ggplot2’ (Wickham 2016) and ‘ggfor-
tify’ (Tang et al. 2016) for PCA; and ‘spaa’ (Zhang 
2016) for the Schoener overlap index. 

3.  RESULTS 

3.1.  Water temperature 

Temperatures below 18°C are commonly used as a 
proxy for identifying upwelling occurrence (Valentin 
2001) and were recorded in all seasons (Fig. S1). The 
lowest minimum temperatures occurred from spring 
(15.50°C) to summer (15.50°C) as expected, but also 
in autumn (15.51°C), with temperatures <18°C being 
less frequent during winter (2 occurrences: 17.82°C 
and 17.96°C). The average minimum temperature 
was similar across the seasons (summer = 20.84°C; 
autumn = 21.58°C; winter = 21.11°C; spring = 20.58°C). 

The minimum temperatures registered varied signif-
icantly among seasons (Kruskal-Wallis, p = 0.01). 

3.2.  Seasonal variation in diet 

We collected and analysed the gut contents of 194 
individuals (Table 1). Diets of all 3 species differed 
from each other (PERMANOVA; macro-analysis: 
pseudo-F = 105.58, p = 0.0001; micro-analysis: pseudo-
F = 66.35, p = 0.001) and seasonally (PERMANOVA, 
macro-analysis: pseudo-F = 15.65, p = 0.0001; micro-
analysis: pseudo-F = 255.26, p = 0.002; Tables S1 & 
S2), but with substantial overlap (see Figs. 1 & 2). 
Detritus was a common component in the diets of 
Acanthurus chirurgus and Sparisoma axillare, al -
though it should be noted that its composition may 
differ between species. Grinding by the pharyngeal 
jaws of parrotfishes reduces ingested food, whereas 
A. chirurgus relies on a gizzard-like muscular stom-
ach to grind food. Consequently, the term ‘detritus’ 
used in our analysis refers to an amorphous organic 
material that could have been ingested or produced 
by mechanical trituration. 

PCA for macro-analysis of A. chirurgus showed that 
PC1 (which explained 47.92% of variation) was posi-
tively associated with red calcareous algae, particu-
larly in autumn, while on PC2, invertebrates and red 
filamentous algae were opposed to red corticated al-
gae (Fig. 1A). Mostly, diet varied seasonally except 
when comparing summer vs. autumn (PERMANOVA: 
pseudo-t = 1.721, p = 0.0512; Table S3). For S. axillare, 
PC1 (81.4% of variation) showed a trend from detritus 
to red calcareous algae. PC2 was negatively associated 
with red filamentous, red corticated and red crustose 
calcareous algae (Fig. 1B). For Kyphosus vaigiensis, 
PC1 (44.65% of variation) was negatively associated 
with brown leathery algae (i.e. Sargassum spp.), while 
PC2 contrasted brown foliose algae (i.e. Dictyota spp.) 
to red corticated algae (Fig. 1C). In both S. axillare and 
K. vaigiensis, winter diet clearly differed from that in 
all other seasons (Fig. 1; Table S3). 

The first axis of the micro-analysis PCA (which ex-
plained 58.25% of variation) for A. chirurgus showed a 
trend from diatoms to detritus and sediment. PC2 con-
trasted cyanobacteria and detritus from sediment and 
mostly characterized the diet in winter (Fig. 2A). Sea-
sonal differences were only found between consecutive 
seasons, but not between spring and summer (PERM-
ANOVA: pseudo-t = 1.338, p = 0.152; Table S3). For 
S. axillare, PC1 (51.91% of variation) trended from 
 sediment to cyanobacteria and diatoms, especially in 
winter. PC2 was associated with detritus. Together 
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with sediment, these 2 items were respon-
sible for the distinctiveness of summer 
diet (Fig. 2B). Significant differences in the 
diet micro-analysis of S. axillare were 
found be tween winter and the other sea-
sons, similarly to the macro-analysis (PER
MANOVA: winter vs. summer − pseudo-t = 
3.207, p = 0.0001; winter vs. autumn − 
pseudo-t = 2.704, p = 0.0009; winter vs. 
spring − pseudo-t = 2.350, p = 0.004; Fig. 2; 
Table S3). 

In all seasons, the main macro-items in 
A. chirurgus diet were red corticated and 
red calcareous articulated algae (Fig. 3A; 
Fig. S2). While these same algae repre-
sented at least 10% of the diet of S. axil-
lare year-round (Fig. S3), the main item 
consumed by this parrotfish was detritus 
(Fig. 3B). Micro-material in A. chirurgus 
mainly comprised dia toms, while sedi-
ments dominated in S. axillare. K. vai -
giensis mainly ingested brown algae 
(Fig. 3C) throughout the year. However, 
during winter, Sargassum spp. was ab -
sent and replaced by brown foliose Dic -
tyota spp. and red corticated algae 
(Fig. S4). Also during winter, 3 out of the 
17 individuals of K. vaigiensis sampled in 
that season in gested a disproportionally 
high (>80%) amount of Copepoda. 

Dietary overlap was identified among 
seasons and species (Table S4). In A. chi -
rurgus and S. axillare, all seasonal com-
parisons had Schoener values above 0.71, 
ranging from 0.72 to 0.79 in the former 
and 0.77 to 0.91 in the latter species. 
Overlap was more variable in K. vaigien-
sis (Schoener = 0.31−0.84). For all 3 spe-
cies, lowest seasonal overlaps were be -
tween winter and any other seasons 
(except be tween winter and spring in A. 
chi rurgus; Table S4). Within seasons, 
overlap was consistently low (≤0.081) 
between S. axillare and K. vaigiensis and 
ranged from 0.39 to 0.43 between A. chi -
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rurgus and S. axillare. Dietary overlap between A. 
chirurgus and. K. vaigiensis varied seasonally from 
0.15−0.16 in summer and autumn to 0.31−0.32 in 
winter and spring (Fig. S4). 

3.3.  Seasonal variation in isotopic niche 

Stable isotope signatures of the 3 species showed 
only small variation among seasons (Table 1; Table S5). 
In A. chirurgus, δ15N in spring differed from winter, 
and δ13C differed between summer and autumn. No 
seasonal differences were found in S. axillare in either 

δ15N or δ13C. In K. vaigiensis, δ15N sig-
nature was higher (11.9‰) and differed 
(PERMANOVA, p < 0.05) between au-
tumn and other seasons (PERM-
ANOVA: au tumn vs. summer − pseudo-
t = 3.656, p = 0.002; autumn vs. winter − 
pseudo-t = 3.339, p = 0.003; autumn vs. 
spring − pseudo-t = 5.648, p = 0.0003; 
range δ15N: 10.4 − 10.7‰; Table 1; 
Table S5). The isotopic standard ellipse 
area corrected for small sample size 
(SEAc ‰2; niche breadth) varied among 
seasons, but with high overlap (Fig. 4). 
Isotopic niche in Acanthurus chirurgus 
and S. axillare was broader in spring 
and restricted in summer (Fig. 4A,B), 
while in K. vaigiensis, the isotopic niche 
was broader in winter and more re-
stricted in autumn (Fig. 4C). δ15N range 
(NR) and δ13C range (CR) varied sea-
sonally in each species (Table 1). NR in 
A. chirurgus in creased from summer to 
spring, while CR oscillated throughout 
the year, being higher in spring and 
lower in summer. CR and NR were 
lower in S. axillare, being lower in au-
tumn and higher in spring, while NR 
was also lower in autumn but higher in 
winter. CR and NR in K. vaigiensis were 
higher in winter and lower in autumn. 

3.4.  Stable isotope signatures of 
primary producers 

Differences in isotopic signatures 
of primary producers were more evi-
dent for carbon (δ13C) than for nitro-
gen (δ15N; Table 2, Fig. 5). Red algae 
(Gelidium pusilum and Plocamium bra -

siliense) were 13C-depleted, turf was 13C-enriched, and 
brown algae (Sargassum spp. and Dictyota spp.) 
were intermediate (Fig. 5). While isotopic composi-
tion of species (including ‘turf’) differed from each 
other (Table S6), no overall effect of season on com-
position was de tected. Differences in δ13C and/or δ15N 
were re stricted to spring vs. autumn G. pusillum 
(PERMANOVA: pseudo-t = 11.26, p = 0.035) and to 
summer vs. spring and vs. autumn Dictyota spp. 
(PERMANOVA: pseudo-t = 5.676, p = 0.001, and 
pseudo-t = 3.343, p = 0.003, respectively) (Table S7). 
No seasonal variation was detected within P. brasili -
ense, Sargassum spp. and turf. 
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3.5.  Interspecific variation 

Diet differed among species in all seasons in both 
macro- (PERMANOVA: pseudo-F = 105.58, p = 0.0001) 
and micro-analyses (PERMANOVA: pseudo-F = 66.35, 

p = 0.0001) (Tables S1 & S8) except for overlap 
between A. chirurgus and K. vaigiensis in winter. 
PCA variation clearly separated species based on 
diet (Fig. 6). The first principal component (PC1) 
explained most of the variation (summer: 39.97%; 
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autumn: 49.66%; winter: 55.84%; and spring: 49.5%), 
and involved a trend from detritus in S. axillare (pos-
itively influencing variation in summer and autumn, 
but negatively in winter and spring) to brown algae 
(either leathery or foliose, the latter mostly in winter) 
in K. vaigiensis, or red algae (calcareous articulated 
or corticated) in A. chirurgus (Fig. 6). Information 
provided by the second axis (PC2, summer: 27.87%; 
autumn: 31.33%; winter: 17.05%; and spring: 
22.41%) was essentially restricted to further differ-
entiating A. chirurgus from the other species based 
on the trend of articulated red calcareous algae (pos-

itively associated in summer, autumn and spring) or 
red corticated algae (winter). 

The PCA on dietary micro-analysis revealed clear 
dietary partitioning with little overlap between A. 
chirurgus and S. axillare within seasons (Fig. 7). PC1 
explained most variation (summer: 69.46%; autumn: 
59.93%; winter: 51.42%; spring: 62.78%) with a 
trend of diatoms characterizing A. chirurgus, while 
sediment (plus green filamentous algae in winter) 
characterized S. axillare. PC2 in summer (17.48% of 
variation) was mostly positively influenced by detri-
tus, and negatively associated with it in autumn and 
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                                              Summer                Autumn                  Winter                     Spring 
                                                 δ13C             δ15N             δ13C             δ15N             δ13C             δ15N               δ13C             δ15N 
 
Foliose brown algae 
Dictyota spp.                      −16.8 ± 1.1    6.2 ± 0.4    −18.7 ± 1.5     6.5 ± 0.1            −                  −            −20.0 ± 1.1    6.5 ± 0.3 

Leathery brown algae 
Sargassum spp.                  −15.2 ± 1.3    6.5 ± 0.2    −18.0 ± 3.0     6.1 ± 0.1            −                  −                    −                   − 

Corticated red algae 
Plocamium brasiliense      −29.1 ± 1.1    6.7 ± 0.2            −                   −          −26.4 ± 2.9    6.9 ± 0.2              −                   − 
Gelidium pusillum                     −                  −          −25.9 ± 0.8     6.5 ± 0.3            −                  −            −30.3 ± 0.4    6.3 ± 0.1 

Turf                                     −11.6 ± 3.3    6.3 ± 0.6     −9.5 ± 1.0     6.6 ± 0.2     −9.5 ± 1.0    6.9 ± 0.4       −8.6 ± 1.2    6.2 ± 0.4

Table 2. Mean ± SE of the stable isotope ratios (‰) of carbon (δ13C) and nitrogen (δ15N) for sampled algae in each season.  
‘−’: species not encountered

6.0

6.5

7.0

-30 -25 -20 -15 -10

Algae species

Dictyota spp.
Gelidium pusillum

Plocamium brasiliense

Sargassum spp.
Turf

Seasons

Autumn
Spring
Summer
Winter

δ15
N

 ‰

δ13C ‰

Fig. 5. δ13C and δ15N bivariate space with mean (symbols) and standard deviation (error bars) illustrating the isotopic compo-
sition of primary producers sampled in each season: corticated red algae (Gelidium pusillum and Plocamium brasiliense),  

foliose brown algae (Dictyota spp.), leathery brown algae (Sargassum spp.) and turf
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spring (26.93 and 19.98% of variation, respectively) 
(Fig. 7). In winter, PC2 (29.73% of variation) was pos-
itively associated with sediment, while negatively 
associated with cyanobacteria and red filamentous 
algae. 

During the year, a distinct subset of food items was 
important for each species (Fig. 8), indicating strong 
diet partitioning: red calcareous articulated algae in 
A. chirurgus, detritus in S. axillare and brown and 
red corticated algae in K. vaigiensis (Fig. 8). Diatoms 
and sediment also characterized the diets of A. 
chirurgus and S. axillare, respectively. 

The widest isotopic niche was observed in K. vai -
giensis, and the narrowest in S. axillare, with a large 
overlap between them. This suggests that S. axillare 
had a diet based on less isotopically variable items 
than K. vaigiensis (Fig. 9) despite feeding at similar 
δ13C and δ15N isotopic levels. A. chirurgus displayed 

a 13C-depleted and 15N-enriched signature com-
pared to S. axillare (Fig. 9) and, at least in autumn, to 
K. vaigiensis. This might be a consequence of the 
higher intake of corticated red algae by K. vaigiensis 
(Table 2, Fig. 5). 

4.  DISCUSSION 

We used diet and stable isotope analyses to inves-
tigate seasonal shifts in the nutritional ecology of 3 
nominally herbivorous fishes in a subtropical rocky 
reef affected by upwelling events. We found up -
welling effects on water temperature in all seasons, 
but less frequently in winter. Locally, upwelling is 
typically stronger during spring and summer (Valen -
tin 2001) and is an important driver of seasonal 
changes in our study area (Yoneshigue-Valetin & 
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Valentin 1992, Soares et al. 2014). Despite these sub-
tropical reefs being constantly affected by temporal 
changes in water temperature influencing metabolic 
rates (Ferreira et al. 1998), a continuous nutrient 
input from upwelling events drove the low variation 
in the nutritional ecology of the nominally herbivo-
rous fishes. Diet of all species varied across seasons, 
while stable isotope signatures mostly remained sta-
ble, suggesting that species switch among isotopi-
cally similar foods to meet their nutritional demands, 
as seen for other herbivorous fishes worldwide (Horn 
1989, Choat & Clements 1993, Clements & Choat 
1997, Moran & Clements 2002, Raubenheimer et al. 
2005, Clements et al. 2009). 

Seasonal variation in isotopic signatures was only 
observed in spring in A. chirurgus and in autumn in 
K. vaigiensis. Diet variation in K. vaigiensis was not 
reflected in isotopic variation, indicating a balance in 
the ingestion of isotopically different food sources to 

meet nutritional requirements or feeding on different 
food items with similar isotopic signatures. During up -
welling events, shallow waters increase their nitrate 
concentrations, and therefore nitrogen fractiona-
tion, leading to changes in δ15N of photoautotrophic 
organisms (e.g. algae) (Bradley et al. 2016). Isotope 
δ15N values of primary producers in Arraial do Cabo 
are 50 to >100% higher than those in non-upwelling 
locations along the Brazilian coast (An drades et al. 
2019b, G. Cardozo-Ferreira et al. unpubl. data). How -
ever, the almost-constant occurrence of up welling 
events homogenised the isotopic signatures of both 
primary producers and consumers. Potential effects 
of nutrient-rich cold waters on fish nutritional ecol-
ogy include the nitrogen enrichment and/or avail-
ability of their food. Our results on the δ15N signa-
tures of food sources (ranging from 6.1 to 6.9‰) were 
similar to those previously found for macroalgae 
(6.18‰), suspended particulate matter (6.28−6.5‰) 

136

Acanthurus chirurgus Sparisoma axillare

Detritus

Sediment

Invertebrates

Diatoms
Cyanobacteria

Red folioseRed filamentous

Green foliose
Green filamentous

Brown foliose Brown filamentous
Brown corticated

0.0

0.2

0.4

0.6

0.8

−0.2 −0.1 0.0 0.1 0.2
PC1 (69.46%)

PC
2 

(1
7.

48
%

)

Detritus

Sediment

Invertebrates

Diatoms

Cyanobacteria
Red foliose

Red filamentous

Green foliose
Green filamentous

Brown foliose
Brown filamentous

Brown corticated

−0.4

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2
PC1 (59.93%)

PC
2 

(2
6.

93
%

)

Detritus

Sediment

Invertebrates

Diatoms

Cyanobacteria

Red foliose

Red filamentous

Green folioseGreen filamentous Brown foliose

Brown filamentous
Brown corticated

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2
PC1 (51.42%)

PC
2 

(2
9.

73
%

)

Detritus

Sediment

Invertebrates

Diatoms

Cyanobacteria Red foliose
Red filamentous

Green foliose
Brown foliose

Brown filamentousBrown corticated

−0.4

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2
PC1 (62.78%)

PC
2 

(1
9.

98
%

)

Detr

Invertebe r

Red fiff

G
Green filamenilfil

Brroown foliosee B

Cyanobacterriaiaiaai
Red folioseololi

osee

Brown filamentouss
orticated

filamentousffi uous

GreenGGrGGr folioolol
ntous

osee B

Detritus

Inveerrtebratesss

CyanCyay
Red foliosese

Red filamentousoo

Green Gr foliose
G

Brown folioseseGGGG
BrBroown filamentous

Brown corticatede

bacteria
reen filamentous

DetrDetr

Red filamentous

Green filamentous

Brown filamen
Brown cortica

ertebratesrates

yanobacteee

Red folioseRed fo
reen foliose

rown foliose
ritusususi

InveI
RR

GrGG
Bro

ntousou
atedddddddtedd

nvertebratesve
Red folioseeed

wn foliosewn folio

own corticatedwwn

Green filamentous

Detr

InInI
Cyanobacteria

Red filamentousmento
Green foli

Br

Brown filamentous
R

ussBroB
nn

i
r
n
R
o

GrG

A) B)

C) D)

Fig. 7. Comparison of dietary micro-analysis among study species Acanthurus chirurgus and Sparisoma axillare within each 
season: (A) summer, (B) autumn, (C) winter and (D) spring. Dots represent the individual dietary composition in each season 
(principal component analysis, PCA). Grey loadings labels depict items with lower influence (eigenvalues < 0.100) on both  

PC1 and PC2 in differentiating species regarding their diet



Cardozo-Ferreira et al.: Seasonal variation in herbivore nutritional ecology

and sediment organic matter (6.44−7.14‰) at the 
same location (Soares et al. 2014), highlighting the 
almost constant presence of upwelling-derived nutri-
ents. Whether temperature variation was insufficient 
to affect herbivore diets and isotopic signatures or 
the yearlong stability of species’ nutritional ecology 
is a product of adaptation to cope with lower water 

temperatures requires further work. It is important to 
acknowledge that temperature alone cannot explain 
the site-specific variation in the nutritional ecology of 
herbivorous reef fish. Although the present study 
focused on the impacts of temperature arising from 
seasonal patterns and episodic upwelling events, the 
potential but unknown influence of primary produc-
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tivity variation is acknowledged (Huey & Kingsolver 
2019, Vinton & Vasseur 2022). 

K. vaigiensis mainly selected Sargassum spp., ex -
cept during winter, when these annual algae are vir-
tually absent (Yoneshigue-Valetin & Valentin 1992, 
Guimaraens et al. 2008, Cordeiro et al. 2020). In New 
Zealand, the algivorous Odax pullus (Labridae) shifts 
its diet seasonally, varying the ingested proportions 
of thallus and reproductive structures of brown algae 
in response to phenological shifts (Clements & Choat 

1993, Johnson et al. 2017). However, such structures 
were not found in the gut contents of either K. 
vaigiensis in the present study, or K. sydneyanus in 
New Zealand (Moran & Clements 2002). During win-
ter, K. vaigiensis consumed a wider variety of food 
items, replacing Sargassum spp. with Dictyota spp., 
and ingesting red corticated algae such as Plo-
camium brasiliense, Gelidiella spp. and Gelidium 
pusillum. A similar pattern of dietary supplementa-
tion with red algae during winter was also observed 
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for K. bigibbus in Japan (Yatsuya et al. 2015). This 
resulted in a wider isotopic niche in K. vaigiensis dur-
ing winter and, consequently, in a higher overlap of 
isotopic niche with the other 2 fish species. The 
enriched δ15N values during autumn might indicate 
some seasonal variation in diet of K. vaigiensis, as it 
ingested a higher proportion of green filamentous 
algae which usually display higher δ15N signatures 
than other macroalgae (Abrantes et al. 2013, Pinheiro 
et al. 2017). As the isotopic signatures of our sampled 
algae species differed mainly in δ13C, we expected to 
see greater variation in species’ δ13C signatures 
while feeding on a greater variety of algal taxa. K. 
vaigiensis, for example, displayed a greater range of 
δ13C variation (CR) in winter and spring (CR-summer 
= 3.1‰; CR-autumn = 2.7‰; CR-winter = 4.6‰; CR-
spring = 4.3‰), when this species ingested similar 
amounts of red and brown algae. A significant inges-
tion of invertebrates in winter by K. vaigiensis 
resulted in a greater range of δ15N variation (NR) in 
that season (NR-summer = 3.1‰; NR-autumn = 1.4‰; 
NR-winter = 3.6‰; NR-spring = 1.5‰), as its diet 

comprised a mixture of isotopically different sources. 
However, such higher ingestion occurred in 3 out of 
the 17 individuals sampled during winter, coupled 
with other algal taxa that were eaten by Kyphosus in 
winter because Sargassum is unavailable, reflected 
in the increased NR. The prediction of the TCH that 
lower temperatures would lead to increased feeding 
on nitrogen-rich animal sources (i.e. invertebrates) 
was not supported, as temperature during winter was 
higher than in the other seasons. Thus, the interac-
tion between food availability and temperature bet-
ter explains the variations in the species’ nutritional 
ecology than solely temperature (Theus et al. 2022, 
Vinton & Vasseur 2022). 

The diet of Sparisoma axillare was largely domi-
nated by detritus and calcareous articulate algae, 
conspicuous components that, along with the associ-
ated epiphytic filamentous algae and microalgae 
such as dinoflagellates, diatoms and cyanobacteria, 
form the turf assemblage in the study region (Fer-
reira et al. 1998, Mendes et al. 2018). Filamentous 
turf forms a complex and spatially heterogeneous 
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assemblage with detrital components that contribute 
to the nutrition of grazing fishes (Choat 1991, Cross-
man et al. 2001, Connell et al. 2014). Detritus and 
cyanobacteria were both important in the diet of S. 
axillare, as well as sediment (which is not a nutri-
tional source, except when it contains epilithic or 
endolithic microorganisms). The observation of sponge 
spicules, but not tissues, in S. axillare gut contents 
suggests incidental ingestion while targeting epi -
lithic photoautotrophic microorganisms (Clements et 
al. 2016). We noted a high abundance of tiny sponges 
within turf in our study area (pers. obs.). The impor-
tance of sponges as a source of nutrients for marine 
environments is well established (de Goeij et al. 
2013, McMurray et al. 2018). Sponges may support or 
contain high densities of cyanobacteria and zooxan-
thellae (Patten et al. 2011, Easson & Thacker 2014), 
i.e. nutrient-rich items known to be a target for 
parrot fishes (Clements et al. 2016, Clements & Choat 
2017, Nicholson & Clements 2020). While spongivory 
has previously been recorded for parrotfishes in 
Brazil (Pereira et al. 2016) and the Caribbean (Burke -
pile et al. 2019, Wulff 2021), the full extent of their 
nutritional potential is yet to be determined. 

The red calcareous articulated algae in the diet of 
A. chirurgus decreased from summer to spring while 
the isotopic niche increased correspondingly. As cal-
careous articulated algae contain high amounts of 
inorganic carbon and as a result are considered 
nutritionally poorer than other red algae, nutrients 
obtained by fishes from these algae are possibly 
associated with epiphytic or endolithic filamentous 
algae and microscopic photoautotrophs commonly 
colonizing this living substrate (Nicholson & Cle -
ments 2020). Although we did not detect any sea-
sonal variation in the diet of A. chirurgus in the pro-
portion of filamentous epiphytes, seasonal variation 
in the composition of turfs in Arraial do Cabo 
remains to be  tested and could reveal important 
details on its availability for herbivorous reef fishes. 
Detritus was frequently observed in the diet of A. 
chirurgus (Ferreira & Gonçalves 2006, Dromard et al. 
2015, Mendes et al. 2018). However, this category 
substantially differs in composition between for A. 
chirurgus and S. axillare. Grinding by the pharyn-
geal jaws of parrotfishes reduces ingested food into a 
fine, whitish mass, that also includes the remains of 
crustose coralline algae ingested while targeting 
epilithic and endolithic photoautotrophic organisms 
(Clements et al. 2016, Nicholson & Clements 2020). 
The micro-analysis revealed that the detrital com -
ponent of S. axillare intestinal content comprises 
sediment (and non-nutritious sponge spicules), cyano-

bacteria, diatoms, and some green and red fila -
mentous algae. On the other hand, A. chirurgus relies 
on a gizzard-like muscular stomach to triturate food. 
The detritus observed in the stomach contents of A. 
chirurgus had a more dense and greyish aspect and 
comprised mainly diatoms. S. axillare and A. chirur-
gus are syntopic (Cordeiro et al. 2016) and feed 
within the same habitats (Francini-Filho et al. 2010) 
yet appear to target different food resources (Mendes 
et al. 2018). Mendes et al. (2018) reported detritus-
rich diets in both A. chirurgus and S. axillare that 
nonetheless differed in C:N ratio. We found a higher 
proportion of detritus in S. axillare than in A. chirur-
gus, and the greater proportion of cyanobacteria we 
found in the gut contents of S. axillare supports the 
nitrogen-richer dietary profile of this species (Mendes 
et al. 2018). 

Diet studies based on feeding behaviour tend to 
group herbivorous grazing species into broad func-
tional groups, an approach leading to simplistic or 
superficial views of the trophic role played by these 
species in their environments. Describing dietary 
preference based solely on visual observations (i.e. 
using feeding behaviour as a proxy for trophic niche) 
fails to resolve on the taxonomic composition the 
items being ingested, digested and assimilated by 
grazing fishes, and can thus fail to detect trophic 
niche partitioning among coexisting species (Kent & 
Sherry 2020). Recent studies revealed a high level 
of  niche partitioning even over fine spatial scales 
among Indo-Pacific parrotfishes (Nicholson & Cle -
ments 2020, 2021, 2023), highlighting that trophic 
diversification in parrotfish classification goes beyond 
the functional ‘scraper’ and ‘excavator’ categories. 
For example, S. rubripinne is reported to be a macro-
algal browser based on its feeding behaviour in the 
Caribbean (e.g. McAfee & Morgan 1996, Adam et al. 
2015, 2018, Duran et al. 2019), while its gut contents 
appear mainly composed of algae, ‘unidentified 
material’ and sediment, and it differs in isotopic sig-
nature from syntopic surgeonfishes (Dromard et al. 
2015). Our macro- and micro-analysis of diet in S. 
axillare, the Brazilian sister-species of S. rubripinne, 
revealed considerable proportions of protein-rich 
foods other than macroalgae, especially cyanobac-
teria and other microscopic photoautotrophs (see also 
Table 3 in Mendes et al. 2018). 

Resolving which food sources are ingested, di -
gested and assimilated requires the use of comple-
mentary tools (Andrades et al. 2019a, Grainger et al. 
2023). Combining our 2-level resolution approach to 
diet with SIA revealed a high degree of partitioning 
(on a multi-niche basis) between A. chirurgus and S. 
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axillare, usually grouped into the same functional 
and trophic groups. However, additional methods, 
such as compound-specific stable isotope analysis 
(CSIA) and fatty acid analysis, could provide greater 
detail into the nutritional ecology of these nominally 
herbivorous fishes. 

The TCH predicts that marine herbivorous fishes 
are largely absent from temperate and polar areas 
because they cannot meet their energetic demands 
in cold water due to a physiological constraint on 
algal digestion (Gaines & Lubchenco 1982, Floeter et 
al. 2005). Our evaluation of the nutritional ecology of 
3 species differing in diet, food-processing modes 
and phylogenetic affinities found no support for con-
straints on digestion driven by low temperature. This 
adds the mounting evidence that temperature does 
not directly influence digestive processes in ecto-
therms (Trip et al. 2014, 2016, Johnson et al. 2020). 
Future studies should also focus on evaluating the 
nutritional ecology of nominally herbivorous fishes 
over larger temperature and/or latitudinal gradients, 
making use of complementary methods such as SIA, 
fatty acids and CSIA. This combination will certainly 
provide more refined details on dietary and isotopic 
niches, and a better understanding of how fishes 
cope with environmental fluctuations while meeting 
nutritional demands. 
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