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1.  INTRODUCTION 

The Humboldt Current System (HCS) is one of the 
most productive regions in the world’s oceans and 
plays an important role in the ocean’s carbon cycle 
(Carr 2002, Vargas & González 2004). Along the 
coast of northern-central Peru, upwelling is strong 
and occurs permanently throughout the year (Mon-
tecino & Lange 2009). High production rates caused 
by the strong upwelling support the world’s largest 
single-species fishery on Peruvian anchovy off Peru 
(Bert rand et al. 2004, Chavez et al. 2008). Copepods 
typically comprise between ~70 and 90% of the 
meso zoo plankton community in terms of abundance 
in coastal upwelling systems (Hansen et al. 2005, 

Criales-Hernández et al. 2008) and may play a cru-
cial role in the cycling of organic matter, e.g. via 
molted exoskeletons, fecal pellets and respiration pro-
cesses. Respiration rates are an indicator of a species’ 
metabolic activity and provide robust as sess ments 
of metabolic demands and energy expenditures 
(Ikeda et al. 2000, Brown et al. 2004, Hernández-
León & Ikeda 2005a). Additionally, oxygen con-
sumption rates are commonly used to calculate in -
gestion rates by applying an energy budget ap -
proach, with an assumed respiratory quotient (RQ) 
as well as assumed efficiencies for growth and as -
similation (Pakhomov et al. 1999, Ikeda et al. 2000, 
Hernández-León & Ikeda 2005a). Species-specific 
information on respiration and ingestion rates of 
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copepods in the HCS off Peru and Chile is still lim-
ited (Dagg et al. 1980, Castro et al. 1991, Vargas & 
González 2004). For the calculation of realistic car-
bon budgets of the HCS, additional data on meta-
bolic demands and carbon consumption of dominant 
copepod species are needed. Furthermore, to calcu-
late the contribution of different copepod species to 
carbon export fluxes, information on their abun-
dance and biomass distribution as well as species-
specific vertical migration behavior is crucial. 

The active transport of carbon by species that 
undergo diel vertical migration (DVM) and the pas-
sive transport of sinking particles such as fecal pel-
lets are the 2 major pathways for zooplankton-
mediated carbon export from the surface to deeper 
layers of the ocean (Longhurst et al. 1990, Steinberg 
et al. 2008). Diel vertical migrants feed at the sur-
face during the night and descend to deeper layers 
during daytime, where a certain amount of the food 
is defecated, respired and excreted. The global 
average of active carbon export by migrating zoo-
plankton is only 10%, while passive export accounts 
for 70% of the total biological carbon pump export 
(Nowicki et al. 2022). However, active flux can 
locally dominate or reach magnitudes similar to 
those of passive fluxes (Steinberg & Landry 2017), 
especially in productive regions such as the Canary 
Current (Hernández-León et al. 2019). The passive 
export flux at 100 m in the HCS off Chile (González 
et al. 2000, 2007) and the Southern California Bight 
(Landry et al. 1994) as well as in oligotrophic oce -
anic regions in the Pacific and Atlantic (Boyd et al. 
2008) mostly consists of fecal material of zooplank-
ton. In addition, appendicularian houses and car-
casses can also constitute an important component 
of passive fluxes (Vargas et al. 2002, Alldredge 
2005). The downward carbon flux mediated by zoo-
plankton can be altered in regions with an oxygen 
minimum zone (OMZ) since low oxygen levels in 
the water column influence the vertical distribution 
and DVM behavior of zooplankton species (Judkins 
1980, Escribano 2006, Kiko & Hauss 2019). 

The OMZ in the HCS is much more pronounced in 
its vertical extent and low oxygen levels compared to 
other eastern boundary upwelling systems, e.g. the 
Benguela and Canary Currents (Chavez & Messié 
2009). Along the Peruvian coast, an almost anoxic 
core expands from ~50−100 m down to 500−600 m 
(Fuenzalida et al. 2009). Due to the presence of this 
intense OMZ that extends from very shallow depths, 
many prevailing species such as the copepods Cala -
nus chilensis and Centropages brachiatus re main in 
the upper 50−60 m during day and night (Boyd et al. 

1980, Escribano & Hidalgo 2000, Criales-Hernández 
et al. 2008, Morales et al. 2010, Schukat et al. 2021). 
In contrast, large-scale migrations from the surface 
layer into the OMZ to depths below 200 m are per-
formed by the larger-sized copepod Eucalanus iner-
mis (Tutasi & Escribano 2020) and several euphausiid 
species such as Euphausia mucronata and Nemato -
scelis gracilis (Antezana 2009). Vertical distribution 
patterns of E. inermis are variable, including normal 
and inverse DVM from above 100 m to below 300 or 
500 m (Tutasi & Escribano 2020) or smaller-scale 
migrations (<100 m distance) within the OMZ 
(Hidalgo et al. 2005, Escribano 2006). Nevertheless, 
this species potentially contributes to the active car-
bon flux by its migrations from the surface into the 
OMZ. In contrast, the non-migrating copepod com-
munity can contribute to passive fluxes out of the sur-
face layer via fecal pellets and/or to the remineraliza-
tion of organic carbon, which may fuel omnivorous−
detritivorous feeding and the microbial loop in 
 surface layers. 

Small copepods of the families Oithonidae, On -
cae idae, Paracalanidae and Acartiidae are highly 
abundant in the HCS but larger species such as C. 
chilensis, Calanoides patagoniensis, E. inermis and 
C. brachiatus also frequently occur (Boyd & Smith 
1983, Peterson et al. 1988, Escribano & Hidalgo 
2000, Castro et al. 2007). While several studies from 
the HCS off Chile have addressed the role of cope-
pod communities in carbon budgets and export 
fluxes (González et al. 2000, Grunewald et al. 2002, 
Vargas & González 2004, Tutasi & Escribano 2020), 
little is known about their contribution to the carbon 
flow in the productive upwelling region off Peru 
(Dagg et al. 1980). 

The objective of this study was to assess the abun-
dance, biomass and respiration rates of dominant 
copepod species in the northern HCS off Peru during 
December 2018−January 2019 and to estimate their 
carbon ingestion and fecal pellet production (eges-
tion) rates in the upper 1000 m. A broad regional 
range, from 8.5 to 16° S, was covered during this 
study, as we aimed to identify the key species con-
tributing to the carbon flow from north to south for 
shelf and offshore regions off Peru. Recent studies 
have revealed the vital importance of small copepods 
to carbon budgets and export fluxes (Roura et al. 
2018, Koski et al. 2020, Bode-Dalby et al. 2022). 
Hence, besides the dominant medium- to larger-
sized copepod species, bulk samples of small-sized 
copepods were considered during this study to better 
understand the role of both size classes in the carbon 
cycle of the highly productive northern HCS off Peru. 
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2.  MATERIALS AND METHODS 

2.1.  Sampling 

Copepods were sampled with a MultiNet Midi 
(Hydro Bios: mouth opening, 0.25 m2; mesh size, 
200 μm; 5 nets) during the research cruise MSM80 
with the RV ‘Maria S. Merian’, which took place dur-
ing December 2018−January 2019. In total, 37 stations 
along 6 cross-shelf transects were sampled in the 
HCS off Peru (Fig. 1). The transects (T1–T6) were lo-
cated at 8.5, 9.5, 12, 14.5, 15.3 and 16° S, with 5−7 sta-
tions each covering a depth range from 1000 m to the 
surface along discrete depth intervals (strata: 1000−
500, 500−200, 200−100 m; 100−50 or 100−30 m; 50−0 
or 30−0 m). Two 24 h stations (Stns 46 and 80) with 4 
net hauls each (21:30, 03:30, 09:30 and 15:50 h local 
time, UTC +5) were sampled from 600−400, 400−200, 
200−100, 100−50 and 50−0 m. For respiration meas-
urements on board, live and active copepod speci-
mens were identified to species and stage under a dis-
secting microscope  (Leica MS5). Sorting was carried 
out swiftly and with special care to ensure that speci-
mens remained in good condition. For abundance 
analyses, the remains of the net  samples were pre-
served in 4% borax-buffered formaldehyde in sea -

water solution. Temperature, salinity and oxygen pro-
files were obtained for every station by using a Sea-
Bird CTD (conductivity temperature depth) profiling 
system with Niskin bottles attached to a rosette. 

2.2.  Biomass of copepods 

All net samples were transferred to a Steedman 
sorting solution (0.5% propylene-phenoxetol, 5% 
propylene glycol and 94.5% double-distilled water; 
Steedman 1976) to analyze the copepod composition. 
Samples with high copepod densities were sub -
divided with a Motoda plankton splitter (Motoda 
1959). All copepods with an average female prosome 
length (PL) of ≥1.2 mm were counted and sorted from 
the net samples. The dominant species were identi-
fied, staged (including copepodite stages C4−C5, fe-
male and male) and enumerated for every station. 
Hereafter, they are referred to as medium- to larger-
sized copepods (ML class). The species- and stage-
specific biomass of the ML class was calculated based 
on abundance and individual dry mass (DM). The DM 
of each ML class species was measured from either 
deep-frozen samples on a microbalance (Sartorius 
MC215) after lyophilization for 48 h or from formalin-
Steedman-preserved samples. Prior to weighing, pre-
served individuals were briefly dipped in double-dis-
tilled water and transferred to a 96-well plate for 
drying at 60°C for 24 h, followed by a cooling step in a 
desiccator (30 min). After drying, specimens were 
weighed on a microbalance (Sartorius MC215) indi-
vidually (for large species such as Euchaeta spp.) or as 
bulk samples with a known number of individuals 
(2−30), depending on the size and stage of a species. 

For transects T1 and T5, small-sized copepods (S 
class) were included in the analysis for comparisons. 
This group combined all copepod species with an 
average female PL of <1.2 mm and comprised cyclo -
poid, harpacticoid and small calanoid species but 
also the C1−C3 stages of larger calanoid species. 
Copepods in the S class were enumerated in bulk 
and not separately for species. The bulk samples of 
the S class were dominated by the calanoid copepods 
Acartia spp., Calocalanus spp. and Paracalanaus par -
vus as well as cyclopoid species (e.g. Hemicyclops 
spp., Oithona spp., Oncaea spp.) and occasionally by 
copepodite stages (C1−C3) of larger calanoid species 
(no quantitative species composition available). Bio-
mass of the S class was estimated by weighing a sub-
sample (1 out of 64 to 1 out of 256) with a known 
number of individuals for each station and depth 
interval. 
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Losses in body DM due to formalin and Steedman 
preservation were considered by applying the fol-
lowing equation from Schukat et al. (2021): DM real 
(μg) = DM formalin or Steedman / 0.6251 + 5.4764 
(R2 = 0.74). All DMs of specimens taken from pre-
served samples were recalculated accordingly. 

2.3.  Respiration rates 

2.3.1.  Optode respirometry 

Respiration rates of 6 different copepod species 
were measured with a 10-channel optode respiro -
meter (PreSens Precision Sensing Oxy-10 Mini) in a 
temperature-controlled refrigerator. The most fre-
quently occurring ML class species were chosen for 
respiration measurements to ensure sufficient speci-
mens in good condition for replicate measurements. 
A total of 81 on-board respiration measurements 
were conducted. Temperature profiles derived from 
the CTD probe were used to adjust the refrigerator to 
the average ambient temperature. Ranges for ambi-
ent temperatures for the different depth intervals 
were 18−22°C (50−0 m), 16−18°C (100−50 m), 13−
16°C (200−100 m), 10−13°C (500−200 m) and 6−9°C 
(1000−500 m). Experiments were run in gas-tight 
glass bottles (13−14 ml) filled with filtered (0.2 μm 
membrane filter) seawater to reduce bias by micro-
bial respiration. Oxygen saturation at the beginning 
of experiments was between 95 and 100%. For each 
run, 2 controls without animals were measured 
under the same conditions to correct for microbial 
respiration, temperature irregularities and other 
potential errors. The number of animals incubated 
per bottle was adjusted according to individual size, 
stage and metabolic activities measured in a previ-
ous study (Schukat et al. 2013) to avoid rapid oxygen 
depletion. Numbers varied between 1 and 2 individ-
uals of large species (Eucalanus inermis, Euchirella 
bella, Euchaeta rimana), 4−6 individuals for Aetideus 
armatus and Calanus chilensis, and 12−15 specimens 
for Centropages brachiatus. All specimens were kept 
in filtered seawater for about 1 h before transferring 
them to the glass bottles. During the experiments, 
the copepods showed normal active swimming 
behavior and they were not fed. Hence, we consider 
the metabolic activity during the experiments to rep-
resent the routine metabolism of the organisms. The 
experiments ran in darkness for 5−9 h, depending on 
oxygen consumption, and oxygen concentrations 
were recorded every 15 s. Respiration rates were cal-
culated from the slope of the oxygen decrease over 

selected time intervals. The first 60 min were not 
considered for the calculations to exclude impacts of 
raised animal activity or water temperature caused 
by the transfer (Kiko et al. 2016). After the experi-
ments, all specimens were deep-frozen at −80°C for 
later DM determination (see Section 2.2). 

2.3.2.  Respiration rates calculated from body DM 

In addition to the measurements taken on board 
via optode respirometry, more than 500 individual 
respiration rates were determined based on individ-
ual DM and ambient temperatures to compare both 
approaches and to include all dominant species and 
copepodite stages (C4−C6) during the cruise. Respi-
ration calculations via DM were applied according to 
Bode et al. (2018), considering different activity lev-
els and/or functional groups of copepod species. 
Copepods of the families Eucalanidae, Rhincalani -
dae and Subeucalanidae are rather sluggish and 
described as ‘thrifty floaters’ (Teuber et al. 2019), 
with lower metabolic rates compared to copepods 
with normal activity. In this study, copepods of the 
genus Eucalanus and Subeucalanus were included. 
Therefore, respiration rates were calculated sepa-
rately, for (1) sluggish copepods of the families 
Eucala ni dae and Subeucalanidae and (2) for all other 
copepods considered to be active, with the following 
equations from Bode et al. (2018): 

                        lnRTF (μl O2 ind.−1 h−1) =  
                 −2.180 + 0.787 ln(DM) + 0.131T

             (1) 

                        lnRAC (μl O2 ind.−1 h−1) =  
                 −0.890 + 0.646 ln(DM) + 0.094T

             (2) 

where RTF and RAC are the individual respiration 
rates for eucalanid/subeucalanid and active cope-
pods, respectively, DM represents dry mass in mg 
and T is the average temperature (°C) of the sampling 
interval. Respiration rates for each measurement and 
calculation are available in PANGAEA (Schukat et al. 
2022). 

2.4.  Ingestion and egestion rates 

All ingestion and egestion rates are based on respi-
ration rates calculated via DM to include all domi-
nant species and stages. Individual respiration rates 
were converted to carbon units (RC: μg C ind.−1 d−1), 
assuming that the respiration of 1 ml O2 equals 
0.44 mg of carbon by using a RQ of 0.82 for a mixed 
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diet (Auel & Werner 2003) to reflect their respiratory 
carbon demands. Ingestion rates of the copepods 
were calculated according to Ikeda & Motoda (1978), 
assuming an average assimilation efficiency of 70% 
and a gross growth efficiency of 30% (I = RC / 0.4). 
Egestion rates were assumed to be 30% of ingestion, 
regardless of species and food availability (Ikeda & 
Motoda 1978). 

Community ingestion and egestion rates (mg C m−2 
d−1) of the ML class were calculated based on the bio-
mass per depth stratum of each species and stage 
and the respective mass-specific respiration rate at 
ambient temperature (average temperature of the 
depth interval). Community rates of the S class were 
assessed from the bulk biomass per depth stratum at 
2 transects, T1 and T5, and from calculated respira-
tion rates from Eq. (2) for comparison. 

Ingestion rates for Euchaeta males were not in -
cluded in the calculations since ambush-feeding 
copepods such as Paraeuchaeta and Euchaeta have a 
‘sit and wait for prey’ strategy, with males reducing or 
completely stopping feeding when mature (Yen 1988, 
1991). Data on species-specific individual in gestion 
and egestion rates are available in PANGAEA 
(Schukat et al. 2022). 

3.  RESULTS 

3.1.  Hydrographic conditions 

The MSM80 cruise took place during moderate up-
welling consistent with sea surface temperatures 
(SST) at 5 m depth that never decreased below 17°C on 
the Peruvian shelf (Fig. 2). Generally, offshore SSTs 
ranged between 21 and 24°C in the northern (tran-
sects T1 and T2) and central (transect T3) study area 
and between 19 and 23°C in the southern study area 
(transects T4−T6). Coastal SST varied from 18 to 21°C 
at transects T1−T3, and from 17 to 19°C at transects 
T4−T6 (Fig. 2). The thermocline was generally lo-
cated between 10 and 50 m at all transects for both 
shelf and offshore regions, with temperatures de-
creasing to 15−18°C at the northern and central tran-
sects and 12−15°C at the southern transects. Below 
the thermocline, temperatures dropped to about 7°C 
at 500 m depth. 

The surface layer above the thermocline was gen-
erally well ventilated (>150 μmol O2 l−1), while dis-
solved oxygen concentrations below the thermocline 
decreased sharply, generating an OMZ with hypoxic 
levels of ≤45 μmol O2 l−1 at all transects (Fig. 2). In the 
northern transects (T1 and T2), the OMZ extended 

from around 50 to 900 m depth at oceanic regions, 
with near-anoxic conditions of <2 μmol O2 l−1 be -
tween 200 and 600 m. Oxygen levels along the north-
ern coast were generally above 45 μmol O2 l−1 
throughout the water column. The OMZ was shal-
lower at the central Peruvian shelf break and oceanic 
area (transect T3), where it extended from ~30 m to 
the seafloor at the shelf break and to 900 m offshore, 
with almost zero oxygen from about 100 to 500 m. 
Along the coast at transect T3, the OMZ extended 
from close to the surface (at ~10 m) to the seafloor, 
with anoxic conditions from ~100 m downwards. On 
the southern Peruvian shelf break and offshore (tran-
sects T4−T6), the OMZ stretched from 30 to 40 m 
down to about 950 m depth, with an anoxic core from 
~80 to 450 m. The OMZ along the southern coast 
extended from 15 or 20 m to the seafloor, with oxy-
gen depletion from about 45 m onwards (Fig. 2). 

3.2.  Biomass distribution and species composition 
of copepods 

The vertical trend in biomass distribution of the ML 
class at all stations was comparable during all times 
of the day, i.e. dawn, day, dusk and night (Fig. 2). At 
the two 24 h stations (Stns 46 and 80), biomass was 
concentrated in the upper 50 m during both day and 
night. 

The highest biomass of the ML class always oc cur -
red from 0 to 30 or 50 m throughout the sampling 
area; at only one station (Stn 40) was the biomass 
maximum located between 50 and 100 m (Fig. 2). 
Surface biomass (0−30 or 0−50 m) at the northern 
transects (T1 and T2) ranged from 7 mg DM m−3 (re -
spective abundance: 48 ind. m−3) at Stn 22 to 64 mg 
DM m−3 (300 ind. m−3) at Stn 13. Similar variations in 
surface biomass, from 6 mg DM m−3 (218 ind. m−3) at 
Stn 40 to 77 mg DM m−3 (932 ind. m−3) at Stn 43, oc -
cur red at the central transect (T3). At the southern 
transects (T4–T6), surface biomass was generally 
lower than at the northern and central transects, 
ranging from <1 mg DM m−3 (Stns 63 and 65) to 
58 mg DM m−3 (1158 ind. m−3) at Stn 74 (Fig. 2). 

A pronounced decrease in biomass of the ML class 
with depth occurred at transects T4−T6. This de -
crease in biomass coincided with a sharp de crease 
in oxygen concentrations in the south, forming al -
most anoxic conditions from ~30−40 m downwards 
(Fig. 2). In contrast, in the northern and central tran-
sects, the anoxic core of the OMZ was shifted to 
deeper water layers (~100−200 m downwards) and 
the ML class occurred more frequently below 50 m 
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depth, reaching biomasses of up to 48 mg DM m−3 
(1235 ind. m−3) from 50−100 m (Stn 40) and 3 mg DM 
m−3 (17 ind. m−3) below 100 m (Stn 20). 

Differences in the relationship between biomass 
and abundance are caused by the species composi-
tion, which differed for the ML class from north to 
south and with depth. For visualization of species 
composition of the ML class, all offshore and shelf 
stations were combined for each transect (Fig. 3). 
Calanus chilensis was the most abundant species 
within the ML class from 0−100 m at offshore regions 
(11−64% of total abundance [TA]) and especially at 
shelf regions (62−91% TA) in the north at transects 
T1 and T2 (Fig. 3). At these transects, Nannocalanus 
minor (7−26% TA), Euchaeta spp. (6−19% TA) and 
Subeucalanus spp. (0−49% TA) also contributed to 
TA at the offshore regions in the upper 100 m. In con-
trast to the north, Centropages brachiatus became 
the most abundant species in the south at transects 
T4−T6, especially in the upper 50 m at shelf regions 
(86−100% TA). In general, Eucalanus inermis was 
the dominant species below 100 m depth throughout 
the sampling area and almost exclusively constituted 
the abundance of the ML class at 200−500 m. Fur-
thermore, it was the only species occurring at the 
depth interval of 500−1000 m at a few stations. 

The vertical biomass distribution of the S class was 
comparable to the ML class, with biomass maxima in 

the surface layer and a decrease with depth (Fig. 4). 
In contrast to the ML class, the biomass of the S class 
was higher in the south at transect T5 than in the 
North at transect T1, with surface biomass ranging 
from 5 to 19 mg DM m−3 (865−2833 ind. m−3) at tran-
sect T1 and from 8 to 76 mg DM m−3 (1313−7603 ind. 
m−3) at transect T5. Similar to the ML class, no differ-
ences in the vertical biomass distribution were evi-
dent between day and night for the S class (Fig. 4). 

3.3.  Respiration rates of copepods 

Individual DMs of ML class copepods ranged from 
12 ± 1 μg DM ind.−1 (±SD) for copepodite stage C4 
of C. brachiatus to 1117 ± 118 μg DM ind.−1 for 
Euchirella bella females (Table 1). Average DM of 
bulk samples of the S class ranged from 3 to 10 μg 
DM ind.−1 depending on species composition. The 
overall mean DM of the S class was 7 ± 2 μg DM 
ind.−1 (Table 1). 

Respiration rates for the same species and stages 
were not significantly different between regions (i.e. 
offshore and shelf or north, central and south) but 
they differed significantly among depth intervals due 
to the lower temperatures at depth (1-way ANOVA, 
Kruskal-Wallis and Dunn’s post hoc test). Table 1 
summarizes the directly measured and calculated 
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respiration rates for different developmental stages 
and depth intervals of the dominant copepods. 

Hereafter, respiration rates refer to a temperature 
of 20°C unless stated otherwise. Individual respira-
tion rates (IRR) measured via optode respirometry 
ranged from 2.2/4.9 μl O2 ind.−1 d−1 (1.0/2.2 μg C 
ind.−1 d−1) for female Aetideus armatus to 69.3 ± 
4.7 μl O2 ind.−1 d−1 (30.5 ± 2.1 μg C ind.−1 d−1) for fe -
male E. bella (Table 1). The measured respiration 
rates were significantly correlated with the calcu-
lated rates for the respective DM of a species (Spear-
man’s correlation, r = 0.730, p < 0.001) when the 
heaviest species (E. bella, >1000 μg DM ind.−1) was 
excluded from the regression analysis (Fig. 5). Meas-
ured E. bella respiration rates were only about half of 
the values ex pected from the body-mass−respiration 
rate regression (Table 1). 

Respiration rates calculated via DM are presented 
to compare all dominant species during the cruise 
(Table 1). The S class had an IRR of 2.6 ± 0.4 μl O2 
ind.−1 d−1 (1.2 ± 0.2 μg C ind.−1 d−1) and a mass-
specific respiration rate (MSRR) of 377.1 ± 28.8 μl O2 
mg−1 d−1 (165.9 ± 12.8 μg C mg−1 d−1). IRR of active 
ML class species ranged from 3.7 to 24.9 μl O2 ind.−1 
d−1 (1.6 to 11.0 μg C ind.−1 d−1) for C. brachiatus, 
Calanus chilensis, N. minor and Euchaeta longicor-
nis. IRRs for Euchaeta rimana and E. bella were 
higher, varying from 29.2 to 63.9 μl O2 ind.−1 d−1 (12.8 

to 28.1 μg C ind.−1 d−1). In contrast, MSRRs of ML 
class species were lowest in the heaviest species 
E. bella, with 62.3 ± 2.4 μl O2 mg−1 d−1 (27.4 ± 1.0 μg 
C mg−1 d−1) and highest in C. brachiatus with 216.9−
309.1 μl O2 mg−1 d−1 (95.4−136.0 μg C mg−1 d−1). 
MSRRs of the ‘sluggish’ subeucalanid copepods var-
ied from 53.0–72.3 μl O2 mg−1 d−1 (23.3−31.8 μg C 
mg−1 d−1) and were in the lower range of MSRRs of 
the active copepods (Table 1). 

MSRRs of E. inermis females from the upper 100 m 
was about twice as high with 31.8 ± 1.1 μl O2 mg−1 d−1 
(14.0 ± 0.5 μg C mg−1 d−1) at 18°C compared to fe -
males from depth below 200 m with 14.8 ± 0.7 μl O2 
mg−1 d−1 (6.5 ± 0.3 μg C mg−1 d−1) at 12°C. 

3.4.  Respiratory carbon demands of copepod 
communities over depth 

Depth-dependent gradients of respiratory carbon 
demands are shown in Fig. 6 for the northern tran-
sect T1 and the southern transect T5, as differences 
in species composition were most pronounced at 
these transects. 

At transect T1, the respiratory carbon demands of 
all copepods were 3−9 times higher at the surface 
layer (0–50 m) than in the depth interval below (50−
100 m). The decrease was even more pronounced at 
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Species                         Stage       Temp.        Depth            No.                  DM                          IRR                           MSRR 
                                                        (°C)             (m)             (ind.)           (μg ind.−1)          (μl O2 ind.−1 d−1)         (μl O2 mg−1 d−1) 
 
S class                             All             20           50−0               13                 7 ± 2                     2.6 ± 0.4                 377.1 ± 28.8 

Aetideus armatus            F              20         100−50             20                45 ± 3                     8.7 ± 0.3                 193.4 ± 3.9 
                                         F              20         100−50          2 (11)             45/103                     4.9/2.2                     107.8/21.8 

Euchirella bella               F              20         100−0                6             1117 ± 118               69.3 ± 4.7                   62.3 ± 2.4 
                                         F              20         100−0             6 (6)           1117 ± 118              31.8 ± 7.7                   29.0 ± 7.9 

Calanus chilensis            F              20           50−0               33              229 ± 22                 24.9 ± 1.6                 109.1 ± 3.9 
                                         F              20           50−0            7 (24)           197 ± 44                 18.2 ± 1.8                   95.6 ± 15.7 
                                         F              18         100−50          4 (12)            228 ± 4                   12.3 ± 3.7                   53.8 ± 15.9 
                                        M              20           50−0               34              160 ± 13                 19.8 ± 1.0                 123.8 ± 3.5 
                                        M              20           50−0             1 (5)                 140                          11.4                            81.6 
                                       C5             20           50−0               34              134 ± 16                 17.6 ± 1.3                 132.1 ± 5.4 
                                       C5             20           50−0            6 (34)            157 ± 37                   6.4 ± 0.2                   44.4 ± 26.0 
                                       C5             18         100−50         15 (71)           142 ± 18                   5.3 ± 2.1                   32.6 ± 11.1 
                                       C4             20           50−0               30                 63 ± 8                   10.8 ± 0.9                 172.6 ± 7.8 

Nannocalanus                F              20           50−0               30                 96 ± 15                 14.2 ± 1.4                 148.7 ± 7.7 
 minor                            M              20           50−0               30                 62 ± 11                 10.6 ± 1.2                 174.6 ± 11.7 
                                       C5             20           50−0               30                 62 ± 4                   10.8 ± 0.5                 172.7 ± 4.2 
                                       C4             20           50−0               20                 50 ± 2                     9.3 ± 0.2                 186.6 ± 2.2 

Centropages                   F              20         100−0               30                 33 ± 4                     7.1 ± 0.5                 216.9 ± 9.0 
 brachiatus                     F              19           50−0            9 (62)              32 ± 6                     6.8 ± 1.4                 223.0 ± 69.9 
                                         F              16         100−50          4 (60)              28 ± 4                     3.3 ± 1.1                 113.7 ± 21.6 
                                        M              20         100−0               30                 24 ± 6                     5.8 ± 0.9                 245.4 ± 21.3 
                                       C5             20         100−0               25                 14 ± 3                     4.1 ± 0.6                 293.7 ± 22.7 
                                       C4             20         100−0               15                 12 ± 1                     3.7 ± 0.3                 309.1 ± 2.3 

Euchaeta                         F              20           50−0               20               167 ± 19                 20.3 ± 1.6                 122.3 ± 5.7 
 longicornis                   M              20           50−0               20               186 ± 9                   21.8 ± 0.7                 117.2 ± 2.1 
                                       C5             20           50−0               20               137 ± 18                 17.9 ± 1.5                 131.0 ± 5.7 
                                       C4             20           50−0               15                 72 ± 18                 11.7 ± 1.9                 167.0 ± 16.1 

Euchaeta rimana             F              20           50−0               30               443 ± 76                 38.1 ± 4.4                   86.8 ± 6.0 
                                         F              20           70−0           13 (17)           537 ± 95                 47.8 ± 6.8                   91.2 ± 16.9 
                                        M              20           50−0               20               374 ± 56                 34.1 ± 3.5                   92.0 ± 5.3 
                                       C5             20           50−0               20               297 ± 66                 29.3 ± 4.1                 100.3 ± 7.3 
                                       C4             20           50−0               15               150 ± 2                   19.0 ± 0.2                 126.4 ± 0.6 
 
Eucalanus inermis          F              18         100−0               20               628 ± 103               19.8 ± 2.6                   31.8 ± 1.1 
                                         F              16         200−100         3 (3)             393 ± 95                 11.4 ± 2.9                   35.9 ± 10.6 
                                         F              12         600−200           20               573 ± 130                 8.4 ± 1.5                   14.8 ± 0.7 
                                         F              12         500−200         7 (9)             596 ± 175                 4.6 ± 2.6                     7.5 ± 3.7 
                                        M              18         100−0               13               312 ± 102               14.8 ± 3.8                   48.1 ± 3.6 
                                       C5             16         200−100           14               164 ± 54                   5.3 ± 1.4                   32.9 ± 2.6 
                                       C5             16         200−100         4 (7)             303 ± 38                   5.4 ± 1.4                   21.0 ± 3.5 
                                       C4             18         100−0               10                 64 ± 25                   4.2 ± 1.4                   68.4 ± 6.1 

Subeucalanus                 F              20           50−0               30               192 ± 11                 10.1 ± 0.5                   53.0 ± 0.6 
 mucronatus                  M              20           50−0               30               137 ± 3                     7.8 ± 0.1                   56.9 ± 0.2 
                                       C5             20           50−0               20                 95 ± 25                   5.8 ± 1.2                   61.9 ± 3.0 
                                       C4             20           50−0               15                 55 ± 1                     3.8 ± 0.1                   69.1 ± 0.4 

Subeucalanus                 F              20           50−0               20               109 ± 13                   6.5 ± 0.6                   59.8 ± 1.7 
 subtenuis                      M              20           50−0               20               120 ± 8                     7.0 ± 0.4                   58.6 ± 0.8 
                                       C5             20           50−0               20                 58 ± 4                     4.0 ± 0.2                   68.3 ± 0.9 
                                       C4             20           50−0               15                 44 ± 2                     3.2 ± 0.1                   72.3 ± 0.6

Table 1. Individual (IRR) and mass-specific respiration rates (MSRR) calculated from dry mass (DM) and measured directly 
(shaded) of dominant copepods from the northern Humboldt Current System off Peru and bulk samples of small copepods (S 
class). Temperature, depths of origin of the specimens, DM and number (no.) of replicates (via DM) and measurements are 
given. The total number of individuals used in the measurements is given in brackets. Active and sluggish species are sepa- 

rated by the line. F: female; M: male; C5 and C4: copepodite stages 5 and 4. Mean values ± SD given for n ≥ 3
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transect T5 (Fig. 6). Within the core of the OMZ from 
200–500 m, respiratory carbon demands of copepods 
were lowest compared to all other depth intervals, 
but generally increased towards the upper boundary 
of the OMZ at 100–200 m. The decrease in commu-
nity respiration with depth was attributed to the low 
biomass of species and lower temperatures at greater 
depth. 

C. chilensis and the S class had the highest com-
munity carbon demands (max.: 102 and 47 mg C m−2 
d−2, respectively) at the coastal stations at transect T1 
in all depth intervals (Fig. 6A). Further offshore along 
transect T1, N. minor, Subeucalanus spp. and the S 
class mainly contributed to carbon demand in the 
upper 100 m, while C. brachiatus largely contributed 
to total carbon demands at transect T5 besides the S 
class in the upper 50 m (Stn 74: 148 and 373 mg C m−2 
d−2, respectively). At coastal Stn 67 (T5), the S class 
had the highest respiratory carbon demand with 
183 mg C m−2 d−2 in the upper 20 m (Fig. 6B). 

Considering the low oxygen levels occurring below 
50 m throughout the study area, respiration of cope-
pods at greater depths (50–500 m) was most likely 
severely reduced and metabolic demands at these 
depths should be used with caution. 

3.5.  Ingestion and egestion by copepods 

The analyses of community ingestion and egestion 
across the different regions focused on the surface 
layer where biomass of the species was concentrated, 
and oxygen levels were generally high and thus had 
a minor effect on metabolic rates. Ingestion rates of 

the ML class in the upper 50 m ranged be tween 14 
and 515 mg C m−2 d−1 in shelf regions and between 11 
and 502 mg C m−2 d−1 in offshore regions. Ingestion 
rates of these species in shelf regions were lower in 
the south (14.5−16° S) compared to the north (8.5−
9.5° S) and central study area (12° S), whereas off-
shore ingestion was comparable across the regions 
from north to south (8.5−16° S). Community ingestion 
rates (0−50 m) of the S class varied from 100 to 
417 mg C m−2 d−1 in shelf regions and from 177 to 
932 mg C m−2 d−1 in oceanic regions (Table 2). 

C. chilensis and C. brachiatus were the major con-
tributors to total ingestion of the ML class. Commu-
nity consumption rates of C. chilensis were highest at 
the northern and central transects T1−T3, where 
they ranged between 1 and 342 mg C m−2 d−1 in shelf 
regions and between 5 and 254 mg C m−2 d−1 off-
shore. C. brachiatus was mostly absent at transects 
T1 and T2 but reached high community ingestion 
rates at shelf regions along transect T3, ranging from 
54 to 173 mg C m−2 d−1, and offshore in the south at 
transect T5 with up to 393 mg C m−2 d−1. All other ML 
class species had community ingestion rates of 
≤62 mg C m−2 d−1. 

Community egestion rates are based on the inges-
tion rates (i.e. 30%) and thus followed the same re -
gional pattern with the same main contributors as for 
ingestion. Egestion rates varied on average be tween 
3 and 155 mg C m−2 d−1 for the ML class and be tween 
30 and 280 mg C m−2 for the S class (Table 2). 

4.  DISCUSSION 

4.1.  Respiration rates as a basis for  
carbon flow calculations 

4.1.1.  Choice of methodological approach 

Zooplankton respiration is a central component in 
carbon budgets and carbon fluxes of pelagic ecosys-
tems and can be measured with live animals, enzy-
matic activities like the electron transport system 
(Packard et al. 1971) or allometrically from individual 
DM (Moloney & Field 1989). While direct respiration 
measurements from live specimens may better reflect 
the ambient environmental conditions, they are chal-
lenging to conduct, especially for species inhabiting 
greater depths (i.e. obtaining animals in good condi-
tion from depth). In contrast, measurements of elec-
tron transport system activity and calculations from 
DM are much easier to handle but rely on assumed 
para meters for the conversion to respiration rates. 
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In the present study, measurements were carried 
out with live specimens using optode respirometry. 
The advantages of this approach over conventional 
methods such as Winkler titration or Clark electrodes 
are, for example, the ability to record continuous and 
non-invasive measurements, and that there is no con-
sumption of oxygen by the optode itself and no use of 
chemicals (Klimant et al. 1995, Warkentin et al. 2007, 
Köster et al. 2008). However, these measurements are 

time consuming, and the handling of specimens due to 
their fast movements and small body sizes (i.e. avail-
ability to obtain sufficient individuals for replicates) 
can be difficult. To include all dominant copepod spe-
cies during the cruise, respiration rates were addition-
ally calculated from DM and habitat temperature. This 
approach has been used for decades and has been 
continuously developed for copepods and euphausiids 
(Ikeda et al. 2001, Ikeda 2013, Bode et al. 2018). 
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Schukat et al.: Carbon budgets of copepods

Measured and calculated respiration rates of this 
study were significantly positively correlated (r = 
0.86), indicating a high reliability of the allometric 
function from Bode et al. (2018). Furthermore, the 
consideration of different activity levels by Bode et al. 
(2018) resulted in a better correlation of measured 
and calculated respiration rates for the rather sluggish 
species Eucalanus inermis, as well as overall com-
pared to global compilation models by Ikeda et al. 
(2001, 2007). Previously measured respiration rates of 
adult Calanus chilensis and E. inermis (12−18 μl O2 
ind.−1 d−1, 16−22°C) sampled at similar regions in the 
northern HCS (Dagg et al. 1980) are comparable to 
the measured (11−18 μl O2 ind.−1 d−1, 16−20°C) and 
calculated (via DM) respiration rates (15−25 μl O2 
ind.−1 d−1, 18−20°C) obtained for these species in the 
present study. However, respiration rates of the 
largest copepod species, Euchirella bella, were ~2 
times higher when calculated via DM compared to 
the measured values. This deviation could indicate 
that E. bella might be able to physiologically reduce 
its metabolic demand as an adaptation to a life near or 
within the OMZ, but comparable values for this spe-
cies are not available in the literature. 

4.1.2.  Variability of respiration rates 

Metabolic rates are influenced by various factors 
such as body mass, feeding mode, activity levels and 
migration behavior as well as temperature, oxygen 
concentration, salinity and pH (Ikeda et al. 2001, 
Hernández-León & Ikeda 2005b, Paffenhöfer 2006). 
Differences in temperature and body mass are 
responsible for up to 95% of the variability in individ-
ual respiration rates of zooplankton (Ikeda et al. 
2001). Both parameters were implemented in the 
used approaches (optode respirometry, allometric 
function). However, the re-creation of ambient oxy-
gen concentrations during experiments is more diffi-
cult to implement and was not considered. Yet meta-
bolic suppression under low oxygen concentrations 
is high (Ekau et al. 2010, Seibel 2011, Kiko & Hauss 
2019). Thus, in regions with pronounced OMZs such 
as the HCS, zooplankton respiration in the core of the 
OMZ with permanently low oxygen levels reflecting 
anoxic conditions is emphasized to be severely 
reduced (Kiko & Hauss 2019). Hence, adaptive pro-
cesses such as metabolic suppression within the 
OMZ seem critical to correctly represent the contri-
bution of vertically migrating species to active car-
bon fluxes and also of deeper-dwelling species to 
passive fluxes. 

The surface layer, where most copepod species 
occurred and remained during day and night in this 
study, was generally well ventilated, and thus meta-
bolic suppression should not be a major concern for 
respiration rates of surface communities. 

4.2.  Consumption rates of copepod  
communities off Peru 

Feeding rates of copepods as key organisms in 
marine ecosystems are crucial in order to develop 
accurate food-web models and carbon budgets. 
Ingestion rates in this study were assessed by apply-
ing an energy budget approach, assuming set values 
for the RQ as well as the assimilation and growth effi-
ciencies, which vary among studies and thus affect 
the accuracy of calculated ingestion rates. The ap -
plied RQ of 0.82 (Auel & Werner 2003, Schukat et al. 
2013, Bode-Dalby et al. 2022) in this study is within 
the range of RQs (0.61−0.95) calculated for copepods 
by Mayzaud et al. (2005) and is representative of a 
mixed diet consisting of proteins, carbohydrates and 
lipids (Gnaiger 1983). RQs of 0.7 and 0.97 are fre-
quently used for zooplankton species using lipids 
and carbohydrates as the predominant substrates 
metabolized, respectively (Omori & Ikeda 1984, 
Hernández-León & Ikeda 2005a, Almeda et al. 2011) 
and would increase/decrease the ingestion rates of 
this study by ~1.2. Furthermore, copepod ingestion is 
related to food concentration (Kiørboe et al. 1982, 
Garrido et al. 2013), but this is not considered in 
energy budgets. 

Previously estimated consumption rates of cope-
pods (i.e. C. chilensis, E. inermis and Centropages 
brachiatus) in the upper 100 m off Peru in shelf and 
offshore areas (<1−53 mg C m−2 d−1; Dagg et al. 1980) 
were up to ~10 times lower than in the present study 
for the same species and region (<1−515 mg C m−2 
d−1). Biomasses of C. chilensis, E. inermis and C. 
brachi atus were comparable between both studies 
(Dagg et al. 1980: <1−51 mg DM m−3; this study: 
<1−77 mg DM m−3). However, individual consump-
tion rates for these species determined via ingested 
particles (using conversion factors for particle vol-
ume and carbon content) were more than 5 times 
lower in Dagg et al. (1980) than the rates calculated 
with the energy budget approach in this study. Thus, 
differences in methodological approaches must also 
be considered when comparing literature values of 
zooplankton ingestion rates. Furthermore, the use of 
the common mesh size of 200 μm for mesozooplank-
ton in this study underestimates the abundance of 
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the S class species (Turner 2004, Riccardi 2010) and 
thus their community consumption rates. However, it 
is still not clear to what extent the numbers of small 
species are affected, which makes correction of the 
data difficult. 

4.2.1.  Regional differences in copepod consumption 

Copepod community consumption in shelf regions 
of upwelling systems is generally much higher than 
offshore consumption due to the favorable food condi-
tions on the shelf and high abundance of species 
(Grunewald et al. 2002, Schukat et al. 2013, Bode-
Dalby et al. 2022). Our estimates of total consumption 
at shelf regions (0−50 m, 297−438 mg C m−2 d−1) of the 
northern HCS off Peru are comparable to copepod 
consumption rates (via gut pigment content and evac-
uation rates) at shelf regions off central Chile includ-
ing small- to larger-sized species (0–70 m, 43−553 mg 
C m−2 d−1; Grunewald et al. 2002). However, offshore 
community ingestion by copepods in the present 
study is about 4- to 8-fold higher than that reported 
for the Chilean HCS (via gut pigment; Grunewald et 
al. 2002) and the northern Ben guela upwelling 
system (via energy budget; Schukat et al. 2013). Off-
shore copepod abundance, especially of the ML class, 
was much higher during this study than that reported 
by Grunewald et al. (2002) and Schukat et al. (2013) 
as well as offshore SSTs (19−24°C versus 14−17°C), 
thus causing the higher offshore consumption rates. 
In the HCS off Peru, large-scale phytoplankton 
blooms can occur several hundred km offshore (Ayón 
et al. 2008), sustaining high copepod biomasses. 
Hence, copepods can provide a high contribution to 
carbon turnover processes and passive carbon fluxes, 
not only in coastal areas but also in open ocean re-
gions in the northern HCS off Peru. 

Species-specific daily consumption rates for differ-
ent regions within the Peruvian HCS are available 
for C. chilensis, E. inermis and C. brachiatus (Dagg et 
al. 1980). C. chilensis is the major consumer in the 
north between 10 and 11° S and C. brachiatus in the 
south from 15−16° S (Dagg et al. 1980). This pattern 
agrees well with our study. C. chilensis had the high-
est consumption rates of the ML class in the northern 
and central region between 8.5 and 12° S, whereas C. 
brachiatus contributed most to the ML class con-
sumption in the south between 14.5 and 16° S. A shift 
in species composition modulates community con-
sumption as well as the energy and carbon flux of an 
ecosystem and is associated with local environmental 
conditions (Manríquez et al. 2009, Medellín-Mora et 

al. 2016). For instance, small copepods (<1 mm PL) 
were more abundant during the upwelling season off 
central and southern Chile, while a more diverse 
community varying in size ranges occurred during 
downwelling (Medellín-Mora et al. 2016). The lower 
SSTs in shelf regions of the southern study area com-
pared to the northern regions during the present 
study indicate that water was more recently up -
welled in the south. The copepod community in this 
area was dominated by the S class and C. brachiatus 
(i.e. the smallest species of the ML class with a 
female PL of ~1.2 mm) while the larger species C. 
chilensis (female PL of ~2.2 mm) prevailed in the 
north. The data from this study may indicate that the 
smaller copepods of the S class and C. brachiatus 
mainly contribute to carbon turnover rates in newly 
upwelled water, whereas the contribution of C. 
chilensis and other larger copepods of the ML class to 
carbon consumption increases during relaxation of 
upwelling. 

4.2.2.  Grazing pressure and role of copepod 
 communities in the food web 

Copepod community consumption rates can pro-
vide estimates of phytoplankton utilization as an es-
sential step to better understand the mechanisms that 
regulate phytoplankton populations and the down-
ward flux of organic matter in marine ecosystems. 
Grazing pressure on primary production usually 
varies greatly within a region. Copepods, including 
small- and larger-sized species assuming a purely 
herbivorous diet, graze 1−41% of the daily primary 
production off Peru (Dagg et al. 1980, Boyd & Smith 
1983), 6−25% off northern Chile (González et al. 
2000) and 3−46% off central Chile (Grunewald et al. 
2002), depending on season and upwelling intensity. 
Similar ranges of potential grazing impacts occur in 
other upwelling regions, where 16−44% of primary 
production is grazed by mesozooplankton off Califor-
nia (Landry et al. 1994) and 3−54% by copepod as-
semblages in the southern Benguela Current (Ver -
heye et al. 1992). In the present study, the impact of 
copepod feeding on new primary production includ-
ing all copepods was variable (0−58%). Grazing im-
pact of the predominantly herbivorous species C. 
chilensis and Nanno calanus minor (Massing et al. 
2022) accounted for 0−26% of new primary produc-
tion in the present study. Hence, a crucial amount of 
new primary production may potentially be ingested 
by these 2 species. Considering the important role as 
a carbon source for the Peruvian anchovy (Espinoza 
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& Bert rand 2008), at least C. chilensis ful fills the clas-
sical role as a direct link, channeling energy from pri-
mary producers to secondary consumers. 

In contrast, C. brachiatus largely feeds on ciliates 
and heterotrophic flagellates (Calbet & Saiz 2005, 
Calbet et al. 2007) and is one of the most abundant 
copepods in the HCS off Peru during non-El Niño 
conditions (Gutiérrez et al. 2005). Therefore, this 
species may play an important role, interlinking the 
microbial loop with higher trophic levels. Likewise, 
smaller-sized copepod genera such as the cyclopoids 
Oitho na and Oncaea or the calanoids Acartia and 
Para calanus are major grazers of heterotrophic pro-
tists and phytoplankton (Paffenhöfer 1984, Turner 
1986, Saiz & Kiørboe 1995). Their contributions to 
total cope pod biomass, grazing pressure on primary 
and secondary production, mediated fluxes and 
trophic interactions in the ocean are usually underes-
timated (Turner 2004, Roura et al. 2018). Considering 
an area of 182 000 km2 from 4 to 18° S for neritic and 
oceanic regions of the northern HCS off Peru 
(Chavez & Barber 1987), the S class ingested 9−45 Mt 
C yr−1, while the ML class ingested 1−34 Mt C yr−1. 
Estimates for global ingestion of phytoplankton and 
microzoo plank ton by small copepods of <2 mm total 
length, which matches our S class and C. brachiatus 
and N. minor, range from 2 to 27 Gt C yr−1 (Roura et 
al. 2018). Considering that the area of the northern 
HCS off Peru represents 0.05% of the global ocean 
area (361 × 106 km2; Eakins & Sharman 2010), our 
calculations are higher (1−80 Gt C yr−1) than the 
global calculation, most likely reflecting pronounced 
consumption rates in highly productive regions such 
as the northern HCS. Roura et al. (2018) emphasized 
that incorporating the small-size copepod link into 
biogeochemical models will increase current esti-
mates of biogeochemical fluxes by more than 15%. 
The results of the present study underline that not 
only the ML class but also the S class copepods are 
important components for the calculation and im -
provement of carbon budget and food-web models in 
the coastal upwelling system off Peru. 

4.3.  Contribution of copepods to carbon budgets 
and export fluxes 

4.3.1.  Carbon demands of copepod communities 

Highly productive surface waters usually result in 
a considerable transport of biogenic material pro-
duced by plankton from the surface layer to depth 
(Buesse ler 1998). The quantity of organic carbon 

reaching deeper layers is dependent on the effi-
ciency of the biological carbon pump, which is im -
pacted by vertical zonation. ML class species mostly 
remained in the upper 50 m during night and day in 
this study. Hence, DVM of the ML class into deeper 
water layers below 100 m did not occur, and the ver-
tical movement of species was mostly re stricted 
within the upper 50 m during this study. This finding 
is in accordance with previous studies, which stated 
that most copepods in the HCS are concentrated in 
the upper water layers (Judkins 1980, Escri bano & 
Hidalgo 2000, Criales-Hernández et al. 2008, Escrib-
ano et al. 2009), most likely due to the exceptionally 
pronounced OMZ in the HCS (Morales et al. 2010). 
The vertical zonation resulted in high community res-
piration rates in the upper 50 m (ML class: 13−108 mg 
C m−2 d−1; S class: 33−169 mg C m−2 d−1) which are 
comparable to those rates estimated for meso zoo -
plankton in the surface layer of the Chilean HCS 
(Donoso & Escribano 2014, Fernández-Urruzola et al. 
2021). A sharp decline in respiratory carbon de -
mands of the ML and S class in the OMZ and below 
occurred, mainly be cause of the low biomass. A sim-
ilar decline in mesozooplankton carbon de mands with 
depth was observed in the Atacama Trench region of 
Chile  (Fernández-Urruzola et al. 2021) and high-
lights the vital role of copepods in carbon remineral-
ization in the surface mixed layer of the HCS. 

4.3.2.  Respiratory carbon flux and passive transport 
of carbon by copepods 

The quantitative contributions of upwelling systems 
to global carbon and nitrogen fluxes are still not fully 
clarified even though they belong to the most produc-
tive ecosystems in the oceans and serve as major 
sinks or sources of carbon dioxide (Wollast 1988, 
Brink et al. 1995, Liu et al. 2000). Active carbon flux 
out of the upper 100−150 m by meso- and macrozoo-
plankton in different regions of the ocean, to up-
welling systems (e.g. California Current), to meso -
trophic and oligotrophic areas in the Pacific and 
At lan tic, range from about 2 to 50 mg C m−2 d−1 (Al-
Mutairi & Landry 2001, Hernández-León et al. 2001, 
Steinberg et al. 2008, Kobari et al. 2013, Stukel et al. 
2013). A very high active export of 4417 mg C m−2 d−1 
via DVM into the OMZ (60−600 m) was estimated for 
the HCS off Chile between 20 and 21° S and was 
mainly attributed to the krill Euphausia mucronata 
(Escribano et al. 2009). For the same region, a poten-
tial active carbon flux to depths below 60 m was cal-
culated for the copepod E. inermis with 14 mg C m−2 
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d−1 (Hidalgo et al. 2005). As emphasized by Kiko & 
Hauss (2019), these carbon fluxes are likely much 
lower or close to zero, considering the extremely low 
oxygen concentrations at depths below 60 m in the 
study area and the pronounced metabolic suppres -
sion of zooplankton under such conditions. E. inermis 
was the only species of the ML class that regularly oc-
curred below 100 m in this study, but their similar 
day−night distribution patterns did not indicate DVM 
behavior. In contrast, eucalanid copepods were re-
cently classified as strong diel vertical migrants in the 
HCS of northern Chile (Tutasi & Escribano 2020). 
However, in that study, both normal and reverse 
DVM were detected for the eucalanid group. Hence, 
migration behavior for this group and thus their con-
tribution to  active carbon flux is unclear. 

The high concentration of the ML and S class cope-
pods during day and night in the surface layer indi-
cates that DVM-mediated active respiratory flux by 
copepods into the OMZ and deeper layers seems to 
be of minor importance in the Peruvian upwelling 
systems or generally in the HCS, considering the 
extremely low oxygen concentrations in the core of 
the OMZ (Kiko & Hauss 2019). This observation 
leads us to the assumption that copepods have a 
more vital role in the passive flux by the production 
of fecal material, which is an important component of 
total particulate organic carbon (POC) flux in the 
HCS off Chile and in other regions of the oceans 
(Perissinotto & Pakhomov 1998, Wassmann et al. 
2000, Turner 2002, González et al. 2007, Nowicki et 
al. 2022). In the coastal zone off northern Chile, fecal 
pellet flux, mainly attributed to euphausiid fecal 
strings, was variable throughout the year, ranging 
from ~100 to 800 mg C m−2 d−1 (González et al. 2007). 
Egestion of copepods (75−430 mg C m−2 d−1), as a 
measure for fecal pellet production in this study, fell 
in the range of the fecal pellet flux for the coastal 
zone off northern Chile. Since fecal pellet production 
as well as pellet size and stability are dependent on 
food availability (Dagg & Walser 1986), our calcu-
lated egestion rates (i.e. 30% of ingestion regardless 
of habitat food concentrations; Ikeda & Motoda 1978) 
are not directly comparable. Nevertheless, they give 
a potential estimate of egestion rates for the copepod 
species from the ML and S classes. 

Most egested matter from small copepods such as 
Acartia spp. is retained in the water column since 
small fecal pellets are usually more fragile than 
larger ones, sink slowly and are rapidly degraded by 
the microbial system (Olesen et al. 2005, Stamieszkin 
et al. 2015). Thus, the potential egestion (up to 
280 mg C m−2 d−1) of the S class in this study is most 

likely recycled in the surface layer and does not sink 
to greater depths. In contrast, larger copepod species 
such as C. chilensis, Subeucalanus spp., Eucha eta 
spp. and E. inermis may produce fecal pellets large 
and solid enough to sink out of the surface layers into 
the OMZ due to a higher sinking speed of larger 
 pellets compared to smaller ones (Paffenhöfer & 
Knowles 1979). Hence, these larger-sized copepods 
may contribute a crucial amount to the sinking fecal 
pellet flux in the HCS, whereas fecal pellets of 
smaller copepod taxa contribute to the recycling of 
nutrients (Olesen et al. 2005, Stamieszkin et al. 2015). 
Fecal pellets produced by medium-sized C. brachia-
tus and N. minor may contribute equally to both sink-
ing export and recycling processes (Stamieszkin et 
al. 2015). In accordance, high degradation rates of 
organic matter in the photic zone off Chile suggest 
that the bulk of organic matter produced in the sys-
tem is recycled in the upper water column (Daneri & 
Pantoja 2007). 

We suggest that the high concentration of ML class 
copepods in the surface layers partly enhances POC 
fluxes, while the S class can lead to efficient reminer-
alization and recycling of nutrients. Although cope-
pods appear to play a minor role in the active respi-
ratory carbon flux from the surface layer to depth 
below 100 m of the Peruvian upwelling systems via 
DVM, their contribution to the recycling of carbon in 
the surface layer seems to be substantial. 
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