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1.  INTRODUCTION 

Globally, climate change is one of the 3 main 
threats to seabirds (Dias et al. 2019). A number of 
long-term studies have already documented signifi-
cant climate change impacts on seabird species 
that breed in Britain and Ireland (Frederiksen et al. 

2004, Harris et al. 2013, Perkins et al. 2018), a re -
gion which supported nearly 8 million breeding 
seabirds from 25 species at the start of the 21st cen-
tury (Mitchell et al. 2004). Seabird species can dif-
fer greatly in their sensitivity to climate change, 
and so the risk of extinction from climate change is 
expected to contribute importantly to species’ over-
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all extinction risk, adding to and interacting with 
other threats (e.g. invasive alien species and by -
catch; Dias et al. 2019). Consequently, it is impor-
tant to predict species’ responses to future climate 
change in order to identify those that are most at 
risk and inform conservation planning (Foden et al. 
2019, Bateman et al. 2020). 

Climate change impacts on seabirds occur through 
a wide range of mechanisms, but for many species, 
oceanographic changes are key, particularly pro-
cesses relating to warming of the water column. Such 
warming, mediated both by consequent changes in 
sea surface temperature (SST) and stratification, can 
affect primary productivity, altering the strength, 
timing and composition of the spring phytoplankton 
bloom (Scott et al. 2006, Bedford et al. 2020). This, in 
turn, can impact the abundance, size and availability 
of key fish prey species, such as lesser sandeels 
Ammo dytes marinus (Johnston et al. 2021), reducing 
seabird breeding success (Carroll et al. 2015, Searle 
et al. 2022), survival rates (Harris et al. 2013) or both 
(Piatt et al. 2020). Additionally, seabirds typically 
exhibit limited capacity to respond to phenological 
changes (mediated by SST) in their prey (Keogan et 
al. 2018). 

In addition to oceanography, seabirds are vulnera-
ble to change in atmospheric climate. The effects of 
air temperature on seabirds are best known from the 
breeding season, with air temperature influencing 
productivity and/or adult survival through direct or 
indirect mechanisms (Bukaciński & Bukacińska 
2000, Oswald et al. 2008, Gaston & Elliott 2013, Indy -
kie wicz 2015). The effects of rainfall and storminess 
on seabird demographic rates can operate both on 
productivity (Thompson & Furness 1991, Newell et 
al. 2015) and adult survival (Frederiksen et al. 2008, 
Morley et al. 2016). 

Several studies have forecasted that climate 
change will drive changes in seabird abundance or 
distribution in Europe. Although focussed solely on 
Special Protection Areas (SPAs) within the UK, 
Johnston et al. (2013) found that generally negative 
associations between both summer temperature/
rainfall and seabird abundance at colonies are pro-
jected to result in an overall seabird abundance de -
cline of approximately 50% by 2080 under a high 
(A1F1) climate change scenario, with declines of 
more than 50% projected for 7 out of 17 species. 
Russell et al. (2015) projected that the range extent 
of 65% of seabird species that breed in Britain 
would decline across Europe, with Leach’s storm-
petrel Oceano droma leucorhoa, great skua Sterco-
rarius skua, Arctic skua S. parasiticus, black-legged 

kittiwake Rissa tridactyla (hereafter ‘kitti wake’), 
Arctic tern Sterna paradisaea and auks being par-
ticularly vulnerable. Häkkinen et al. (2023) pro-
jected that for all but one of the 48 seabirds as -
sessed, a greater proportion of the current European 
breeding area will decline than in crease in climatic 
and oceanographic suitability by 2070−2100. These 
studies support the climate envelope modelling of 
Huntley et al. (2007) across Europe which suggested 
that the breeding ranges of many seabird species in 
Britain and Ireland would shift northwards by the 
end of the 21st century, resulting in the potential 
extirpation of a number of species in Britain and 
Ireland. Although much of the impact of climate 
change on seabirds is expected to be mediated 
through oceanography (e.g. Searle et al. 2022; see 
Johnston et al. 2021 for an overview), future projec-
tions of seabird abundance or distribution in the NE 
Atlantic (except for Russell et al. 2015 and Häkki-
nen et al. 2023, which respectively predicted distri-
bution and climate/oceanography suitability alone; 
Häkkinen et al. 2021 did not make future projec-
tions) have been based solely on atmospheric cli-
mate. For the 3 seabird species studied (Atlantic 
puffin Fratercula arctica, hereafter ‘puffin’, northern 
gannet Morus bassanus, hereafter ‘gannet’, and ro -
se ate tern Sterna dougallii), Häkkinen et al. (2021) 
found that the best-performing species distribution 
models used both atmospheric and oceanographic 
information. 

In this study, we use a Bayesian hurdle model to 
estimate the relationship between spatial and tem-
poral variation in seabird abundance in Britain and 
 Ireland and oceanographic and climate variables. 
Using the fitted relationships, we then predict 
future changes in abundance to 2050 as a result of 
projected changes in both climate and oceanogra-
phy. By specifically projecting the impacts of climate 
change on abundance, we produce outputs directly 
relevant to modelling future extinction risk and 
species’ conservation assessments (Thomas et al. 
2011, Massi mino et al. 2017). Species’ relationships 
with climate may result from a combination of their 
physiology, ecology and behaviour (Mitchell et al. 
2020); for example, surface-feeding species may be 
more vulnerable to impacts on food availability due 
to their reduced foraging flexibility (Furness & 
Tasker 2000). In order to help understand species’ 
relationships with climate and oceanography, we 
also examine species’ fitted relationships with cli-
mate and oceanography and assess whether they 
vary according to species’ feeding ecology and 
habitat specialism. 
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2.  MATERIALS AND METHODS 

2.1.  Seabird abundance data 

Seabird breeding populations around Britain and 
Ireland have been counted through periodic cen-
suses, of which Seabird Colony Register for 1985−
1988 (hereafter ‘SCR Census’; Lloyd et al. 1991) and 
Seabird 2000 for 1998−2002 (Mitchell et al. 2004) 
were included in the analysis. Data from the most 
recent census, Seabirds Count (2015−2022) are not 
yet available for analysis. Although neither the SCR 
Census nor Seabird 2000 achieved complete cover-
age of all seabird breeding sites and there were dif-
ferences in coverage (e.g. inland sites were more 
completely covered in the latter; Mitchell et al. 2004), 
collectively they provide robust data on spatial and 
temporal variation (albeit only 2 temporal replicates) 
in seabird abundance during the second half of the 
20th century. The Seabird Monitoring Programme 
provides annual monitoring data from a subset of 
colonies extending back to 1986 (JNCC 2020), but 
due to the incomplete nature of these data (only a 
small non-random subset of colonies is counted) and 
the fact that they generally do not provide full colony 
counts, they were not used. 

Data were included for all census-sites in Britain, 
Ireland, Channel Islands and Isle of Man (hereafter 
‘Britain and Ireland’): 5657 in the SCR Census and 
1968 in Seabird 2000 (many ‘sites’ in the SCR Census 
be came ‘sub-sites’ in Seabird 2000), and for all 
species with a minimum of 10 breeding pairs in total 
(25 species; Section S1, Table S1 in the Supplement at 
www.int-res.com/articles/suppl/m725p121_supp.
pdf). Counts for Manx shearwater Puffinus puffinus, 
Leach’s storm-petrel and European storm-petrel Hy-
drobates pelagicus (hereafter storm-petrel) in the 
SCR Census were based on expert assessment rather 
than surveys due to the high level of uncertainty in 
the count methods at that time (Mitchell et al. 2004), 
and so the SCR Census data were omitted from the 
present study for these species.  

The spatial resolution of all data sets was aligned to 
that of the UKCP18 atmospheric climate data (12 × 
12 km cells). Seabird abundance for each census 
period was taken as the summed abundance for each 
species within each cell. When a census-site spanned 
more than one cell (affecting 282 counts in SCR Cen-
sus and 1667 counts in Seabird 2000), the count for 
that census-site was divided among those cells in 
proportion to the length or area of the site spanning 
those individual cells and rounded to the nearest 
integer. 

There is likely to be some unknowable location 
error in the seabird abundance data because in each 
of the censuses, the breeding locations of individual 
seabirds were allocated into census-sites of variable 
spatial extent. Some census-sites were also differently 
defined between the censuses. As a result, it is possi-
ble that some apparent abundance change at the site 
level between censuses was due to differing spatial 
de finitions of sites (e.g. if a site in a given cell in 
the SCR Census was subsumed into a larger site in 
Seabird 2000, and the central coordinates of the Sea -
bird 2000 site fell in a different cell). These issues in-
troduce unavoidable error into the spatial and tempo-
ral seabird−abundance−environment relationships. 
However, we consider these issues to be quite minor 
be cause (1) most counts came from relatively small 
census-sites (79.6 and 83.9% of counts came from 
census-sites with a length of <2 km in SCR Census 
and Seabird 2000, respectively) and (2) few counts 
came from sites that spanned multiple cells (2.1 and 
6.8% in SCR Census and Seabird 2000, respectively). 

All data preparation and analysis were carried out 
in R version 4.2.1 (R Core Team 2022). 

2.2.  Seasonal delineation of environmental data 

Climate can influence seabird population growth 
rate through either productivity or survival or through 
both (Sandvik et al. 2012). In selecting climatic and 
oceanographic variables, we chose variables which 
might influence seabird abundance through produc-
tivity and mortality (Johnston et al. 2021), focussing 
on environmental variables operating at or near the 
breeding colony. Climate change in the wintering 
 areas is likely to influence seabird abundance, but 
there is limited information available on the precise 
areas where Britain and Ireland seabirds winter and 
how wintering areas differ between individual breed-
ing colonies or census-sites (Buckingham et al. 2022). 
However, although many species of seabird are only 
present at the colony during the breeding season, 
wintering conditions around the breeding sites are 
still likely to influence seabird demography; for ex-
ample, through changes in local prey (Frederiksen et 
al. 2007, Ramos et al. 2013) or by influencing the 
availability of breeding sites (e.g. winter rainfall dam-
aging burrows). Therefore, we incorporated atmo-
spheric climate and oceanographic data from both 
the breeding season and non-breeding season, but 
only at the sites where breeding takes place. 

Seabird species differ in the timing of their breed-
ing seasons and, thus, in the time period over which 
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environmental variables can affect productivity or 
potentially affect mortality after the breeding season 
(e.g. mediated by post-breeding condition). In order 
to account for this variation, breeding-season envi-
ronmental variables were summarized for each species 
(Table S1). Species-specific breeding seasons were 
defined as the months during which eggs or chicks 
can be present, as described by Campbell & Fergu-
son-Lees (1972). No data were available from this 
source for the breeding season for the Mediterranean 
gull Ichthyaetus melanocephalus in Britain and Ire-
land, so the breeding season for the closely re lated 
black-headed gull Chroicocephalus ridibundus was 
used for this species. 

2.3.  Climate variables 

In common with other studies (Johnston et al. 2013, 
Russell et al. 2015), we used air temperature and pre-
cipitation as proxies of relevant variation in atmo-
spheric climate; both variables can influence seabird 
population growth rate through productivity and sur-
vival (Johnston et al. 2021). Observed maximum 
monthly temperature, minimum monthly tempera-
ture and total monthly precipitation data were de -
rived from Had-UK (Met Office et al. 2019) and Met 
Éireann (Met Éireann 2020) interpolated data sets at 
1 km resolution and aggregated to the cell scale. 
Modelled atmospheric climate variables for 1980−
2080 for the same variables were derived from Met 
Office UKCP18 data (Met Office Hadley Centre 
2018b). For the UKCP18 data, projections were avail-
able from 12 different global and regional models; 
there was no a priori reason to select any one of these 
runs, so the median was taken for each of the 3 
monthly variables across the 12 projections. 

Given that seabirds are long-lived species, we 
assume that climate influences abundance through 
its effects on several consecutive years of productiv-
ity and survival, rather than instantaneously influ-
encing abundance solely in the census year. There-
fore, atmospheric climate data were averaged over 
the 5 yr up to the median year of each census (1986 
and 2000 respectively). A small number of counts 
(one Arctic skua count in the SCR Census; one Manx 
shearwater count and 5 storm-petrel counts in 
Seabird 2000) took place more than 5 yr before the 
median year of each census. Although these counts 
are therefore technically related to future climate, 
given strong temporal autocorrelation in both abun-
dance and climate, the counts were left in the data 
set. 

From these data, 4 climate variables were derived, 
summarizing winter and breeding season tempera-
ture and precipitation, respectively (see Table 1). 
Given that there is evidence that changes in the ex -
tremes of climate are more influential than climate 
means on the trajectory of bird populations (Pearce-
Higgins et al. 2015), atmospheric climate variables 
were designed to encapsulate the minimum or maxi-
mum possible values to identify summer heat, winter 
cold and extremes of precipitation. 

2.4.  Oceanographic variables 

The relative importance of different oceanographic 
variables in driving seabird abundance, distribution 
and demographic parameters is still not fully under-
stood; however, the most commonly included vari-
ables in such analyses are bathymetry and SST (Nur 
et al. 2011, Satterthwaite et al. 2012, Carroll et al. 
2015). Many studies also include an index of stratifi-
cation — either its strength, phenology or both 
(Bertrand et al. 2014, Trevail et al. 2019). Potential 
energy anomaly (PEA) is a proxy measure of ocean 
stratification, describing the energy required to fully 
mix a column of water: more intensively stratified 
water columns have higher PEA values. 

SST and PEA were derived from the Scottish Shelf 
Model (SSM) (De Dominicis et al. 2018, 2019), 
which covers much of Britain and Ireland waters at 
variable spatial resolution, with the highest resolu-
tion in in shore waters (as low as 1 km node spacing 
at the coastline). These were the only oceano-
graphic data available that have the same timestep 
and greenhouse gas concentration scenario as the 
UKCP18 projections, allowing seabird abundance 
projections that incorporate both oceanographic and 
climate variables. However, unlike the climate data, 
the historical SSM data are modelled rather than 
directly observed (see De Dominicis et al. 2018, 
2019 for more details). The variables were averaged 
(weekly mean) over the periods 1990−2014 and 
2038−2062. The original data, being of variable spa-
tial resolution on an unstructured grid, were aggre-
gated (by mean) to the same cell size used as the 
seabird abundance and atmospheric climate data. 
Historical SSM data were only available from 1990 
to 2014 and therefore did not overlap with the SCR 
Census time period (1985−1988), so were left blank 
for the SCR Census counts. These data also span 
be yond the period of the Seabird 2000 census, but 
we regard them as likely to be indicative of the spa-
tial variation present across the study area given 
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strong temporal and spatial covariation. This means 
that the oceanographic variables only relate to spa-
tial variation in presence and abundance from 
Seabird 2000, rather than (as for the climate vari-
ables) also accounting for temporal variation be -
tween the 2 censuses. 

In our study area, the PEA of waters on and off the 
Scottish continental shelf differs by several orders of 
magnitude because the deeper waters off the conti-
nental shelf require more energy to become fully 
mixed, by definition. To avoid bathymetry dominat-
ing PEA values, PEA values were omitted for deeper 
(>200 m deep) waters (see Section S2, Fig. S1). The 
foraging range for some species/colonies overlapped 
the continental margin and abyssal plain: for these 
species/colonies, therefore, the value of the PEA 
variable only summarises the PEA of the area of that 
foraging range overlying the continental shelf. SSM 
data were not available for some distant locations be-
yond the continental margin, and so there were addi-
tionally missing values for SST for those locations. 

The area of ocean used by individuals at a given 
colony varies considerably between different sea bird 
species (Table S1), and so the 12 km cell scale was 
not necessarily the scale at which oceanogra phic 
variables are relevant to seabirds: for example, 
species may forage far beyond the cell extent. Each 
oceanographic variable was thus averaged over 
species-specific foraging ranges, derived from the 
review by Woodward et al. (2019). Mean maximum 
foraging ranges were available for all species other 
than Arctic skua and Leach’s storm petrel; for these 
species, we used the estimates from the earlier re -
view by Thaxter et al. (2012), which were based upon 
observed distance from shore rather than distance 
from colony (Table S1). For a given cell and species 
or oceanographic variable, the mean was taken of all 
values for that oceanographic variable over the 
species’ mean maximum foraging range, weighted 
by the reciprocal of distance (distance + 0.1 km to 
avoid dividing by zero) of the oceanographic variable 
points from the midpoint of the cell. 

2.5.  Other environmental data 

Bathymetry data (depth of water column in m) 
were derived from UKCP09 marine projections data 
(Hadley Centre for Climate Prediction and Research 
2017). Although projections are available for sea 
level rise, this is predicted to be of the order of tens of 
cm within the study area over the 21st century (Met 
Office Hadley Centre 2018a), while the bathymetry 

data are in metres. Therefore, the same bathymetry 
data were used for the historical and future periods. 
Bathymetry data were averaged over a species’ for-
aging range (as in Section 2.4). 

Although climate is known to affect seabird distri-
bution and abundance, fine-scale spatial variation in 
seabird abundance is caused by many other pro-
cesses. Most simply, whilst many of our study species 
solely or mostly breed at the coast or on small islands, 
some also breed extensively inland. Therefore, we 
include 3 nuisance environment variables to account 
for spatial variation in seabird abundance: ‘coastal’, 
whether a cell was entirely more than 5 km from the 
coast; ‘islands’, whether a cell contained any islands 
that were less than 15 km2 in area; and ‘coastline 
length’, the length of coastline within a cell (calcu-
lated using function ‘gLength’ in the R package 
‘rgeos’ version 0.5-9; Bivand & Rundel 2021). It is 
worth noting that these nuisance variables will be 
poor descriptors of the physical variables likely to 
influence seabird abundance at this scale, particu-
larly features of cliff height and length that cannot 
easily be derived from large-scale data sets in a way 
that is relevant for each species. This means that we 
expect our models to be relatively weak predictors of 
spatial variation in seabird abundance for species 
where such features are important, but that this does 
not necessarily mean that they will not be good pre-
dictors of the overall climatic component of such dis-
tributions (Johnston et al. 2013). 

2.6.  Modelling approach 

Seabird abundance was related to environmental 
variables for each species individually. The fitted 
model was then used to project future seabird abun-
dance in 2050, using projected atmospheric climate 
and oceanographic data for 2050 under the green-
house gas concentration scenario Representative 
Concentration Pathway (RCP) 8.5. The RCP scenario 
framework was used rather than the Shared Socio -
economic Pathway framework because at the time of 
analysis, more relevant climate and oceano graphy 
data sets were available that used RCP scenarios. 
RCP8.5 represents the most aggressive future green-
house gas concentration scenario, being equivalent 
to approximately 2°C global warming by 2050 com-
pared to 1986−2005 levels (IPCC 2014), and is the 
scenario most consistent with the current global 
 trajectory (Schwalm et al. 2020). Predictions were 
then made from these models at the Britain and Ire-
land scale. 
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Seabird abundance should be subject to both in -
trinsic and extrinsic causes of spatial autocorrelation 
(Beale et al. 2010). To infer the relationship between 
climate, oceanography and seabird abundance while 
properly accounting for spatial autocorrelation, we 
fitted spatial models using integrated nested Laplace 
approximation (INLA) (Rue et al. 2009). INLA fits 
models in a Bayesian framework; but by estimating 
(rather than sampling from) the posterior distribu-
tion, INLA provides major gains in computational 
efficiency compared to traditional Markov chain 
Monte Carlo (MCMC; a class of algorithm that gen-
erates samples from the posterior distribution) meth-
ods for fitting spatial models to large data sets. In 
order to account for spatial autocorrelation, we mod-
elled seabird abundance as a function of both fixed 
effects (environmental variables) and a spatial ran-
dom effect (see Section S3 in the Supplement). 

Zero counts were inconsistently recorded in the 
seabird censuses. Actual zeros were rarely recorded: 
they represent 2.6% of all recorded counts (repre-
senting 1.9% of cells) in the SCR Census, and 11.2% 
of all recorded counts (representing 5.6% of cells) in 
Seabird 2000. The proportion of counts recorded as 
zero varied considerably between species. It is un -
clear how surveyors would decide between record-
ing an absence as a zero or as a blank (information is 
not provided on this in Mitchell et al. 2004). Follow-
ing Johnston et al. (2013), we assumed that in gen-
eral, given that the periodic seabird censuses aim to 
count all seabirds at all sites present, species were 
not present at census-sites at which they were not 
recorded. We consider this assumption to be rela-
tively inconsequential for our inference, being least 
valid for the few species which moved colonies 
between years or which could only be surveyed by 
tape-playback. 

The available data set for a given species in a given 
census therefore consisted of count data (mostly pos-
itive but some zeros) for some cells and non-count 
data (i.e. zeros) for all remaining cells containing sea -
bird census-sites; for all species, the non-count data 
constituted a larger proportion (sometimes >99%) of 
the total available data set than the count data. A 
hurdle model was therefore used (Sadykova et al. 
2020); this separately models presence−absence 
(with a binomial likelihood) and abundance-given-
presence. 

Preliminary data exploration revealed that the 
count data were over-dispersed, presumably due to 
aggregation effects from colonial breeding. The 
negative binomial distribution, which includes a 
parameter for over-dispersion, was considered more 

appropriate than the Poisson distribution. Therefore, 
a zero-truncated negative binomial likelihood was 
used for the abundance-given-presence component 
of the hurdle model. Presence and abundance-
given- presence were assumed to be driven by 
slightly different processes, and so parameters for 
the explanatory variables and spatial random effect 
were estimated separately for the 2 model compo-
nents. To account for potential non-linear relation-
ships (Hansen et al. 2021), both linear and quadratic 
terms were included in the full model for all contin-
uous variables. The full model therefore comprised 
9 environmental covariates, 9 quadratic terms for 
the environmental covariates and 3 nuisance vari-
ables (Table 1). 

Default priors (as per the R-INLA package version 
22.5.07) were specified for the fixed effects in the 
model. The priors for the Matérn covariance function 
of the spatial random effect were specified according 
to its empirical range r and marginal standard devia-
tion σ (Bakka et al. 2018). Reasonably vague prior 
para meters were given: P(r > 0.3) = 0.5; P(σ > 10) = 
0.01. Coordinates and environmental covariates were 
scaled to mean 0 and standard deviation 1 before in-
clusion in the model, to avoid numerical issues. Mod-
els were fitted in R-INLA (Rue et al. 2009), accessed 
through R. 

Abundance data were used from both censuses, 
and so there were repeated measures at census-sites 
that were surveyed in both censuses. However, there 
was not enough repeated sampling (only 2 census 
periods) to estimate the parameters of an additional 
random effect for cell. Although this is unlikely to 
affect the estimates of the coefficients, it may result 
in their precision being over-estimated. 

2.7.  Model diagnostics and validation 

Success of model convergence was assessed using 
the Kullback-Leibler distance (KLD) of each parame-
ter. KLD measures the ability for the normal distribu-
tion to approximate the posterior probability distri-
bution for a given parameter and should be close to 
zero if successful. 

By way of validation, the ability of the model to 
predict withheld data was assessed for each species 
using presence and abundance data from just 70% 
(randomly selected) of the census-sites (the ‘spatial 
fine-scale predictive ability assessment’). Using the 
fitted model, the species’ presence and abundance 
was then predicted at the remaining 30% of the cen-
sus-sites. The predictive performance of the model 
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was assessed by (1) the area under the curve (AUC; 
the discrimination ability of a classifier) of the re -
ceiver operating characteristic for the predicted and 
observed presences and (2) the R2 of the relationship 
between the predicted and observed abundances. 
These statistics varied depending on the random 
sample of census-sites withheld, so the median of 
each statistic was taken over 20 model runs (enough 
iterations for the median to converge in preliminary 
analyses). We define 3 discriminatory ability cate-
gories for AUC: moderate (0.7−0.8), good (0.8−0.9) 
and excellent (>0.9). Following Pearce-Higgins et al. 
(2011), we define 4 predictive ability categories for 
R2: very poor (<0.01), poor (0.01−0.06), moderate 
(0.06−0.25) and good (>0.25). Model fit as assessed in 
this way is not necessarily an estimate of the propor-
tion of variation in the response variables explained 
by the fixed effects alone because some of the varia-
tion in the response variables is explained by the 
spatial random effect. Our estimates of predictive 
ability may be underestimates because oceano-
graphic data were not available for the SCR Census 
timestep, and so predictions for this timestep were 
made solely on the basis of the terrestrial and nui-
sance variables. 

2.8.  Prediction 

Predictions were made using the full model (using 
all data, rather than the validation model) for each 
species. Models typically mis-predicted known spe -
cies abundance (assessed by conditional predictive 
ordinate, equivalent to probability density) in a given 
cell. For some species, there was overprediction at 
low population sizes. This overprediction probably 
arose because seabird abundance is likely to be spa-
tially autocorrelated in multiple different ways: 
seabirds can form dense aggregations at very local 
scales (for example, there may be tens of thousands 
of a species within a few hundred metres at one cen-
sus-site, but few or none at any other census-site for 
tens of km around), while dispersal between colonies 
and/or associations with autocorrelated en viron -
mental variables (not all of which are necessarily ac -
counted for in our explanatory variables) can smooth 
abundance at larger spatial scales. For some species, 
the single spatial random effect we used in the abun-
dance model may be insufficient to account for all of 
these sources of aggregation; the dominant effect 
could be of excessive smoothing, meaning that the 
modal expected value is too high, causing overpre-
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Variable             Shorthand                                                       Calculation 
category 
 
Climate              Winter minimum temperature                      Five year December−February mean minimum monthly 

temperature 

                           Breeding season maximum temperature     Five year mean maximum temperature of (yearly) warmest 
month in species-specific breeding season 

                           Winter precipitation                                       Five year mean total December−February precipitation 

                           Breeding season precipitation                      Five year mean total precipitation of (yearly) wettest month in 
species-specific breeding season 

Oceanography   Winter SST                                                     Distance-weighted-mean 24 yr mean December−February 
SST within species-specific foraging area 

                           Breeding season SST                                     Distance-weighted-mean 24 yr mean SST over species-spe-
cific breeding season within species-specific foraging area 

                           Winter PEA                                                     Distance-weighted-mean 24 yr mean December−February 
PEA within species-specific foraging area 

                           Breeding season PEA                                    Distance-weighted-mean 24 yr mean PEA over species-
 specific breeding season within species-specific foraging area 

Other                  Bathymetry                                                     Distance-weighted-mean depth of water within foraging area 

                           Coastal                                                            Whether cell was entirely (0) >5 km from the coast or not (1) 

                           Islands                                                             Whether cell contains any islands of <15 km2 area (1) or  
not (0) 

                           Coastline length                                             Length of coastline (km) within cell

Table 1. Environmental variables included in models of seabird abundance. For a given cell, all oceanographic variables were left 
blank if no ocean-containing cells were within the foraging area. SST: sea surface temperature; PEA: potential energy anomaly
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diction at low population sizes. Similarly, given that 
we aggregated by 12 km cell, thus smoothing some 
of the local aggregation effects, this could be viewed 
as an overdispersion issue, and the negative bino-
mial error structure we used is not necessarily flexi-
ble enough to generate the extreme variation of 
seabird abundance data. In preliminary analyses, we 
attempted to address these issues using multiple spa-
tial random effects or an independent and identically 
distributed random effect, but these potential solu-
tions were not successful. 

Because of these issues, we estimated future abun-
dance by multiplying observed abundance at Sea -
bird 2000 by the predicted change in abundance (i.e. 
predicted abundance in 2050 / predicted abundance 
in 2000). To further improve comparability, UKCP18 
modelled data were used for predicting abundance 
in both 2000 and 2050 (rather than using observed 
HadUK and Met Éireann data for predicting abun-
dance in 2000), thus ensuring all the projected 
changes in seabird abundance were due to projected 
changes in climatic and oceanographic variables 
rather than potential differences between observed 
and projected values. 

To predict abundance and associated uncertainty 
at individual sites, a frequency distribution of pre-
dicted change in abundance was generated for each 
cell. This was done by sampling 1 random draw x 
and y from the posterior distributions of the predicted 
abundance in 2000 and 2050, respectively, and then 
by dividing y by x. This calculation was repeated 
10 000 times for each cell to derive a frequency distri-
bution of predicted change in abundance for that 
cell. The observed abundance in 2000 was multiplied 
by the 2.5th, 50th and 97.5th percentile of this fre-
quency distribution to give the median abundance 
(with confidence interval) for each cell. This abun-
dance (and confidence interval) was apportioned 
among the constituent census-sites in the cell propor-
tionally according to the relative size of their counts 
during Seabird 2000. Where a given census-site 
spanned more than one cell, the predicted abun-
dance (and confidence interval) for that census-site 
was summed across the cells it spanned. 

Our approach — using environmental variables to 
ex plain largely spatial variation in seabird abundance 
and then forecasting future abundance changes 
based on likely future climate scenarios — assumes 
that drivers of spatial change are also drivers of tem-
poral change. As this assumption is not self-evident, 
given the issues with predicting fine-scale spatial 
variation in seabird abundance, and given that the 
aim of the work was to project overall temporal popu-

lation change, we assessed the ability of the model to 
predict temporal population change. We carried this 
out by, for each species, summing predicted and ob-
served abundance across all withheld cells (for a dif-
ferent random sample of withheld cells for each 
species), for SCR Census and Seabird 2000, respec-
tively. This then gave predicted and ob served (one 
value for each) proportional change in aggregated 
abundance. These values were then correlated across 
species. Our assessment may underestimate our 
models’ ability to predict temporal change because 
oceanographic data were not available for the SCR 
Census timestep, and so predictions for temporal 
population change between SCR Census and Seabird 
2000 (but not predictions of future temporal popula-
tion change) were made solely on the basis of terres-
trial climate variables. This assessment is hereafter 
called the ‘temporal large-scale predictive ability as-
sessment’, to contrast with the ‘spatial fine-scale pre-
dictive ability assessment’ described in Section 2.7. 

Focussing on abundance change solely at sites 
where a species was present during Seabird 2000 
ignores the capacity for colonisation, which can com-
pensate for declines or enhance increases in abun-
dance. As a metric of the capacity for colonisation of 
new sites, we also present the median predicted 
change in presence probability across cells unoccu-
pied during Seabird 2000. This metric should only be 
considered a maximum capacity for colonisation 
because not all of the unoccupied area is potentially 
colonisable by all species; for example, due to varia-
tion in breeding habitat suitability (presence of cliffs, 
shorelines of suitable substrate etc. which are not 
mappable across the study area). 

2.9.  Variation in climate−seabird relationships 
with feeding ecology and habitat specialism 

We assessed whether species’ fitted relationships 
with climate and oceanography varied with feeding 
ecology and habitat specialism. We defined 2 cate-
gories of feeding ecology, capturing whether species 
feed in the water column or benthos: ‘diving species’, 
species that mainly do so; and ‘surface-feeding 
species’, species that rarely or never do so (OSPAR 
Commission 2016). We defined 2 categories of habi-
tat specialism, capturing whether species feed in ter-
restrial or freshwater habitats: ‘marine specialists’, 
species that never do so; and ‘habitat generalists’, 
species that sometimes do so. 

For each climate or oceanographic variable, for 
each hurdle model sub-component (presence−
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absence or abundance), a t-test was carried out with 
the parameter estimate as the response variable and 
feeding group or habitat specialism as the explana-
tory variable. Because some species were more 
closely related than others, and thus were potentially 
not independent in their relationships with climate 
and oceanography, a phylogenetic covariance struc-
ture was used in the linear model. A phylogenetic 
tree was averaged from 1000 Ericson backbone trees 
(trees downloaded from www.birdtree.org, accessed 
8 March 2021; Jetz et al. 2012). The model was fitted 
using ‘MCMCglmm’ (Hadfield 2010). 

3.  RESULTS 

3.1.  Model performance and fit 

Model results are not presented for species for 
which there was fewer than one occupied grid-cell 
per parameter (gannet, Leach’s storm-petrel, Manx 
shearwater, roseate tern and Mediterranean gull) or 
for great skua, for which the model did not run suc-
cessfully (deviance information criterion was negative 
infinite). For the remaining 19 species, KLD (approx-
imately a measure of parameter convergence; see 
Section 2.7) was less than 0.1 for all parameters for all 
models, indicating that the models converged. 

For 4 further species with the fewest data (<4 grid-
cells of presence and abundance per parameter; Arc-
tic skua, little tern Sternula albifrons, Sandwich tern 
Thalasseus sandvicensis and storm-petrel), model 
behaviour differed to that of more data-rich species. 
These species had the 4 highest median parameter 
estimates (range: 0.34−1.23; range of remaining 11 
species: 0.12−0.29), and the 4 highest absolute esti-
mates of Seabird 2000 population size, some of which 
were extremely high (predicted−observed Seabird 
2000 population size: range: 9.87−1.35 × 1057; range 
of remaining 15 species: 0.83−4.21). We considered 
these unusual statistics to be indicative of much 
lower reliability, particularly given the lack of data 
for these 4 species; therefore, projections for these 4 
species are provided only in Section S4 in the Sup-
plement. Results (projections, and subsequent analy-
sis of projections and parameter estimates) are pre-
sented here solely for the remaining 15 seabird 
species. 

For 2 species, the projected median change in 
presence probability across cells occupied in 2000 
has an absolute value of greater than 5% and is of 
the opposite sign to the projected Britain and Ireland 
abundance change. For black-headed gull, presence 

probability in occupied cells is projected to decline 
while abundance is projected to increase; for cor-
morant Phalacrocorax carbo, presence probability in 
occupied cells is projected to increase while abun-
dance is projected to decline. It is difficult to conceive 
of a plausible ecological scenario consistent with 
these opposing projections; therefore, for these 2 
species, the poorer model fit of the abundance com-
ponent may mean that the opposite projected trend 
in presence probability is more likely. 

In the spatial fine-scale predictive ability assess-
ment, presence−absence was predicted with good or 
excellent accuracy, with AUC (classification ability; 
see Section 2.7) values from 0.745 (cormorant) to 
0.943 (black guillemot Cepphus grylle) (Table 2). 
This suggested that overfitting was not an issue, de -
spite the relatively large number of explanatory vari-
ables. Spatial fine-scale abundance was predicted 
with much lower accuracy, with R2 values from 0.002 
(guillemot Uria aalge and razorbill Alca torda) to 
0.446 (black guillemot Cepphus grylle). Following 
the criteria of Pearce-Higgins et al. (2011), abun-
dance prediction accuracy was good for 2 species, 
moderate for 5 species, poor for 6 species and very 
poor for 2 species. For 9 species, abundance was 
overpredicted at low observed population sizes. 

We considered the following 3 criteria to be indica-
tors of poorer model fit: predicted abundance trend 
in occupied area opposite to that of presence proba-
bility trend; poor or very poor R2; and overprediction 
at low observed abundances. One species (common 
gull Larus canus) had no indicators of poor model fit, 
9 species had one indicator and 5 species had 2 indi-
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Species                                             AUC                      R2 
 
Fulmar                                              0.916                   0.231 
Cormorant                                        0.745                   0.013 
Shag                                                 0.900                   0.055 
Black-headed gull                           0.847                   0.028 
Common gull                                   0.898                   0.351 
Great black-backed gull                 0.883                   0.206 
Herring gull                                     0.857                   0.041 
Kittiwake                                         0.870                   0.045 
Lesser black-backed gull               0.780                   0.010 
Arctic tern                                        0.906                   0.243 
Common tern                                  0.816                   0.060 
Black guillemot                               0.943                   0.446 
Guillemot                                         0.876                   0.002 
Puffin                                                0.897                   0.140 
Razorbill                                           0.892                   0.002

Table 2. Model fit. Median area under the curve (AUC) 
(presence−absence component) and R2 (abundance compo- 

nent) from 20 iterations of the model
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cators (Section S5, Table S4). We defined model fit as 
‘better’ for the 7 species that either had no indicators 
of poor model fit or for which the only indicator of 
poor model fit was overprediction at low abun-
dances; for the remaining 8 species, we defined the 
model fit as ‘poorer’. 

In the temporal large-scale predictive ability as-
sessment, the model had a moderate ability to predict 
species’ overall changes in population size across all 
withheld cells (linear model, slope = 0.099, R2 = 0.211, 
p = 0.0418; Fig. 1). The direction of change was cor-
rectly predicted for 11 of the 15 species. 

Uncertainty was generally high: for all species, 
the 95% confidence intervals of the projected fut -
ure abundance overlap with current abundance 
(Table 3). The confidence intervals of the projected 
future abundance do not overlap with current abun-
dance for 7 species at the 50% level and 3 species 
at the 75% level (Table 3). 

Three categories of relative confidence in the 
future projections were defined, based on a combi-
nation of model fit (Table S2) and the overlap of pro-
jected future abundance with current abundance 
(Table 3): (1) ‘higher’, better model fit and no overlap 
of future abundance 50% CI with current abun-
dance; (2) ‘intermediate’, either better model fit and 
overlap of future abundance 50% CI with current 
abundance or poorer model fit and non-overlap of 
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Species                              Seabird 2000     Predicted GB&I population size,              Predicted              Predicted presence  
                                            total count           2050 (median and 95% CI)                  abundance             probability change  
                                               (GB&I)                                                                                 change               for unoccupied cells  
                                                                                                                                   (median %, GB&I)        (median %, GB&I) 
 
Fulmar                                     537988               144559 (33473−551158)a,b                      −73.1                               −72.7 
Cormorantc                                13586                   12138 (2045−64585)                           −10.7                            +243.6 
Shagc                                         32202                  44600 (7123−226533)                          +38.5                                +8.5 
Black-headed gullc                 141871               220934 (45232−1612457)                       +55.7                               −63.5 
Common gull                            49728                 50591 (14613−183392)                           +1.7                               −15.6 
Great black-backed gull          19610                   16417 (3943−70231)                           −16.3                               −51.0 
Herring gullc                           148849                105568 (30444−351803)                        −29.1                              +31.4 
Kittiwakec                                415994                192333 (35828−968980)b                       −53.8                               −81.6 
Lesser black-backed gullc      116640               126622 (15219−1001976)                         +8.6                              +20.4 
Arctic tern                                 48469                  12170 (2444−69229)a,b                         −74.9                               +17.3 
Common tern                            13859                   14404 (3183−76857)                             +3.9                              +24.3 
Black guillemot                         42701                   26454 (7316−88746)b                          −38.0                                 +1.8 
Puffin                                       600751                68588 (3726−1042735)a,b                       −88.6                               −80.7 
Razorbillc                                 216060                107029 (19592−523769)b                       −50.5                               −96.1 
Guillemotc                             1559484              784397 (102574−5352779)b                     −49.7                               −91.8 
 
a75% CI does not overlap with Seabird 2000 total count 
b50% CI does not overlap with Seabird 2000 total count 
cPoorer model fit

Table 3. Projected future abundance and presence change for 19 seabird species under climate change. GB&I: Great Britain  
and Ireland

Fig. 1. Observed and predicted population change, by spe -
cies. Each point is the log observed and log predicted change 
in abundance between Seabird Colony Register and Seabird 
2000, where abundance is summed across all cells for which 
data were withheld from the model. Colour shows whether 
species were correctly attributed to overall increase or de-
cline: blue: correctly attributed; red: incorrectly attributed.  

Solid line: y = x; dashed lines: x = 0 and y = 0
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future abundance 50% CI with current abundance; 
(3) ‘lower’, poorer model fit and overlap of future 
abundance 50% CI with current abundance. Under 
this categorization, 4 projections could be made with 
higher confidence, 6 with intermediate confidence 
and 5 with lower confidence. 

3.2.  Projected future abundance and presence 

Under RCP8.5, 10 out of 15 seabird species are pro-
jected to decline in abundance in Britain and Ireland 
by 2050 (Table 3; 4 with higher confidence, 4 with 
intermediate confidence and 2 with lower confi-
dence). Fulmar Fulmarus glacialis, Arctic tern and 
puffin (higher confidence) and kittiwake and razor-
bill (intermediate confidence) are all projected to 
decline by more than 50%, with a greater than 80% 
decline projected for puffin. Conversely, European 
shag Gulosus aristotelis (hereafter ‘shag’) and black-
headed gull are projected to increase by more than 
30%, albeit with lower confidence. 

For 4 (cormorant and herring gull Larus argentatus 
with lower confidence; Arctic tern and black guille-
mot with higher confidence) of the 10 species for 
which abundance declines are projected, presence 
probability is projected to increase on average in 
cells unoccupied in 2000. This suggests that colonisa-
tion of new areas may to some extent compensate for 
abundance declines within the range occupied in 
2000; however, this depends on the proportion of the 
unoccupied area that actually represents suitable 
habitat for these species. Projected presence proba-
bility increases are on average low for black guille-
mot relative to projected abundance declines, sug-
gesting limited capacity for colonisation of new areas 
to compensate for abundance declines for this 
species. 

For 3 (shag and lesser black-backed gull L. fuscus 
with lower confidence; common tern Sterna hirundo 
with intermediate confidence) of the 5 species for 
which abundance increases are projected, presence 
probability is also projected to increase on average in 
cells unoccupied in 2000, meaning that colonisation 
of new areas may contribute to further abundance 
gains beyond those within the cells occupied in 2000 
alone. 

For many seabird species, projected abundance 
change is highly spatially variable (Section S6, 
Figs. S2−S20). Generally, seabird abundance de -
clines are expected to be more pronounced in the 
south and east of Britain and Ireland (Fig. 2a). For 
Laridae and Phalacrocoracidae (Fig. 2c,d), some 

abundance in creases are projected in the north of 
Britain and Ireland. Fulmar is projected to increase in 
abundance in the south of Britain (Fig. 2e). 

No significant difference in projected population 
change was found between surface-feeding and 
 diving species (linear model, coefficient for diving 
species relative to intercept: −13.47, F1,13 = 0.35, 
p = 0.562). Declines in surface-feeding and diving 
species are projected to be more pronounced in the 
SE and SW of Britain and Ireland respectively (Sec-
tion S6, Figs. S21 & S22). Marine specialists are pre-
dicted to have significantly more negative population 
change than habitat generalists (linear model, coeffi-
cient for marine specialists relative to intercept: 
−50.75, F1,13 = 8.33, p = 0.013). There is no clear spa-
tial pattern in projected change in marine specialists 
(Section S6, Fig. S23), but projected change for habi-
tat generalist species is more negative in the SE of 
Britain and Ireland (Section S6, Fig. S24). 

3.3.  Parameter estimates 

All parameter estimates for the relationship be -
tween seabird presence or abundance with climate 
and oceanographic variables are given in Section S7, 
Table S5. Only linear terms are presented in the fol-
lowing section because linear terms were considered 
to be of greater importance, being of greater absolute 
magnitude than quadratic terms (mean absolute lin-
ear term was 3.07× the mean absolute quadratic 
term; linear model, F1,628 = 53.93, p < 0.001). The 
analysis of parameter estimates was only carried out 
for the 15 species for which projections are included 
in the main text. 

Although estimated independently, parameter esti-
mates for presence and abundance components for a 
given climate or oceanographic variable were mod-
erately strongly positively correlated (linear model, 
effect size = 0.27, F1,313 = 166.2, p < 0.001, R2 = 
0.345). Overall, parameter estimates for  environment−
presence or environment−abundance relationships 
were highly variable across species. The only vari-
ables for which the 95% credible interval of the mean 
parameter estimate (across species, after ac counting 
for phylogeny) did not overlap with zero were breed-
ing season maximum temperature negative relation-
ships with both presence (effect size = −1.49; 95% 
CI = −1.94, −1.06) and abundance (effect size = −0.72; 
95% CI = −1.17, −0.29); winter minimum temperature 
positive relationship with presence (effect size = 0.81; 
95% CI = 0.36, 1.24); distance from coast negative re-
lationships with both presence (effect size = −2.00; 
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95% CI = −2.46, −1.57) and abundance (effect size = 
−0.82; 95% CI = −1.27, −0.39). Parameter estimates for 
breeding season climate variables were slightly 
greater in absolute magnitude than for winter climate 
variables (paired t-test; mean difference = 0.27, t = 
2.34, df = 59, p = 0.023). 

The abundance of diving species had a more nega-
tive relationship with breeding season SST than did 
the abundance of surface-feeding species (Fig. 3). 
Relationships of both presence and abundance with 
breeding season maximum temperature were more 
negative for marine specialists than for habitat gen-
eralists (Fig. 4). For presence, marine specialists had 
more positive relationships with breeding season 
PEA and more negative relationships with winter 
PEA than did habitat generalists. 

4.  DISCUSSION 

4.1.  Projected changes 

Our study is the first to project future abundance for 
seabird species in the north-east Atlantic on the basis 
of multiple climate and oceanographic variables. Us-
ing a model that was able to predict recent population 
changes across withheld data, we predict that the ma-
jority of breeding seabird species for which predic-
tions were made (10 out of 15) will decline in abun-
dance in Britain and Ireland during the 21st century, 
based on the fitted relationships with climate and 
oceanography (with higher, intermediate and lower 
confidence for 4, 4 and 2 species, respectively). Steep 
declines of greater than 50% of abundance between 
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Fig. 2 Spatial variation in projected % 
change (1998−2002 to 2050; median 
change across species) in breeding pairs 
of seabird species, for all cells where 
species group was present in 1998−
2002: (a) all species; (b) Alcidae (black 
guillemot, guillemot, puffin, razorbill); 
(c) Laridae (gulls and terns); (d) Phala -
crocoracidae (cormorant, shag); (e) Pro-
cellariidae (only fulmar). Blue: increase; 
red: decrease. Colour bins are evenly  

spaced on log scale
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1998−2002 and 2050 are predicted with higher confi-
dence for fulmar, puffin and Arctic tern, and with in-
termediate confidence for razorbill and kittiwake. 
Abundance increases be tween 1998−2002 and 2050 
are predicted with intermediate confidence for com-

mon gull and common tern, and with lower confidence 
for black-headed gull, lesser black-backed gull and 
shag. Of these 5 species, 2 (black-headed gull and 
shag) are predicted with lower confidence to increase 
in abundance by more than 30%. 
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Fig. 3. Estimated mean (±95% CI) para -
meter estimate of species’ relationship 
with climatic and oceanographic variables, 
by feeding ecology. Only estimates for lin-
ear terms are shown. Presented parameter 
estimates and credible intervals are from 
model with no intercept; significance of 
difference between ecological groups as-
sessed with model with an intercept. (*) 
significant at 0.01 ≤ α < 0.05. PEA: poten-
tial energy anomaly; SST: sea surface tem-
perature; Ppn: precipitation. Dashed line:  

parameter estimate of zero

Fig. 4. Estimated mean (±95% CI) para -
meter estimate of species’ relationship with 
climatic and oceanographic variables, by 
foraging habitat specialism. Only estimates 
for linear terms are shown. Presented pa-
rameter estimates and credible intervals 
are from model with no intercept; signifi-
cance of difference between ecological 
groups assessed with model with an inter-
cept. (*) significant at 0.01 ≤ α < 0.05; (**) 
significant at α < 0.01. Dashed line: para- 

meter estimate of zero
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Abundance increases at newly colonised locations 
(suggested by projected presence probability in -
creases outside of the area occupied during Seabird 
2000) may to some extent compensate for predicted 
abundance declines for cormorant, herring gull, Arc-
tic tern and black guillemot, and may enhance pre-
dicted abundance in creases for shag, lesser black-
backed gull and common tern. However, this 
apparent capacity for colonisation should be viewed 
as a maximum because not all breeding habitat un -
occupied in Seabird 2000 is potentially colonisable 
by these species. Furthermore, of the 10 species pro-
jected to decline in abundance, colonisation is pro-
jected to potentially compensate for these declines 
for only 4 species; additionally, for one of these 
species (black guillemot), the projected in crease in 
presence probability outside the occupied area is 
projected to be of much lower magnitude than the 
projected abundance decline. Therefore, in general, 
we expect there to be only limited potential for 
colonisation of new areas to compensate for seabird 
population declines in Britain and Ireland. 

Our projections accord with 4 similar studies in the 
UK or Europe which project that climate change will 
cause declines for the majority of seabird species in 
the UK. Our projections were typically in the same di-
rection: 10 out of 15 shared species in Huntley et al. 
(2007); 10 out of 13 shared species in Johnston et al. 
(2013); 8 out of 13 shared species in Russell et al. 
(2015); 9 out of 11 shared species in Häkkinen et al. 
(2023). The only species for which our projections dif-
fered from those for all 3 other studies is lesser black-
backed gull, for which we project an abundance in-
crease under climate change. There are 3 potential 
causes of the differences in projections be tween stud-
ies. Firstly, the climate variables included in the pro-
jections differed: only Russell et al. (2015) and Häkki-
nen et al. (2023) also used oceanographic variables. 
Secondly, the metrics projected differed: the present 
study and Johnston et al. (2013) projected abundance, 
while the other 3 studies projected range. Thirdly, the 
geographical area differed: Johnston et al. (2013) 
covered UK SPAs only; the other 3 studies covered 
Europe. A recent study of the effects of climate vari-
ables on temporal variation in seabird breeding suc-
cess was able to detect links with climate for 5 species 
(Searle et al. 2022), of which 4 overlap with the pre-
sent study. All 4 of these species were predicted to 
decline in breeding success by Searle et al. (2022) 
and to decline in abundance by the present study. 
The general agreement of these (albeit not wholly in-
dependent) studies on the  projected negative trend 
across seabird species emphasizes the climate vul-

nerability of Britain and Ireland’s internationally im-
portant breeding seabird populations. 

Even though the current study area of Britain and 
Ireland is relatively small compared to the ranges of 
the study species, considerable spatial variation in 
abundance trend is projected for many species. Al-
though species’ spatial responses are expected to be 
highly idiosyncratic, projected seabird abundance 
declines are typically steeper in the south and east of 
Britain and Ireland (particularly for surface feeders 
and habitat generalists) than in the north and west, 
where there may be increases for some species. It is 
notable that the south and east of Britain and Ireland 
is where the steepest projected increases in breeding 
season maximum temperature are; however, we did 
not assess the relative importance of different vari-
ables in projected abundance changes, and so it is not 
clear whether greater exposure to projected warming 
explains the steeper projected declines there. 

The lack of a difference in projected abundance 
trend for surface-feeding and diving species suggests 
that diving species may not continue to be buffered 
against climate change impacts, as they are currently 
assessed to be (Mitchell et al. 2020). Marine special-
ists are projected to have more negative abundance 
trends than habitat generalists. This may compound 
the vulnerability to climate change already arising 
from this group’s narrow ecological breadth. 

In this study, we solely considered seabird species 
that bred in Britain and Ireland in considerable num-
bers at the last 2 censuses. However, redistribution of 
species under climate change may mean that other 
seabird species with a more southerly current Euro-
pean distribution may constitute a more important 
proportion of the British and Irish seabird community 
in the future. For example, Mediterranean gull has 
increased in abundance since the last seabird cen-
suses by >6000% (Eaton & Rare Breeding Birds 
Panel 2022). Projections similar to ours could be car-
ried out for seabird species that do not currently 
breed in Britain and Ireland, to assess the prospects 
of colonisation by those species and the associated 
conservation implications. 

4.2.  Fitted presence−abundance relationships with 
climate/oceanography 

Although other studies have modelled future 
changes in seabird abundance and distribution under 
projected environmental conditions, ours is the first 
study to explore the underlying fitted relationships. 
We found relationships with climate and oceano -
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graphy to be highly variable across seabird species; 
however, in general, seabird presence and abun-
dance was typically negatively related to breeding 
season maximum temperature. Multiple studies have 
found that some seabird species can be directly nega-
tively impacted by warmer breeding season air tem-
peratures (Gaston et al. 2002, Oswald et al. 2008), but 
it is unclear whether the relationships we found are 
due to such direct effects or due to other factors 
which are correlated with breeding season maximum 
temperature. Given that few effects of winter mini-
mum temperature on seabirds have been docu-
mented, it is likely that the overall positive relation-
ship we found between this variable and seabird 
presence is indirect, perhaps being mediated through 
impacts on prey abundance or storminess. 

Parameter estimates for the relationship between 
climate/oceanography variables at the colony and 
seabird presence−abundance were generally lower 
in magnitude for winter than for breeding season cli-
mate/oceanography variables. This may be because 
our winter climate/oceanography variables only cap-
tured conditions close to the colony: other studies 
have found that although seabirds are influenced by 
conditions in the non-breeding season, non-breeding 
season conditions over the wintering range are more 
influential than those at the colony while the birds 
are elsewhere (Reed et al. 2015). 

The relationship between abundance and breeding 
season SST was typically more positive for surface-
feeding species than for diving species (for which the 
credible interval of the estimate overlapped with 
zero). Positive relationships with SST are not uncom-
mon among marine predators (Orgeret et al. 2022); 
however, the mechanism behind this difference is un-
clear but could potentially arise from differences in 
typical prey between the 2 functional groups, if the 
prey of surface feeders typically have a more positive 
relationship with breeding season SST. For example, 
the slope of the relationship between breeding 
season SST and abundance for lesser black-backed 
gull (categorized as a surface feeder in the present 
study) was positive (although the 95% CI overlapped 
0: slope = +0.47; 95% CI = −0.25, +1.20; Table S5). 
There is a prey-mediated pathway underlying such a 
relationship for lesser black-backed gull: Luczak et 
al. (2012) found evidence of a pathway of successive 
positive relationships between SST, decapod larvae 
abundance, adult swimming crab abundance and 
abundance of lesser black-backed gull at nearby 
colonies around the North Sea. Ultimately, because 
the effects of climate change are borne out through 
many variables, species that have a positive relation-

ship with breeding season SST may not necessarily 
be predicted to increase under climate change. For 
example, the relationship between herring gull abun-
dance and breeding season SST is positive (Table S5) 
but herring gull is predicted to decline in abundance 
under climate change, perhaps because of (amongst 
other relationships) the negative relationship be-
tween herring gull abundance and breeding season 
maximum temperatures. 

Some relationships require more investigation to 
explain their underlying mechanisms: relationships 
of both presence and abundance with breeding 
 season maximum temperature were more negative 
for marine specialists than for habitat generalists, al -
though this is similar to other studies on terrestrial 
species which have found more negative impacts of 
temperature on habitat specialists than generalists 
(Pearce-Higgins et al. 2015). For presence, marine 
specialists had more positive relationships with 
breeding season PEA and more negative relation-
ships with winter PEA than did habitat generalists. 
For the latter finding, it is not clear if this is a true 
ecological difference or due to the potential relative 
difficulty of estimating relationships with PEA for 
habitat generalists, which may have a considerable 
proportion of inland colonies with no nearby PEA 
values. This could be elucidated by repeating the 
analysis using only coastal colonies and assessing 
whether the difference remains. 

Future studies could examine our estimated 
seabird−climate relationships in more detail and 
assess whether they match observed relationships 
be tween seabird variables and weather/oceanogra-
phy from field studies (Grosbois et al. 2009). If these 
relationships do match for a given variable, it sug-
gests that the effect of that variable is particularly im -
portant, scaling up to drive species abundance and 
distribution. Additionally, if an estimated seabird−
climate/oceanography relationship exists for which 
there is no known mechanism, field studies to iden-
tify the underlying mechanism could be valuable to 
help identify conservation interventions for climate 
change mitigation. 

4.3.  Limitations 

It was difficult to find a strong climate/oceano -
graphy−abundance relationship for the majority of 
species, as evidenced by the high uncertainty in our 
projections and in the generally weak spatial predic-
tive power of our models (although this is not unusual 
in such models; e.g. Johnston et al. 2013), even 
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though they performed well when projecting changes 
in abundance. Whilst this might suggest that the true 
effect of climate/oceanography on seabird abundance 
is weak, it could also be that the analytical framework 
and data used were not adequate to detect a truly 
strong effect of climate/oceanography on seabird 
abundance, for 2 main reasons. Firstly, the high 
spatial aggregation of seabird abundance may not 
have been adequately characterized even with the 
spatial random effect, hurdle model structure and er-
ror distribution we employed. We consider the ex-
treme variation inherent in seabird abundance data to 
present an enduring challenge to its analysis. This is-
sue could potentially be resolved by using an ex-
tremely fine-scale spatial random effect (with nodes 
spaced at the scale of 10s of m) to account for very lo-
cal aggregative effects, but such an approach was be-
yond the computing resources available for the pre-
sent study. Secondly, the data we used may not have 
adequately described the climatic and oceanographic 
conditions experienced by seabirds: for example, 
there is considerable uncertainty in the species-
specific foraging ranges we used to subset the 
oceanographic data (Woodward et al. 2019). Also, the 
oceanographic data were only available for one 
timestep, and so we could not use temporal covaria-
tion in oceanography and seabird abundance to in-
form the oceanography−abundance relationship. Ad-
ditionally, the data on stratification beyond the 
continental shelf had to be omitted. The limited 
nature of the oceanographic data means that the ap-
parent greater effect sizes for terrestrial climate than 
oceanographic variables (Table S5) in models of sea -
bird presence and abundance (in accord with Häkki-
nen et al. 2021) may be spurious. 

There are 2 aspects of the ecological processes by 
which seabirds experience effects of climate and 
oceanography that make it difficult to estimate the 
true climate/oceanography−abundance relationship: 
lags and contingency. Firstly, seabird species may lag 
in their response to climate change (especially if rela-
tionships with climate/oceanography are indirect and 
only gradually cascade up through trophic levels; e.g. 
Suttle et al. 2007). This means that seabird abundance 
may not have been at equilibrium with climate/
oceano graphy during the SCR Census and Seabird 
2000. The climate/oceanography−abundance rela-
tionship might be more easily teased apart by investi-
gating the effects of climate and oceanography on 
productivity and survival individually. Secondly, 
seabirds’ abundance relationships with climate/
oceano graphy often arise indirectly through relation-
ships with other factors, such as prey species (John-

ston et al. 2021). If prey species (for example) differ in 
relationships with climate/oceanography (Wright et 
al. 2020) then seabird species’ relationships with cli-
mate/oceanography will be contingent on other fac-
tors and be location-specific (Frederiksen et al. 2007, 
Carroll et al. 2015). Similarly, seabirds’ demographic 
relationships with climate/oceanography can change 
over time (Hansen et al. 2021) through plasticity (e.g. 
due to switching between prey species) or evolution. 
Future work could incorporate such spatial and tem-
poral variation in climate/oceanography−abundance 
relationships into projections, or update such rela-
tionships using recent Seabirds Count data. 

Two challenges to interpreting our projections arise 
from model performance. Firstly, there were in di -
cators of poor model fit for all but one species. Sec-
ondly, uncertainty is high, so there is relatively low 
support for the median projected abundance change 
presented, and 95% credible intervals for all species 
en compass zero abundance change. Of the 15 species 
modelled, there were only 4 species for which both (1) 
model fit was better and (2) there was no overlap of 
the future abundance 50% CI with current abun-
dance. However, we are more confident of projected 
de clines (2 lower, 4 intermediate, 4 higher confidence) 
than projected increases (3 lower, 2 intermediate). 
Un certainty is a key feature of many species-specific 
estimates of vulnerability to climate change (Pearce-
Higgins et al. 2017) that needs factoring into decision-
making (Foden et al. 2019). The generally negative 
fitted relationships with temperature and propensity 
for projected declines generally match seabird 
species’ current observed responses to warming in 
Britain and Ireland, and therefore likely at least indi-
cate the high future vulnerability of breeding seabirds 
as a species group to climate change, even if there is 
uncertainty over species-specific projections. As 
noted earlier, the moderately strong positive relation-
ship between observed and predicted temporal pop -
ulation change — even without including change in 
oce ano graphic variables in the projections — suggests 
that despite these uncertainties, our projections have 
value for forecasting seabird abundance change. 

Further additional challenges to interpreting our 
projections arise from our overall approach. Firstly, 
as with all correlative studies, our projections will 
only manifest if the  relationships we estimated are 
causal.  Climate/oceanography−abundance relation-
ships can arise spuriously if abundance and climate/
oceanography also covary with another unidentified 
variable (Beale et al. 2008). Future work could com-
pare the results from 2 climate/oceanography models 
fitted in turn: one using spatial variation alone and 
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one using temporal variation alone; accord between 
the parameter estimates in the 2 models would lend 
support to our projections. However, there is support 
in the ecological literature for at least some of the fit-
ted relationships we found, suggesting at least some 
are causal. For example, field studies have found that 
due to impacts on foraging efficiency, some tern 
species are particularly sensitive to precipitation and 
adverse weather in the breeding season (Dunn 1973, 
Taylor 1983). Our finding that relationships between 
breeding season precipitation and presence were 
generally more negative for terns than for other 
species (Table S5) accords with this observation, sug-
gesting that the effects of weather on foraging effi-
ciency may scale up to drive tern distribution. 

There are at least 4 components of climate change 
that we omitted from our models that are likely to im-
pact seabird abundance: variability, sea level rise, 
storminess and winter climate change away from the 
colony. Firstly, we focused on likely effects on seabird 
abundance of temporal changes in average environ-
mental conditions. However, under climate change, 
environmental conditions are expected to change 
over time in not only their average but also their tem-
poral variation (Fischer & Knutti 2015); change in 
temporal variation in conditions may have a different 
effect on seabird abundance than change in average 
conditions. Next, sea level rise is likely to reduce 
colony size for many seabird species (Ivajnšič et al. 
2017). Given the relatively low precision (relative to 
projected sea level rise) of currently available digital 
elevation model data, it was not possible to estimate 
the potential reduction in colony size arising from pro-
jected sea level rise, and so our abundance projections 
may be positively biased for species that nest close to 
the sea. Some species are particularly sensitive to 
storms, finding it difficult to feed (Taylor 1983), losing 
the ability to thermoregulate after wetting (Frederiksen 
et al. 2008) or having nests washed into the sea (Newell 
et al. 2015). Although we included precipitation in 
our models, we were not able to estimate a relation-
ship between storminess and seabird abundance. If 
storminess rises in the study area, then we may have 
positively biased our abundance projections for species 
that are sensitive to storms. Some species segregate 
by colony during the non-breeding season (Bucking-
ham et al. 2022). We did not have colony-specific data 
on the wintering locations of our study species, and it 
is uncertain the ex tent to which these are fixed, and 
so we could not re late seabird abundance to winter 
climate/oceanography away from the colony. Climate 
change is highly spatially variable across the globe, 
and so the effects of winter climate change away from 

the colony may drive abundance in a different direc-
tion from our current projections. 

4.4.  Conclusions 

Our analyses suggest that the majority of seabird 
species in Britain and Ireland are likely to decline in 
response to climate change. Although these pro-
jected trends are associated with significant uncer-
tainty which varies between species, our projections 
can contribute to climate change vulnerability as -
sessment (while taking account of uncertainty appro-
priately) and inform conservation effort appropriately 
among species according to urgency. Continuing and 
expanding annual coverage of the Seabird Monitor-
ing Programme to include a wider spread of sites and 
species will help assess whether seabirds are re -
sponding to climate change according to our projec-
tions, reduce the uncertainty of future projections 
and inform conservation responses to climate change 
(Bowgen et al. 2022, Häkkinen et al. 2023) and to 
pressures arising from climate change mitigation 
(Cook et al. 2019). 

In this study, we were not able to evaluate the rel-
ative importance of climate and oceanography in 
driving seabird abundance and distribution; how-
ever, we found that seabird presence in Britain and 
Ireland is generally negatively related to breeding 
season maximum temperature. Other relationships 
with climate/oceanography varied between species, 
with important differences in sensitivity between 
functional groups. Future work can explore these 
relationships in more depth to help identify aspects 
of seabird ecology on which to focus conservation 
efforts for climate change mitigation. 
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