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1.  INTRODUCTION 

Increasing coastal urbanization threatens marine 
communities, leaving resource managers with the 
question of how to respond to environmental con-
cerns and the demands of growing cities. Coastal 
urbanization has coincided with reduced water qual-
ity and severe losses in the abundance of estuary spe-
cies, including oysters, mussels, other habitat-build-
ing invertebrates, mobile invertebrates, and fish 
(Lotze et al. 2006). Coastal infrastructure is forecasted 
to expand by 50 to 76% over 25 yr (Floerl et al. 2021). 
Artificial structures, including groins, riprap, wharves, 
pontoons, jetties, breakwaters, seawalls, and bulk-
heads, already occupy over 50% of the coastline in 
urbanized estuaries and harbors of Australia, Asia, 

Europe, and the USA (Dafforn et al. 2015). These 
structures form novel habitats for hard-substrate epi-
biotic assemblages, which include barnacles, bi -
valves, bryozoans, hydroids, polychaetes, sponges, 
and tunicates. In unmodified habitats, these assem-
blages typically form on minerals, such as rocky 
coastlines, and biogenic materials, such as shells 
(Davis 2009). Anthropogenic structures replace these 
natural habitats with plastics, concrete, wood, stone, 
metals, geotextiles, and fiberglass, which possess 
unique physical and chemical properties (Bulleri & 
Chapman 2010). With current engineering practices, 
artificial structures do not compensate for the loss of 
natural habitats because they support different com-
munities (Connell 2001, Holloway & Connell 2002, 
Bulleri & Chapman 2004, 2010, Bulleri 2005). This is 
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most prominent on sedimentary coasts where artifi-
cial structures may almost entirely replace natural 
hard substrates. For example, oyster reefs, a valuable 
hard-substrate habitat in sedimentary coasts, have 
lost 85% of their historic abundance globally (Beck et 
al. 2011). In sedimentary coasts, native species can be 
virtually absent from artificial structures, and non-
indigenous species (NIS) are 2 to 3 times more abun-
dant than on rocky coasts (Airoldi et al. 2015). 

Changes in the abundance and composition of epi-
biotic assemblages due to urban sprawl and the loss of 
natural hard substrate are significant because they 
may negatively affect the valuable ecosystem func-
tions and services these assemblages perform. Most 
hard-substrate epibionts are suspension feeders (Riis-
gård & Larsen 2010). They increase particulate set-
tling rates, modify plankton abundance, and cycle 
nutrients between the plankton and benthos (Kautsky 
& Evans 1987, Newell et al. 2005, Grabowski & Peter-
son 2007, Grabowski et al. 2012). Calcifying epibionts 
produce persistent, complex habitats for mobile epi-
fauna and sessile epibionts and provide refuge from 
predation and environmental stress (Gutiérrez et al. 
2003, Grabowski & Peterson 2007, Commito et al. 
2008, Buschbaum et al. 2009, Grabowski et al. 2012, 
McQuaid & Griffiths 2014, Bruschetti 2019). Epibiotic 
assemblages are also an important food source for 
mobile organisms, including commercially valuable 
fish and crustaceans (Caine 1987, Lin 1991, Grabowski 
& Peterson 2007, Grabowski et al. 2012). 

There is a growing interest in restoring ecosystem 
function by designing marine structures that serve an 
ecological role (Dafforn et al. 2015, Dodds et al. 2022). 
This goal builds on the principles of reconciliation 
ecology and ecological engineering. Reconciliation 
ecology is the restructuring of anthropogenic hab-
itats to increase their use by a range of different spe-
cies (Rosenzweig 2003, Francis 2009, Francis & 
Lorimer 2011). Importantly, reconciliation is distinct 
from habitat restoration and rehabilitation because 
the human functionality of the space is maintained, 
and there is no intent to return the habitat to a pre-
disturbance state (Francis 2009). Ecological engineer-
ing can achieve reconciliation by combining the prin-
ciples of ecology and engineering to create structures 
designed to function with a specific habitat (Bergen et 
al. 2001). Dafforn et al. (2015) expanded on ecological 
engineering, describing 7 goals for ‘multifunctional’ 
marine structures: maintaining local native biota, re -
storing local biodiversity, maintaining regional biodi-
versity, providing educational and recreational op -
portunities, maintaining water quality, facilitating 
carbon storage, and facilitating aquaculture and food 

production. On rocky coasts, where natural hard sub-
strates are abundant and persistent, ecologically 
engineered structures may be designed to simply miti-
gate the impact of urbanization. However, along sed-
imentary coasts, where hard substrates, such as oyster 
reefs, were once more abundant, these structures may 
act as a surrogate habitat. Ecologically engineered 
structures can meet many of these goals using com-
plex textures, holes, crevices, or pools to mimic natu-
ral habitats (Chapman & Blockley 2009, Browne & 
Chapman 2011, Chapman & Underwood 2011, Evans 
et al. 2016, Cordell et al. 2017, Strain et al. 2018a,b, 
2020, Bishop et al. 2022). Researchers have also tested 
‘ecologically active’ (Perkol-Finkel & Sella 2014) or 
‘ecologically optimal’ (Dodds et al. 2022) materials, 
such as concrete mixes containing specific aggre-
gates (e.g. shell, mineral, hemp fiber, coral, and crus-
tose coralline algae rubble) or admixtures (e.g. pozzo-
lans) that promote recruitment (Lee et al. 2009, Neo 
et  al. 2009, Huang et al. 2016, Dennis et al. 2018, 
Natanzi et al. 2021). However, which materials are 
more or less favorable for any given community and 
which material traits promote recruitment is not well 
understood. 

Material choice is therefore a significant factor for 
marine reconciliation ecology. The settlement and 
survival of epibiont propagules depends on surface 
characteristics such as micro- and macro-scale topo -
graphy, color, wettability or polarity, and specific heat 
capacity (Taki et al. 1980, Young 1983, Raimondi 1988, 
Rittschof & Costlow 1989, Fletcher & Callow 1992, 
James & Underwood 1994, Dahlström et al. 2004, 
Coombes & Naylor 2012, Dobretsov et al. 2013, Myan 
et al. 2013). Biological effects, such as biofilm pres-
ence and composition, gregarious or solitary behav-
iors, conspecific chemical cues, predation of larvae 
by other epibionts, changes in topography, and com-
petition with other species can inhibit or facilitate 
future settlement (Crisp & Ryland 1960, Connell & 
Slatyer 1977, Dean & Hurd 1980, Dean 1981, Mihm et 
al. 1981, Navarrete & Wieters 2000, Tamburri et al. 
2008). In this way, the materials chosen in marine con-
struction may continue to influence community com-
position even after colonization. 

Despite the number of settlement studies available, 
more needs to be understood before material type can 
be utilized when designing ecologically engineered 
marine structures. Studies have compared settle-
ment on concrete, plywood, fiberglass, and aluminum 
(Anderson & Underwood 1994); concrete, wood, and 
sandstone (Glasby 2000); and a variety of other con-
struction and non-construction materials (e.g. Hanson 
& Bell 1976, McGuinness 1989, Norris 1991, Ma et al. 
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2017). Meta-analyses of these studies have proved in -
formative for marine ecological engineering (Schaefer 
et al. 2021, Dodds et al. 2022). However, due to their 
different goals, many settlement studies only focused 
on the abundance of one or a few species (Pomerat & 
Weiss 1946, Norris 1991, Hills & Thomason 1996, Lee 
et al. 2009, Neo et al. 2009, Ma et al. 2017). Most were 
also performed in regions with significant rocky or 
coral habitats (Hanson & Bell 1976, McGuinness 
1989, Glasby 2000, Glasby et al. 2007, Perkol-Finkel & 
Sella 2014, Ma et al. 2017). Despite being more threat-
ened by coastal urbanization, few studies compare the 
communities that develop on construction materials 
in sedimentary habitats (Anderson & 
Underwood 1994), and in the Atlantic 
Ocean, we only know of this being per-
formed by surveying preexisting struc-
tures (Layman et al. 2014) 

We address this knowledge gap by 
asking how hard-substrate epibiotic as -
semblages on wood, polyvinyl chloride 
(PVC), and 2 different concrete mixes 
differ in their community composi-
tion, cover, biomass, and diversity in 
Galveston Bay, Texas, USA, a heavily 
urbanized, sedimentary estuary. We 
hypo thesized that each material would 
develop a unique community, and abun-
dance and diversity would be greatest 
on more naturalistic materials that epi-
bionts may be better adapted to use as 
settlement substrates. Therefore, abun-
dance and diversity would be greatest 
on wood, moderate on concrete, and 
lowest on PVC because wood occurs 
commonly as debris, concrete is simi-
lar in composition to shells, and PVC is 
not physically or chemically similar to 
any natural substrate and is less struc-
turally complex. Such differences might 
be used to design marine structures 
that better support reconciliation ecol-
ogy principles, offering resource man-
agers another tool to improve ecosys-
tem function in urbanized coasts. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

We conducted our study in West Gal-
veston Bay, Texas, USA (29° 08’ 44” N, 

95° 02’ 49” W). Galveston Bay is a heavily urbanized 
sedimentary estuary (Fig. 1). The intertidal area is 
soft sediment, marsh, or armored with artificial struc-
tures (e.g. docks, bulkheads, breakwaters). Oyster 
reefs were once the dominant hard substrate; how -
ever, they are significantly de graded and frequently 
dredged for fisheries. Galveston Bay lacks a natural 
rocky substrate, but rocky cultch has been added to 
many oyster reefs to benefit the commercial oyster 
industry. Rocky riprap is also used to harden the 
coastline. 

Our study site was a shallow (approximately 2 m 
deep), sheltered marina in a residential area far from 
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Fig. 1. Study region in Galveston Bay, TX, USA. The blue box in the inset indi-
cates the location within the northern Gulf of Mexico. The study site (yellow 
and orange diamond) was located in West Galveston Bay. A subset of large-
scale nearshore structures, including breakwaters, groins, piers, bridges, mari-
nas, boat launches, and docks, are shown in red (note that other, less well-
recorded structures, including bulkheads, are not depicted). The coastline and 
bodies of water were retrieved from the 2021 US Census Bureau data using the 
‘tigris’ package in R (Walker 2016). The locations of roads, wetlands, and 
recorded nearshore structures were retrieved from OpenStreetMap™ using  

the ‘osmdata’ package in R (Padgham et al. 2017)
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any natural or restored oyster reefs. The waterfront 
included wooden pilings, concrete bulkheads, and 
aluminum sheet piling, so the local larval supply 
came from an urbanized area constructed with mixed 
material types. 

2.2.  Panel fabrication 

We fabricated panels (14 × 14 cm, n = 6 for each 
material) from untreated, solid pine wood, grey PVC, 
and 2 different concrete mixes. We then sanded the 
panels with an orbital sander twice, using a progres-
sively finer grit to control for differences in texture. 
Although we did not examine the surfaces microsco-
pically (which likely varied based on their different 
chemical and physical properties), their apparent sur-
face textures were comparable. We chose wood due 
to its use in pilings and bulkheads and PVC for its use 
in pile wrappings and sheet pilings for bulkheads. We 
prepared concrete mix 1 (CM1) using city and state-
level construction specifications for bridge substruc-
tures and precast concrete, such as dock pilings. We 
then used the designs of environmentally friendly 
marine concretes to prepare concrete mix 2 (CM2; 
Perkol-Finkel & Sella 2014, Huang et al. 2016, Dennis 
et al. 2018). CM1 contained 10% silica fume, 25% 
class F fly ash, and 65% type I/II Portland cement by 
mass. CM2 contained 50% ground granulated blast-
furnace slag (GGBS) and 50% type I/II Portland 
cement by mass. Our concrete mixes did not contain 
aggregate, sand, or other admixtures to ensure that 
texture and rugosity were comparable between all 
materials. 

2.3.  Sampling 

We suspended the panels from a covered, fixed 
dock from June to September 2021. The panels hung 
from a weighted line at a depth of 1 ± 0.5 m and ≥1 m 
from neighboring panels to ensure they stayed sub-
merged at low tide, did not touch the seabed, and 
would not scrape against one another. The panels 
faced downward to limit algal growth and prevent 
sediment build-up. This ensured that the commu-
nities were dominated by hard-substrate epibionts. 

After 3 mo, we collected the panels and analyzed 
species composition under a high-resolution stereo 
microscope to assess species richness, diversity, and 
community composition. We identified organisms 
to the lowest taxonomic level possible and measured 
abundance, using guides to visually estimate the 

proportion of live cover (Anderson 1986, Dethier et 
al. 1993). For estimates <0.01 (1%), we assigned a 
value of 0.001 (0.1%) to indicate presence. When 
totaled, the proportion of cover was >1 (100%) due 
to organisms growing over one another. We measured 
wet biomass to the nearest gram by taking the differ-
ence in weight before and after scraping the front 
clean. 

2.4.  Analysis of community composition 

We constructed a 2-dimensional, non-metric mul-
tidimensional scaling (2D-nMDS) plot to visualize 
differences in community composition by material. 
We tested the effect of material on community com-
position using a permutational multivariate analysis 
of variance (PERMANOVA) in PRIMER-e version 7 
(Anderson 2017). Prior to running the PERMANOVA 
with 9999 permutations, we fourth-root transformed 
the proportion of cover for each taxon to adjust for 
differences between sparse and dominant taxa, gen-
erated a Bray-Curtis dissimilarity matrix, and used 
a permutational multivariate analysis of dispersion 
(PERMDISP) test to confirm multivariate homoge-
neity of variance. We used a similarity percentage 
(SIMPER) analysis to determine the percent contrib-
ution of taxa toward community composition dissim-
ilarities. Data were untransformed to more accurately 
represent the contributions of the most dominant 
taxa. 

We used R version 4.1.2 to perform all univariate 
analyses. Before each comparison, we used Levene’s 
test and the Shapiro-Wilk test to determine if the data 
met the assumptions of homogeneity of variance and 
normality. We analyzed the effect of material type 
(factor) on the proportion of cover for 3 functional 
groups (response variable). Each functional group 
contained only the species revealed by the SIMPER 
analysis to contribute >5% of the dissimilarities 
between the assemblages on different materials. The 
3 functional groups and species included were: soft-
bodied suspension feeders (the kamptozoan or ento-
proct Bartensia sp. and the soft-bodied bryozoan 
Amathia imbricata), calcifying suspension feeders 
(the barnacles Amphibalanus eburneus and A. impro-
visis), and mixed-strategy feeders (the polychaete 
spionid Polydora cornuta, which alternates between 
deposit and suspension feeding). We chose these 
functional groups based on differences in lifestyle 
and the ecosystem functions and services they pro-
vide. For all 3 comparisons, Levene’s and Shapiro-
Wilk tests indicated that the data were non-normal 

38



Oxley & Jurgens: Material type affects hard-substrate assemblages

and heteroscedastic. This was not resolved via trans-
formation, so we used a Kruskal-Wallis test to com-
pare the proportion of cover between materials. For 
significant results (p < 0.05), we used a post-hoc Dunn 
test with a Bonferroni correction (to avoid type 1 
errors) to test for differences in cover between factors. 

2.5.  Analysis of abundance and diversity 

We used an ANOVA to test for differences in uni-
variate indices of overall abundance (total proportion 
of cover and biomass) and diversity (species richness 
and Shannon-Wiener diversity) between materials. 
Levene’s and Shapiro-Wilk tests showed that the data 
were normal and homoscedastic for all comparisons 
of abundance and diversity. For significant results, we 
tested for differences between factors using a post hoc 
Tukey’s honestly significant difference (HSD) test. 

3.  RESULTS 

3.1.  Community composition 

Across all panels, we identified 14 hard-substrate 
taxa, including kamptozoans (entoprocts), bryozoans, 
barnacles, spionids, mussels, oysters, shipworms, and 
serpulids. We also observed multiple mobile organ-
isms such as nudibranchs, polychaetes, amphipods, 
and crabs, although their abundance was not consid-
ered for the analysis. Visualization of the data via a 
2D-nMDS plot indicated large differences in commu-
nity composition between materials. Communities on 
CM2 were very similar to one another as suggested 
by the limited spread of the points in Fig. 2, and CM2 
communities appeared most similar to those on PVC 
and CM1. The PERMANOVA indicated that com -
munity composition differed between materials (data 
4th-root transformed, pseudo-F3,20 = 6.8, p(perm) < 
0.001). All pairwise comparisons of community com-
position between materials differed, excluding that of 
CM1 against CM2 (p = 0.089) and CM2 against PVC 
(p = 0.28, Table 1). 

In the SIMPER analysis (data untransformed), 5 
taxa contributed >5% toward the dissimilarity in com -
munity composition between materials: Bartensia 
sp., Amathia imbricata, Amphibalanus eburneus, A. 
improvisis, and Polydora cornuta (Table 2). These spe-
cies also tended to be the most dominant taxa on all 
panels. 

In univariate analyses, the proportion of cover for 
each functional group differed between materials 

(Fig. 3, Table 2). Soft-bodied suspension feeders 
(Bartensia sp. and A. imbricata) covered a greater 
area of CM1 and CM2 panels than wood (Kruskal-
Wallis, χ2 = 19.94, df = 3, p < 0.001). Calcifying 
suspension feeders (A. eburneus and A. improvisis) 
covered a greater area of CM1 panels than CM2 
(Kruskal-Wallis, χ2 = 8.79, df = 3, p = 0.032). Mixed-
strategy feeders (P. cornuta) covered a greater area 
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Fig. 2. Two-dimensional, non-metric multidimensional scaling 
(2D-nMDS) plot showing the ordination of hard-substrate 
community composition in relation to material type. The 
closer 2 points are, the more similar their community compo-
sitions are. This plot is based on an untransformed Bray-Curtis 
dissimilarity matrix of the proportion of cover of each taxon. 
n = 6 for all materials; CM1 (CM2): concrete mix 1 (concrete  

mix 2; see Section 2.2 for details)

Comparisons                 t                 p(perm)     Unique perms 
 
CM1 vs. CM2             1.69                0.089                  462 
CM1 vs. PVC              1.83                0.026                  462 
CM1 vs. Wood          4.025              0.002                  461 
CM2 vs. PVC              1.15                   0.28                     462 
CM2 vs. Wood          3.048              0.002                  461 
PVC vs. Wood            3.19                0.002                  462

Table 1. Results of the pairwise permutational multivariate 
analysis of variance (PERMANOVA) comparing community 
composition (fourth root transformed taxa coverage) be -
tween different construction materials in a sedimentary 
Atlantic habitat. CM1 (CM2): concrete mix 1 (concrete  

mix 2; see Section 2.2 for details)
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of CM1 panels than PVC and wood (Kruskal-Wallis, 
χ2 = 15.24, df = 3, p = 0.002). 

3.2.  Abundance and diversity 

Abundance and diversity also differed between 
materials (Fig. 4). Assemblages on CM1 and CM2 
covered a greater total proportion of the panel than 
PVC and wood (ANOVA, F3,20 = 95.22, p < 0.001), and 
the wet biomass of CM1 panels was greater than all 
other materials (ANOVA, F3,19 = 6.89, p = 0.003). 
CM1 communities were richer than those on wood 
(ANOVA, F3,20 = 3.65, p = 0.03), but there was no dif-
ference in the Shannon-Wiener index. 

3.3.  Non-indigenous and nuisance species 

We identified 3 non-indigenous species (NIS), all 
below 1% cover when present. These included the 
bryozoan Hippoporina indica and the serpulids Fico-
pomatus enigmaticus and F. uschakovi (Fofonoff et al. 
2023). H. indica was present on 1 of 6 CM1 panels, 
and F. enigmaticus was present on 1 of 6 CM2 panels. 
We found F. uschakovi on all CM1, 2 CM2, and 3 PVC 
panels. No serpulids, native or non-indigenous, were 
found on wood panels. 

Shipworms were present on 4 of 6 wood panels with 
a cover below 1%. At the time of recovery, the ship-
worms were too small to extract from the wood for 
identification. It is unknown if the shipworms found 

were non-indigenous; however, as borers of marine 
structures, they are generally considered a destruc-
tive nuisance species. 

4.  DISCUSSION 

This is the first settlement study we are aware of to 
test how hard-substrate epibiotic communities vary 
on different construction materials in a sedimentary 
Atlantic habitat. We compared communities on 
untreated, solid pine wood, PVC, and 2 different con-
crete mixes. CM1 contained silica fume and class F fly 
ash, and CM2 contained GGBS. Our results show that 
material type greatly affected community composi-
tion, the abundance of 3 functional groups, total 
cover, and biomass, but not richness or diversity. This 
suggests that material type may be an important fac-
tor when designing structures in sedimentary Atlan-
tic habitats to support reconciliation ecology goals. 

As predicted, material type strongly affected the 
community composition and biomass of hard-sub-
strate epibionts. Differences in community composi-
tion and biomass may be directly tied to ecosystem 
functions that are considered highly desirable in hab-
itat reconciliation and ecological engineering, such 
as supporting trophic exchange and fisheries, in -
creasing habitat structure, and maintaining water 
quality (Francis 2009, Layman et al. 2014, Dafforn et 
al. 2015, O’Shaughnessy et al. 2020). All 3 functional 
groups that contributed toward dissimilarities in com-
munity composition — soft-bodied suspension feeders 
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                 Soft-bodied suspension feeders        Calcifying suspension feeders              Mixed-strategy feeders 
                                         Bryozoan              Kamptozoan                 Barnacle                                                   Spionid 
                                          Amathia               Bartensia sp.            Amphibalanus                  Amphibalanus                    Polydora 
                                         imbricata                                                        eburneus                           improvisis                          cornuta 
 
Percent contribution 
CM1 vs. CM2                   28.08                           23.2                               23.1                                      17.1                                    – 
CM1 vs. PVC                   24.15                         36.37                             16.5                                      12.3                                   8.68 
CM1 vs. Wood                 32.24                         42.11                             9.86                                      7.68                                   6.79 
CM2 vs. PVC                   38.95                         24.59                            13.53                                     9.59                                   8.96 
CM2 vs. Wood                 46.61                         33.91                             8.54                                       –                                    6.28 
PVC vs Wood                  45.57                         31.34                            12.09                                     5.09                                   5.06 
Mean ± SE 
CM1                              0.4 ± 0.022             0.49 ± 0.024              0.083 ± 0.012                    0.033 ± 0.011                    0.04 ± 0.0 
CM2                                   0.45 ± 0.0                       0.45 ± 0.0                  0.045 ± 0.005                  0.0083 ± 0.0065             0.035 ± 0.0034 
PVC                               0.4 ± 0.022             0.41 ± 0.015              0.053 ± 0.011                   0.015 ± 0.0072               0.02 ± .0026 
Wood                             0.27 ± 0.011                0.32 ± 0.01                0.062 ± 0.016                  0.0035 ± 0.0033             0.012 ± 0.0059

Table 2. Results of the similarity percentage (SIMPER) analysis using the untransformed community composition (taxa cover-
age), and the mean ± SE proportion of cover for taxa that contributed >5% to the dissimilarity between materials. Taxa were 
grouped into functional groups: soft-bodied suspension feeders, calcifying suspension feeders, and mixed-strategy feeders for  

further comparisons. CM1 (CM2): concrete mix 1 (concrete mix 2)
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(the kamptozoan Bartensia sp. and the soft-bodied 
bryozoan Amathia imbricata), calcifying suspension 
feeders (the barnacles Amphibalanus eburneus and 
A. improvisis), and mixed-strategy feeders (the poly-
chaete spionid Polydora cornuta) — were more abun-
dant on CM1 than on at least one other material. 

Bryozoans and kamptozoans are the primary prey for 
many small mobile invertebrates, such as nudibranchs, 
pycnogonids (and other small arthropods), turbellar-
ians, polychaetes, and nematodes, so they may help 
to support trophic exchange (Canning & Carlton 2000, 
Lidgard 2008). Spionids experience frequent sub -
lethal predation, which constitutes a significant por-
tion of the diet of many fishes and macroinvertebrates, 
so their presence may support fisheries at larger scales 
(De Vlas 1979, Woodin 1982). The persistent struc-
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tures produced by barnacles also form critical habitat 
for mobile organisms in sedimentary coasts (Barnes 
2000, Mendez et al. 2015). Additionally, all 3 func-
tional groups filter the water, suggesting that struc-
tures made from CM1 may support a greater water fil-
tration capacity than the other materials we tested 
(Bullivant 1968, Frithsen & Doering 1986, Zhukova 
2000, Riisgård & Larsen 2010). This is consistent with 
surveys of preexisting dock pilings in a sedimentary 
Atlantic estuary (Florida, USA) by Layman et al. (2014), 
who found that unique communities formed on differ-
ent materials, and communities on concrete filtered a 
greater quantity of water than those on PVC and 
wood. Although we did not quantify filtration rates, 
biomass, an indicator of the productivity or metabolic 
activity of a community, was also greater on CM1 
panels than on all other materials, meaning CM1 as -
semblages may have converted a greater quantity of 
plankton and particulate organic matter into benthic 
animal biomass (Whittaker 1965, Wilson 1991, Chia-
rucci et al. 1999, Malerba et al. 2019). Our results sug-
gest that material type may impact the productivity of 
mobile communities, habitat structure, and water fil-
tration capacity at larger scales. 

Material type had a weak effect on species richness 
and no effect on biodiversity. This is consistent with a 
metanalysis by Dodds et al. (2022), which found that 
material type impacts the abundance but not the rich-
ness of assemblages. However, material type did af -
fect species coverage and may have affected NIS 
presence, both important traits for maintaining local 
biodiversity, which is valued in ecological engineer-
ing (Dafforn et al. 2015). To maintain biodiversity, 
populations must persist over time (Groves et al. 
2002). Many hard-substrate epibionts experience a 
mate-finding Allee effect, meaning reproductive suc-
cess may be seriously reduced on materials with low 
population densities. Gametes become increasingly 
dilute as they diffuse away from broadcast spawners, 
and species with internal fertilization may require a 
conspecific nearby to reproduce (Levitan & McGov-
ern 2005, Gascoigne et al. 2009, Velazquez-Castro & 
Eichhorn 2017). For example, the barnacle Amphiba-
lanus improvisis, which reproduces via internal fertil-
ization, was only present on 2 wood panels and 2 CM2 
panels, with an average cover below 2% when pre-
sent. This species may only be able to reproduce 
through self-fertilization when on wood and CM2 
structures (Furman & Yule 1990, Velazquez-Castro & 
Eichhorn 2017). Materials with higher species cover-
age, like CM1, may be more likely to produce a greater 
quantity of genetically diverse larvae (another valu-
able dimension of diversity), which can settle on other 

structures or contribute back to the native popula-
tion, thus maintaining local biodiversity. However, 
this level of interconnectedness can be problematic if 
it assists the invasion of NIS. Although richness was 
greater on CM1 than on wood, after removing NIS, 
there was no difference in local richness. NIS oc -
curred more frequently on concrete and PVC than 
wood in a pattern consistent with Dodds et al. (2022). 
However, the abundance of NIS in our study may be 
too low (<1% cover) to draw a strong connection 
between NIS presence and material type. NIS are 
generally prevalent on infrastructure in sedimentary 
coasts (Airoldi et al. 2015) but have a low abundance 
in Galveston Bay (Jurgens et al. 2022). The high vari-
ability in salinity and temperature in this region may 
prevent NIS from becoming established despite the 
frequent vessel transit (Jurgens et al. 2022). The effect 
of material type on NIS prevalence should be consid-
ered more closely, especially in other more vulnerable 
sedimentary Atlantic systems. Our results indicate 
that material type may be important for maintaining 
biodiversity or limiting NIS presence. 

Contrary to our prediction, there was no apparent 
association between the naturalness of a material and 
the abundance and diversity of hard-substrate epi-
bionts. The mechanisms behind this observation are 
not fully understood. Despite being common as 
debris, wood had the lowest cover and biomass of any 
material. The reason for this is not well studied as 
much more effort has been put into antifouling re -
search than determining what properties wood may 
have that limit recruitment (Treu et al. 2019). The low 
surface energy of PVC (the low intermolecular force 
of attraction between the surface of PVC and other 
materials) or hydrophobicity may have contributed to 
the decreased recruitment of certain species (Ritt-
schof & Costlow 1989, Dahlström et al. 2004, Li et al. 
2016), and leachates from PVC are also more toxic 
than those from other plastics (Bejgarn et al. 2015, Li 
et al. 2016, Hermabessiere et al. 2017, Sarker et al. 
2020, Gewert et al. 2021). PVC is 15–50% phthalate 
by weight (Gilbert 2001). Phthalates, a plastic addi-
tive, are not chemically bound to the polymer, leach 
easily, and act as endocrine disruptors even at low 
concentrations (Oehlmann et al. 2009, Net et al. 
2015). Concrete may have been a more favorable sub-
strate because of its similarity in composition to shell 
or stone, but each concrete mix did not perform 
equally well. Calcium hydroxide in concrete may act 
as a settlement cue for calcifying organisms, but the 
coverage of calcifying suspension feeders only dif-
fered between CM1 and CM2 (Anderson 1996). It has 
been proposed that admixtures affect recruitment by 
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decreasing the pH of concrete (Dooley et al. 1999). 
However, the pH of standard concrete does not differ 
from that of seawater after 3–6 mo (Dooley et al. 
1999), and when only the pH of concrete is altered, 
there is no difference in the community composition, 
cover, or richness of epibiotic assemblages (Hsiung et 
al. 2020). Admixtures also change the profile and 
abundance of toxic metals leached from concrete. 
McManus et al. (2018) reported that, at equal replace-
ment levels, GGBS concrete (like CM2) leached more 
zinc than fly ash concrete (like CM1) and standard con-
crete. At replacement levels comparable to our own, 
Togerö (2006) found that GGBS concrete leached 
more zinc and copper than fly ash concrete. Zinc and 
copper are toxic to hard-substrate invertebrates and 
larvae, which may explain the differences in recruit-
ment (Clarke 1947, Rainbow 1985, Devi 1995). How -
ever, there are many caveats to this conclusion. (1) 
Metal content and leachability vary considerably 
between admixture sources, so we cannot confirm if it 
played a role here (Togerö 2006, Müllauer et al. 2015, 
McManus et al. 2018). (2) Metal ion speciation is 
more significant in determining bioavailability and 
toxicity than the total abundance of a metal (van Veen 
et al. 2001). (3) The copper and zinc leaching rate of 
GGBS concrete is orders of magnitude lower than 
that of antifouling paints, so given adequate tidal 
ex change, concretes are less likely to form a toxic 
boundary layer at the water–surface interface (Togerö 
2006, Ytreberg et al. 2010, Lagerström et al. 2018, 
Lindgren et al. 2018). (4) Since most metal leaching 
occurs at the surface of concrete, differences in metal 
concentrations become insignificant over time (Hil-
lier et al. 1999, Lagerblad 1999, Jain & Neithalath 2009, 
McManus et al. 2018). Metal leaching is also an inad-
equate explanation for the difference in the cover of 
calcifying suspension feeders between CM1 and CM2 
because A. eburneus and A. improvisis are early col-
onizers of failing metal-based antifouling paints 
(Weiss 1947). Material traits may also interact with a 
variety of environmental qualities such as season, 
salinity, dissolved oxygen, pollutant presence, tem-
perature, and alkalinity to affect hard-substrate com-
munities (Mook 1980, Mayer-Pinto & Junqueira 2003, 
Jewett et al. 2005, Brown et al. 2016, Lord 2017). 
Future studies considering which material and envi-
ronmental traits drive differences in epibiont settle-
ment would be useful to further inform reconcili-
ation-focused engineering. 

Potential caveats to this study include the duration 
and relatively modest sample size (n = 6 per material). 
A larger sample size may have revealed a stronger 
effect of material type on richness or other commu-

nity variables. Our experiment of 3 mo was also com-
paratively short, although many of the study organisms 
can experience multiple life cycles over a single sea-
son. Assemblages on different construction materials 
have been observed to converge relatively quickly 
(e.g. 4–5 mo; Anderson & Underwood 1994) or main-
tain their differences for longer periods (Glasby 
2000). However, our results were comparable to Lay-
man et al. (2014), who surveyed preexisting struc-
tures of various ages in a sedimentary Atlantic estu-
ary. This suggests that material type may have a 
persistent effect on hard-substrate assemblages in 
this ecosystem. If materials follow separate succes-
sional trajectories, material type may be used to 
select communities most similar to the natural hab-
itat. However, it is unlikely that any of the materials 
we tested had a similar composition to the natural 
community. Although we did not make comparisons 
between panels and natural hard-substrate habitats, 2 
species common on oyster reefs in Galveston Bay had 
a notably low abundance or were absent from panels: 
the dark false mussel Mytilopsis leucophaeata and the 
sea-grape tunicate Molgula manhattensis. This may 
be caused by the intense predation pressure these 
species experience in this region (Jurgens et al. 2022). 
This emphasizes that material type alone is unlikely 
to achieve a community that mimics the natural hab-
itat, and it should be used in combination with more 
complex structural designs that provide refugia. 

Despite these limitations, our findings indicate that 
material type may affect community composition and 
abundance, multiple ecosystem functions, and the 
main tenance of local biodiversity. Of the materials 
tested, CM1 showed the greatest potential for use 
in ecological engineering. We recognize that marine 
structures cannot be used as a replacement for 
healthy natural habitats and may facilitate the spread 
of NIS (Airoldi et al. 2015). However, as urbanization 
continues to convert the coastline into artificial struc-
tures, we highlight the potential for resource man-
agers to select materials that provide the greatest eco-
logical benefit. 
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