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1.  INTRODUCTION 

Parrotfishes (Labridae: Scarinae) are ubiquitous 
components of tropical coral reefs known for scraping 
and excavating benthic substrates with their fused 
beak-like jaws (Bonaldo et al. 2014, Gobalet 2018). 
The effects of parrotfishes’ foraging behavior on ben-
thic communities have been widely studied in the 
past decades (e.g. Bruggemann et al. 1996, Francini-
Filho et al. 2008, 2010, Bonaldo & Bellwood 2009, 

2011, Bonaldo et al. 2012, Rempel et al. 2020), and 
recent studies have revealed that protein-rich micro-
scopic phototrophs are their main nutritional targets 
(Clements et al. 2017, Clements & Choat 2018, Nich-
olson & Clements 2020). Still, parrotfishes act as 
major agents of bioerosion and sediment processing 
in reef environments (Bellwood 1995, Bonaldo et al. 
2014, Morgan & Kench 2016). 

Feeding modes and ecological functions performed 
by parrotfishes are strongly linked to their morpho-
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logical traits (Bellwood 1994, Bonaldo et al. 2014, 
Hoey 2018). For example, species with robust oral and 
pharyngeal jaw apparatuses, particularly those from 
the scarinine clade, are able to excavate calcium car-
bonate from benthic substrates (Ong & Holland 2010, 
Morgan & Kench 2016, Yarlett et al. 2018). In contrast, 
species with less pronounced apparatuses, particu-
larly those from the sparisomatine clade, are mostly 
scrapers and browsers that graze on macroalgae (Bon-
aldo et al. 2014). Such functional diversity is not 
evenly distributed across biogeographical regions 
(Kulbicki et al. 2018). For example, the Indian-Pacific 
Ocean harbors most of the excavating species, many 
of which are coral predators (Bonaldo & Rotjan 2018). 
By contrast, the Atlantic Ocean harbors most of the 
browsing species, with only 3 species recognized as 
excavators (Bruggemann et al. 1996, Francini-Filho et 
al. 2008, Lellys et al. 2019). 

The genus Sparisoma is exclusive to the Atlantic 
Ocean (Robertson et al. 2006) and predominates over 
the genus Scarus in the southwestern Atlantic com-
pared to the Caribbean region (Hoey et al. 2018, 
Longo et al. 2019). The Brazilian Biogeographic Prov-
ince encompasses unique reef formations in the 
southwestern Atlantic, with most biogenic coral reefs 
limited to the northeast coast and an overall dom-
inance of macroalgae across reefs (Aued et al. 2018). 
Such macroalgae dominance may explain the prev-
alence of the sparisomatine clade in this province 
(Hoey et al. 2018). The endemic parrotfishes Spari-
soma axillare and S. frondosum are both widely dis-
tributed and abundant along the Brazilian coast, with 
higher abundances found in the northeast (Ferreira et 
al. 2004, Francini-Filho et al. 2010, Cordeiro et al. 
2016, Roos et al. 2019). Because both species gen-
erally occur in the same areas, determining the mag-
nitude of their niche complementarity is challenging. 
The foraging behavior of these species was previously 
compared in studies with different scopes, revealing 
slightly varied results across distinct study areas. In 
the Fernando de Noronha Archipelago, for example, 
S. axillare and S. frondosum preferred the same feed-
ing substrate types (Bonaldo et al. 2006). In contrast, 
in the Abrolhos Bank, eastern Brazil, S. axillare had a 
higher preference for algal turfs compared to S. fron-
dosum (Francini-Filho et al. 2010). Through a compar-
ative analysis of their gut contents, both species pre-
sented similar amounts of algal portions (Ferreira & 
Gonçalves 2006). However, S. axillare’s algal content 
had a higher proportion of foliose and thick-leathery 
algae, while that of S. frondosum had a higher propor-
tion of articulated coralline algae (ACA) (Ferreira & 
Gonçalves 2006). 

In this regard, levels of complementarity may be 
unveiled when multiple traits and attributes are 
assessed, such as ontogenetic stages, feeding rates, 
feeding modes (Bonaldo et al. 2006, Adam et al. 2015, 
Feitosa & Ferreira 2015), nutritional targets (Clem-
ents et al. 2017, Mendes et al. 2018, Nicholson & 
Clements 2020), social organization (Bruggemann et 
al. 1994, Feitosa et al. 2021) and interactions with 
other species (Overholtzer & Motta 2000, Davis et al. 
2017). For ex ample, initial phase (IP) individuals of 
the Caribbean parrotfish S. viride have higher feeding 
rates than their terminal phase (TP) counterparts due 
to the time TP individuals spend on territorial defense 
(Bruggemann et al. 1994). Parrotfish feeding rates 
were also found to be higher when individuals for-
aged in intra- and interspecific groups (Overholtzer & 
Motta 2000) but lower in zones with higher densities 
of territorial damselfish (Feitosa & Ferreira 2015). 
Moreover, the Caribbean parrotfish S. rubripinne (a 
sister species to S. axillare) feeds more frequently on 
brown macroalgae (mainly Dictyota spp.) compared 
to S. chryso pterum (a sister species to S. frondosum) 
(Adam et al. 2018). Such knowledge may provide 
clues to how losses in parrotfish densities can affect 
the structure of benthic communities from a ‘top-
down control’ perspective (Hughes 1994, Bellwood et 
al. 2004, Folke et al. 2004), or even how changes in the 
structure of benthic communities can affect parrotfish 
densities from a ‘bottom-up control’ perspective 
(Russ et al. 2015, Taylor et al. 2020). 

In Brazil, parrotfishes are common targets of artisa-
nal and recreational fishers (Francini-Filho & Moura 
2008, Roos et al. 2016, 2020, Roos & Longo 2021), and 
alarming signs of population declines have been re -
ported (Bender et al. 2014, Pereira et al. 2021). S. axil-
lare and S. frondosum in particular are usually caught 
with hook and line, traps and gillnets by artisanal 
fishers, and with spearguns by recreational fishers 
(Cunha et al. 2012, Roos et al. 2016, Roos & Longo 
2021). Despite being listed as Data Deficient by the 
IUCN, S. axillare and S. frondosum are listed as 
 Vulnerable by the Brazilian Red List of Endangered 
Species/BRL-EndS (Decree No. 445, 2014). 

Population declines of Brazilian parrotfishes further 
strengthen our need to better understand the ecologi-
cal aspects of the group. The present study aims to 
identify ecological differences between the 2 most 
ubiquitous Brazilian parrotfishes (S. axillare and S. 
frondosum) within the scope of in situ observations en-
compassing feeding rate, substrate selection, shoaling 
behavior and agonistic interactions, aspects that have 
not yet been simultaneously and comparatively eval-
uated between these 2 species. The study was guided 
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by the following questions: (1) Do feeding rates differ 
between the 2 species and among their ontogenetic 
stages? (2) Is there specific substrate selection by the 
species and their ontogenetic stages? (3) What is the 
magnitude of niche overlap between species in terms 
of substrate selection? (4) Do the species interact dif-
ferently with other fishes during foraging activity? 

2.  MATERIALS AND METHODS 

2.1.  Study area 

This study was conducted at the APARC (from the 
Brazilian Portuguese acronym Área de Proteção 
Ambiental dos Recifes de Corais), a multiple-use mar-
ine protected area located at the Rio Grande do Norte 
state, Northeast Brazil, approximately 6 km off the 
coast (5° 00’–5° 30’ S, 35° 10’–35° 30’ W) (Fig. 1). The 
APARC is divided into different zones designated for 
tourism, fishing activities and fishing exclusion. Reef 

environments typically consist of shallow patchy 
reefs (~2 m deep) interspersed in a sandy matrix. Sam-
pling was carried out at Maracajaú reef, the southern-
most shallow reef complex in the APARC (Fig. 1). 

2.2.  Sampling procedures 

Data were collected fortnightly between September 
2011 and February 2012, encompassing the spring and 
summer seasons. Abundances of Sparisoma axillare 
and S. frondosum were assessed through underwater 
visual censuses carried out along 60 randomly distrib-
uted belt transects located ~10 m from each other, at 
~2 m deep, each encompassing a 60 m2 (30 × 2 m) area 
(adapted from Floeter et al. 2007). Visual censuses 
consisted of a specialized snorkeler counting the indi-
viduals, estimating their total length and categorizing 
their ontogenetic stages (i.e. juvenile, IP and TP). 

The point intercept transect method (Rogers et al. 
1994) was conducted within each of the same 60 belt 
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transects to estimate benthic cover. Benthic organisms 
located below each 1 m interval of the transect (30 
points per transect, 1800 points in total) were identified 
and classified into major groups (see species grouping 
details in Table S1 in the Supplement at www.int-res.
com/articles/suppl/m730p079_supp.pdf).  

The foraging behavior of S. axillare and S. frondosum 
was recorded while snorkeling during the daytime be-
tween 09:00 and 15:00 h. The ‘focal animal’ and ‘all oc-
currences’ sampling techniques were em ployed dur-
ing observational sessions, which consist of observing 
an individual animal for a pre-established period of 
time, during which all occurrences of a specific behav-
ior are recorded (Altmann 1974, Lehner 1979). Sub-
strate selection, feeding frequency and shoaling be-
havior of both species were recorded while observing 
randomly selected individuals. After a short period of 
acclimation of about 30 s (to minimize initial diver dis-
turbance), the focal individual was identified to the 
species level, and its ontogenetic stage and shoaling 
behavior were determined. Then, the number of bites 
and substrate types selected by the fish were recorded 
continuously for 1 min (Francini-Filho et al. 2008). 
Agonistic interactions were also recorded in separate 
samplings, also during 1 min observations. 

2.3.  Statistical analysis 

Differences in species abundance and feeding rate, 
for both species and ontogenetic stages, were tested 
through pairwise permutational tests using the ‘pair-
wisePermutationTest’ function of the ‘rcompanion’ 
package (Mangiafico 2020). We chose this pairwise 
permutation-based test rather than other approaches 
because it does not require normality or homogeneity 
of variances, given that estimates and coefficients are 
obtained from permutation. Non-metric multidimen-
sional scaling (nMDS) ordinations were plotted to 
visualize differences in substrates selected by both 
species and ontogenetic stages using the ‘metaMDS’ 
function of the ‘vegan’ package (Oksanen et al. 2022). 
Those differences were then assessed through a 
 permutational analysis of variance (PERMANOVA) 
using the function ‘adonis2’ of the ‘vegan’ package 
(Ok sa nen et al. 2022). The PERMDISP test was used 
to compare the homogeneity of dispersions using the 
functions ‘vegdist’ and ‘betadisper’ of the ‘vegan’ 
package. SIMPER analysis was used to identify the 
percent contribution of each substrate type to the dis-
similarity between the number of bites taken by each 
species and ontogenetic stages using the function 
‘simper’ of the ‘vegan’ package. PERMANOVA and 

SIMPER analyses were based on Bray-Curtis compo-
sitional dissimilarities, while PERMDISP was based 
on Euclidian distances. Substrates representing less 
than 2% of the total bites were not included. 

Substrate selectivity patterns of each species and 
ontogenetic stages were evaluated with Ivlev’s elec-
tivity index (E ), as follows: 

                              E = (ri – pi) / (ri + pi)                         (1) 

where ri is the percentage of bites towards each sub-
strate type i and pi is the total percentage of the sub-
strate type i in the environment (Ivlev 1961). E varies 
from –1 to +1, with positive values indicating posi-
tive selection, negative values indicating avoidance 
and near-zero values indicating a random selection 
(Ivlev 1961, Jacobs 1974). To test its significance, a 
95% confidence interval was calculated for each E 
value and, therefore, near-zero intervals were catego-
rized as non-significant. Substrates representing less 
than 2% of the bites were not included. 

Niche overlap between species for each ontoge-
netic stage was determined by Schoener’s index of 
niche overlap (Schoener 1970) as follows: 

                                  T = [Σ(Pxi – Pyi)]                              (2) 

where T is the index of niche overlap between species 
x and y; Pxi is the proportion of the food type i selected 
by species x; and Pyi is the proportion of the food type 
i selected by species y. T varies from 0, indicating low 
or no niche overlap, to 1, when both species select the 
same food types in the same proportions. This index 
was calculated with the ‘niche.overlap’ function of 
the ‘spaa’ package (Zhang 2016). The overlap is con-
sidered high when values are greater than 0.60 (Zaret 
& Rand 1971, Wallace 1981). 

PERMANOVA, PERMDISP, SIMPER and T were 
calculated considering IP and TP of S. frondosum indi-
viduals combined as ‘adults’. Differences in shoal size, 
number of fishes chasing focal individuals and number 
of fishes chased by focal individuals, for both species 
and ontogenetic stages, were tested through pairwise 
permutational tests using the ‘pairwisePermutation-
Test’ function of the ‘rcompanion’ package (Mangia-
fico 2020). All the abovementioned analyses were per-
formed in R software version 4.2.1 (R Core Team 2022). 

3.  RESULTS 

3.1.  Abundance, benthic cover and feeding rate 

Juveniles of Sparisoma frondosum were the most 
abundant (~0.11 ind. m–2), followed by juveniles and 
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IP individuals of S. axillare (0.05 ind. m–2 each), IP 
individuals of S. frondosum (~0.03 ind. m–2) and TP 
individuals of S. frondosum (~0.01 ind. m–2; Fig. 2A; p-
values are given in Table S2). TP individuals of S. axil-
lare were not recorded, which was somewhat ex -

pected, as they occur almost exclusively in relatively 
deeper reefs of the region (~20 m deep), although 
they are still rarely seen (Roos et al. 2019). 

The benthic community was mostly represented by 
zoanthids (mainly Palythoa caribaeorum), red macro-

83

0.0 0.02 0.05 0.07 0.10

J

IP

J

IP

TP

S
.f

ro
nd

os
um

S
.a

xi
lla

re

Mean abundance (ind. m–2)

a

a

b

c

d

0.12 0.15

A)

0 20

a

a

b

c

d

J

IP

J

IP

TP

S
.f

ro
nd

os
um

S
.a

xi
lla

re

C)

0 10 20 30 40

ACA

CCA

Cover %

Sand

Turf

Hard coral

Zoanthid

Green
macroalgae

Red
macroalgae

Red algal
mats

B)

Brown
macroalgae

5 10 15
Mean number of bites (N min–1) 

Fig. 2. (A) Mean abundances (ind. m–2 ±SE) of juvenile (J) and initial phase (IP) individuals of Sparisoma axillare (green and yel-
low bars, respectively) and of J, IP and terminal phase (TP) individuals of S. frondosum (purple, pink and blue bars, respectively); 
(B) percent cover (±SE) of benthic groups; and (C) feeding rate (no. of bites min–1 ±SE) of J and IP individuals of S. axillare 
(green and yellow bars, respectively) and of J, IP and TP individuals of S. frondosum (purple, pink and blue bars, respectively). 
Horizontal bars: mean values of abundance, percentage cover and feeding rate; ontogenetic stages of the 2 species (A and C) and 
benthic categories (B) are assigned to different bar colors; different letters in (A) and (C) indicate significant differences at a 5% 
significance level; p-values are shown in Table S2 for differences in mean abundances (A), and in Table S3 for differences in feed-
ing rates (C). Benthic categories are detailed in Table S1. ACA: articulated coralline algae; CCA: crustose coralline algae



Mar Ecol Prog Ser 730: 79–93, 2024

algae (mainly Cryptonemia spp. and Laurencia spp.), 
red algal mats (mainly Gelidium spp. and Gelidiela 
spp.), brown algae (mainly Dictyota spp., Dictyopteris 
spp. and Sargassum spp.), algal turfs (i.e. epilithic 
algal matrix, mostly filamentous algae mixed with 
sediment and/or detritus) and ACA (mainly Jania 
spp. and Amphiroa spp.; Fig. 2B). Sponges and ascid-
ians were not recorded along transects due to their 
low abundance in the area (Roos et al. 2019). 

A total of 3457 bites were recorded from 409 focal 
fishes, of which 163 individuals were S. axillare (62 
juveniles, 101 IP) and 246 were S. frondosum (95 juve-
niles, 86 IP and 65 TP). Differences in the feeding rate 
between the 2 species and among onto genetic stages 
were observed (Fig. 2C, p-values given in Table S3). 
Juveniles of S. axillare had the highest feeding rate, 
followed by juveniles of S. frondosum. IP and TP indi-
viduals of S. frondosum had the lowest feeding rates 
(Fig. 2C, p-values given in Table S3). 

3.2.  Substrate selection and niche overlap 

Among the 3457 recorded bites, 1662 were taken on 
turf (46.9%), 718 on sand (20.76%), 488 on foliose 
brown algae (14.11%), 382 on red algal mats (11.05%), 
99 on ACA (2.86%), 46 on red macroalgae (1.33%), 38 
on sponges (1.09%), 14 on zoanthids (0.4%), 8 on crus-
tose coralline algae (0.23%) and 2 on hard corals 
(0.05%; Fig. 3). 

Despite the high overlap between species and 
among ontogenetic stages, juveniles and adults of S. 
frondosum presented a wider dispersion of points in 
the nMDS analysis compared to S. axillare (Fig. 4). 
The composition of bitten substrates differed be -
tween juveniles of both species (PERMANOVA: 
pseudo-F = 7.4, p = 0.001) and between adults of both 
species (PERMANOVA: pseudo-F = 8.6, p = 0.001). 
However, for both juveniles and adults, the dispersion 
was significantly different between species (PERM-
DISP: F = 8.2, p = 0.004, PERMDISP: F = 20, p < 
0.001, respectively), with the composition of bites 
taken by S. axillare being more homogeneous across 
different substrates. 

Dissimilarities between the substrate types bitten by 
juveniles of both species were mainly driven by turf 
(47.9%) and sand (17.1%), with both substrates ac-
counting for 65% of the dissimilarity (Table 1). Specifi-
cally, regarding juveniles, S. axillare took almost twice 
as many bites on turf compared to S. frondosum. In 
contrast, S. frondosum took 3 times more bites on sand 
compared to S. axillare (Table 1, Fig. 3). The same pat-
tern was observed for adults, with turf and sand ac-

counting for 60.1% of the dissimilarity between the 
composition of substrate types bitten by both species 
(Table 1). S. axillare also took more bites on turf, while 
S. frondosum took more bites on sand (Fig. 3). 

Similar patterns of substrate selectivity were found 
between species and among ontogenetic stages, in-
cluding their overall preference for turf and foliose 
brown algae (i.e. Dictyota spp., Dictyopteris spp. and 
Sargassum spp.) and their avoidance of red macroalgae 
(Cryptonemia spp., Laurencia spp.) and sand (Fig. 5). 
However, S. axillare showed a higher preference for 
turf (especially juveniles) and a higher avoidance of 
sand, while S. frondosum showed a lower avoidance of 
sand (especially IP individuals) and a lower preference 
for turf (Fig. 5). The overall avoidance of sand is likely 
explained by its high availability in the study area (Fig. 
2B), once E is calculated based on both biting rate and 
food availability, and the biting rate on sand is not pro-
portionally as high as its availability. In addition, 2 S. 
axillare juveniles were observed biting sponges, which 
are not abundant in the study area, 5 S. frondosum indi-
viduals were observed biting the zoanthid Palythoa 
caribaeorum and 2 juveniles (one of each species) were 
observed biting the hard coral Siderastrea stellata (see 
details by species in Table S4). 

Overall, both species and their ontogenetic stages 
presented a high niche overlap (Table 2). The lowest 
overlap was observed between S. axillare juveniles 
and S. frondosum adults, which may be explained by 
their preferred foraging substrates: while S. axillare 
juveniles took more bites on turf and fewer bites on 
sand compared to all other ontogenetic stages or spe-
cies, S. frondosum adults took more bites on sand and 
fewer bites on turf compared to all other ontogenetic 
stages or species (see Fig. 3). 

3.3.  Interactions during foraging activity 

The shoaling behavior of all 409 focal individuals 
was recorded. The mean number of fish associated 
with focal individuals did not differ between juveniles 
of the 2 species (Fig. 6, see p-values in Table S5). 
However, S. frondosum adults (both IP and TP individ-
uals) had significantly more fish associated with them 
during foraging activity (Fig. 6). For S. axillare, only 
18% of juveniles and 2% of IP individuals were associ-
ated with other fish during foraging activity, and most 
observations consisted of intraspecific pairs (Fig. 6). 
In contrast, S. frondosum juveniles associated mostly 
with an interspecific pair (36%) or with interspecific 
groups (41%). S. frondosum IP individuals associated 
mostly with IP individuals of their own species, either 
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in pairs (34%) or in groups (24%). Lastly, S. frondosum 
TP individuals associated mostly with interspecific 
groups (73%; Fig. 6). 

Within shoals, most of the S. axillare juveniles were 
associated with other juveniles of their own species 
(Fig. 6). Conversely, S. frondosum juveniles were as -

sociated with a more diverse group, including the sur-
geonfish Acanthurus chirurgus, the most prominent 
representative. IP and TP S. frondosum individuals 
showed a similar pattern, associating mostly with 
A. chirurgus but also with other surgeonfish such as 
A. coeruleus and A. bahianus, as well as with other 

85

Fig. 3. Number of bites taken by juveniles and adults of Sparisoma axillare and S. frondosum on different substrate types. Number 
of bites by species are shown for the most representative benthic groups. Juveniles (J) and initial phase (IP) individuals of S. axil-
lare are represented by green and yellow colors, respectively, and J and adult (IP and terminal phase [TP]) individuals of S. fron-
dosum are represented by purple and pink colors, respectively. ACA: articulated coralline algae; CCA: crustose coralline algae
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parrotfishes (especially Scarus trispi-
nosus) and IP and TP individuals of 
their own species (Fig. 6). 

A total of 381 focal individuals were 
further ob served to record their ago-
nistic interactions with other fishes. 
Among these, 153 individuals were S. 
axillare (56 juveniles and 97 IP) and 228 
individuals were S. frondosum (88 juve-
niles, 79 IP and 61 TP). Chases against 
focal individuals were mostly per-
formed by the damselfish Stegastes fus-
cus and by other parrotfishes, and oc-
casionally by other species (Fig. 7A). 
No differences in the number of chases 
against focal individuals were found 
between S. axillare and S. frondosum 
and their ontogenetic stages (Fig. 7B, 
Table S6). Furthermore, all ontogenetic 
stages of S. frondosum and S. axillare 
showed similar chasing rates against 
other fishes (Fig. 7B, Table S6). 
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Substrate type           Mean no. of bites              Contri-      Cumulative  
                                             S. axillare   S. frondosum         bution     contribution  
                                                                                                      (%)                  (%) 
 
Juveniles                                                                                                                
Turf                                           9.55                5.17                   47.9                47.9 
Sand                                          0.85                2.53                   17.1                  65 
Red algal mats                       1.93                0.62                   14.5                79.5 
Brown macroalgae               0.37                1.51                   10.6                90.1 
ACA                                          0.80                0.33                    7.1                  97.2 
Red macroalgae                    0.37                0.10                    2.8                  100 
 
Adults                                                                                                                      
Turf                                           4.23                1.40                   38.3                38.3 
Sand                                          1.78                 1.9                    21.8                60.1 
Brown macroalgae               2.08                0.92                   21.7                81.8 
Red algal mats                       0.82                0.96                   15.1                96.9 
ACA                                          0.08                0.08                    1.8                  98.7 
Red macroalgae                    0.07                0.04                    1.3                  100

Table 1. Summary of SIMPER results for the composition of substrate types 
bitten by juveniles and adults of Sparisoma axillare and S. frondosum, includ-
ing mean number of bites on each substrate, their contribution to within-
group dissimilarity and the cumulative contributions. ACA: articulated  

coralline algae

0

1

2

3

−2 0−1 1 2
NMDS1

N
M

DS
2

0

−1

1

−2 −1 0 1
NMDS1

N
M

DS
2

+

+

+

+

+

Turf+

Sand

ACA

Red algal mats

Red macrolagae

Brown macroalgae

Stress: 0.11

Sparisoma axillare - Initial phase
Sparisoma frondosum - Initial phase
Sparisoma frondosum - Terminal phase

Red macrolagae
+

Red algal mats +

Sand+

+

+Brown macroalgae

ACA

+TurfStress: 0.12

Sparisoma axillare - Juvenile
Sparisoma frondosum - Juvenile 2

A) B)

Fig. 4. Non-metric multidimensional scaling (nMDS) of the number of bites taken on different substrate types by (A) juveniles 
and (B) adults of Sparisoma axillare and S. frondosum. Juveniles and initial phase individuals of S. axillare are represented by 
green and yellow colors, respectively, and juveniles, initial phase and terminal phase individuals of S. frondosum are represented 
by purple, pink and blue colors, respectively. nMDS ordinations are based on a Bray-Curtis dissimilarity matrix. ACA: articu- 

lated coralline algae; CCA: crustose coralline algae



Moreira et al.: Foraging behavior of ubiquitous Brazilian parrotfishes

4.  DISCUSSION 

We recorded feeding selectivity and ecological in-
teractions that revealed differences in the foraging be-
havior of the 2 most ubiquitous Brazilian parrotfish 
species. Our in situ observations indicated that com-
pared to Sparisoma axillare, S. frondosum fed on a 
wider range of substrate types. Moreover, S. frondosum 
aggregated significantly more with other fishes while 

foraging, with the surgeonfish Acanthu -
rus chirurgus representing the highest 
proportion of fish in their shoals. For 
agonistic interactions, the damselfish 
Stegastes fuscus was by far the main 
species chasing focal individuals. 

Feeding rates of parrotfishes are 
often expected to decrease with in-
creasing body size. Therefore, juveniles 
tend to show higher feeding rates com-
pared to IP and TP individuals (Brugge-
mann et al. 1994, Lokrantz et al. 2008, 
Ong & Holland 2010, Hoey 2018). Like-
wise, juveniles of S. axillare and S. fron-
dosum showed higher feeding rates 
compared to their adult counterparts, 
but the magnitude of variation differed 
between species. S. axillare juveniles 
had the highest feeding rate, whereas 
the feeding rate of S. frondosum juve-
niles was lower, to the point of not dif-
fering from that of S. axillare IP indi -
viduals. The lower feeding rate of S. 
fron dosum was also observed in adults. 
In fact, the lowest feeding rate was re -
corded for S. frondosum TP individuals. 
Differences in feeding rates be tween 
species and among ontogenetic stages 
may be explained by several factors, 
 including the in creased time spent in 
territory defense (Bruggemann et al. 
1994), as in the case of S. frondosum TP 
individuals, and the cost–benefit ratio 
of different feeding strategies. For in-
stance, it is expected that species that 
feed more intensively on low-quality 
food and have high energetic demands 
need to compensate by increasing their 
feeding rates (Longo et al. 2019). We 
hypothesized that the higher feeding 
plasticity observed for S. frondosum can 
be a strategy to increase its protein in-
take efficiency, leading to a lower feed-
ing rate compared to S. axillare. 

Parrotfishes are microphage foragers targeting epi -
lithic, endolithic and epiphytic microscopic photo-
trophs (e.g. cyanobacteria) as protein-rich nutritional 
food resources (Clements et al. 2017, Nicholson & 
Clements 2020). Most of the sparisomatine parrot-
fishes have less robust buccal and pharyngeal appara-
tuses compared to those of the scarinine clade (Bell-
wood 1994, Clements et al. 2017, Lellys et al. 2019), 
including in their diets of seagrasses and macroalgal 

87

0
Selectivity

0.1 0.2 0.3−0.4 −0.3 −0.2 −0.1 0.4 0.5

ACA

Red algal mats

Brown macroalgae

Red Macrolagae

Sand

Turf

S.frondosum - Terminal phase

S.axillare - Juvenile
S.axillare - Initial phase

S.frondosum - Juvenile
S.frondosum - Initial phase

Fig. 5. Substrate selection (Ivlev’s electivity index ±95%CI) for the 6 substrate 
types that encompass more than 93% of the bites taken by Sparisoma axillare 
and S. frondosum. Juveniles and initial phase individuals of S. axillare are rep-
resented by green and yellow colors, respectively, and juveniles, initial phase 
and terminal phase individuals of S. frondosum are represented by purple, pink  

and blue colors, respectively. ACA: articulated coralline algae

Species /                                    S. axillare              S. frondosum           S. axillare  
ontogenetic stage                        adults                        adults                  juveniles 
 
S. frondosum adults                      0.744                                                                 
S. axillare juveniles                      0.655                          0.517                             
S. fronsodum juveniles                0.883                          0.750                       0.685

Table 2. Schoener’s index of niche overlap between juveniles and adults of  
Sparisoma axillare and S. frondosum
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matrices (Bonaldo et al. 2006, Adam et al. 2015), sub-
strates that also have high quantities of epiphytic 
microscopic phototrophs (Lefèvre & Bellwood 2010). 
However, resource partitioning among species within 
the same group may be difficult to infer by visual 
feeding behavior assessment alone, especially when 
they are targeting microscopic food resources. In this 
regard, new approaches have been used to better 

understand reef fish resource partitioning, including 
DNA metabarcoding (e.g. Casey et al. 2019, Brandl et 
al. 2020a,b) and fine-scale analysis of grazed sub-
strates (e.g. Nicholson & Clements 2020, 2023). Still, 
observing substrate selection is an easy and useful 
in situ methodology that makes possible large geo-
graphical comparisons and first inferences about how 
parrotfishes use available space and rough food re -
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Fig. 6. Shoaling behavior of juveniles and adults of Sparisoma axillare and S. frondosum, including percentage of focal individ-
uals in shoals and percentage of association types, including intraspecific pairs (Intra. pairs), interspecific pairs (Inter. pairs), 
intraspecific groups (Intra. groups), and interspecific groups (Inter. groups); mean shoal size per focal individual; and the 
number of associated individuals of each species. On the left side (focal individuals), juveniles (J) and initial phase (IP) individ-
uals of S. axillare are represented by green and yellow colors, respectively, and J, IP and terminal phase (TP) individuals of S. 
frondosum are represented by purple, pink and blue colors, respectively; different letters beside the mean shoal size indicate  

significant difference at a 5% significance level; p-values are shown in Table S5
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sources (Bonaldo et al. 2006, Francini-Filho et al. 
2010, Adam et al. 2015, 2018, Hoey 2018). 

Habitat preferences of these species based on trop-
ical reef attributes have already been described (Roos 
et al. 2019) and are reflected in some of the results 
found here. S. axillare has been shown to be more 
abundant in shallower habitats where brown macro-
algae cover is higher, while S. frondosum is ubiquitous 
across several types of habitats, including deeper 
reefs (Roos et al. 2019). Brown macroalgae comprise a 
considerable portion of S. axillare’s gut content (Fer-
reira & Gonçalves 2006), although the species dis-
plays a nitrogen-rich dietary composition compared 
with A. chirurgus, also a nominally herbivorous fish 
(Mendes et al. 2018). This indicates that S. axillare’s 
preferred nutritional targets may come from protein-
rich epiphytes together with lipids present in brown 

macroalgae, which are also highly energetic and 
assimilable by parrotfish (Clements et al. 2017). 

In contrast, we hypothesize that the ubiquity of S. 
frondosum may be attributed to its feeding plasticity, 
as preferred dietary resources are major drivers of 
species movement and distribution (Floeter et al. 
2007). Opportunistically, S. frondosum has been ob -
served feeding on unusual organisms such as freshly 
dead spotted sea hares Aplysia dactylomela (Moreira 
& Rosa 2014) and on bryozoans at deeper reefs (~35 m 
deep; N. C. Roos pers. obs.). If these organisms pos-
sess any epiphytic association with micro primary 
producers and/or their nutritional composition can 
be assimilated by S. frondosum, further investigation 
is needed. Furthermore, the stronger preference of 
S. frondosum for sand reported here is likewise also 
related to layers of primary producers (e.g. cyano -
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Fig. 7. Agonistic interactions of juveniles and adults of Sparisoma axillare and S. frondosum with other species, including the mean 
number of chases (A) against focal individuals and (B) performed by focal individuals. Juveniles (J) and initial phase (IP) individ-
uals of S. axillare are represented by green and yellow colors, respectively, and J, IP and terminal phase (TP) individuals of S. fron-
dosum are represented by purple, pink and blue colors, respectively. Same letters beside the mean number of chases indicate no  

significant differences. p-values are shown in Table S6
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bacteria) that colonize this substrate. This behavior 
has been reported elsewhere for parrotfish (Clements 
et al. 2017 and for other nominally herbivorous fish 
(Tebbett et al. 2022). Such feeding plasticity may 
enhance the ability of S. frondosum to inhabit differ-
ent habitats, from shallow to deep reefs. S. frondosum 
was the only parrotfish observed in the Great Amazon 
Reef System at depths between 100 and 140 m (Fran-
cini-Filho et al. 2018). This generalist behavior could 
also be a major driver that makes it possible for this 
species to disperse beyond the Brazilian Province, in -
cluding the Southeast Caribbean (Rocha 2003) and 
the Cabo Verde Island in Africa (Freitas et al. 2014). 

The extent to which fishes explore different reef 
areas may also be influenced by their shoaling be -
havior (Overholtzer & Motta 2000, Nyström & Folke 
2001). Although the formation of mixed-species shoals 
depends on fishes’ social behavior, the fre quency at 
which these associations occur is determined by the 
magnitude of niche and home range overlap among 
species and individuals. Compared to S. axillare, we 
found that S. frondosum associates significantly more 
with other individuals and species while foraging, a 
behavior that may also be linked to its feeding stra -
tegy. For example, benthic disturbance caused by 
large feeding schools of the surgeonfish A. chirurgus, 
an herbivore–detritivore (Ferreira & Gonçalves 2006, 
Mendes et al. 2018) recently classified as a sediment-
sucking species (Tebbett et al. 2022), may expose S. 
frondosum’s preferred food re sources, making it bene-
ficial for S. frondosum to follow foraging A. chirurgus 
individuals. Although this hypothesis requires further 
investigation, it is known that schools of A. chirurgus 
modify sediment, detritus and turf dynamics in reef 
environments (Tebbett et al. 2022) and that substrate 
disturbance is one of the main factors attracting op-
portunistic follower fishes (Krajewski 2009, Inagaki et 
al. 2020). In contrast, the low sighting of S. axillare IP 
in shoals may be linked to the time of the day this spe-
cies prefers to aggregate with other individuals. At the 
Fernando de Noronha Archipelago, for example, S. 
axillare groups were more common in the afternoon 
(Bonaldo et al. 2006). Following behaviors can facili-
tate the accessibility of parrotfishes to areas that are 
highly de fended by farming damselfishes (Francini-
Filho et al. 2010, Tebbett et al. 2022). In our study, the 
damselfish S. fuscus was by far the most aggressive 
species that chased the focal individuals, equally af-
fecting both species and their ontogenetic stages. 
Damselfishes can affect nominally herbivorous fishes 
by limiting their access to food resources and by de-
creasing their feeding rate (Robertson et al. 1979, Fei-
tosa & Ferreira 2015). However, the negative effect 

caused by damselfishes may be overcome through the 
shoaling and/or schooling behavior of nominally her-
bivorous fishes (Tebbett et al. 2022). 

Drawing upon observations of substrate selectivity 
and ecological interactions, our study showed that the 
2 most abundant and ubiquitous Brazilian parrotfishes 
differed in foraging behaviors despite their high niche 
overlap. Although fine-scale resource partitioning de-
serves investigation, for example through methods 
such as DNA metabarcoding (e.g. Casey et al. 2019) or 
the fine-scale analysis of grazed substrates (e.g. Nich-
olson & Clements 2023), the observed  species-specific 
differences in habitat use highlight the niche comple-
mentarity between S. axillare and S. frondosum on a 
broad scale and provide insights into the drivers of 
their distribution in the Brazilian reefs. S. axillare 
seems to be more restricted to shallower reefs with 
high proportions of foliose and leathery brown macro-
algae, which may make this species more vulnerable 
to overfishing. In contrast, S. frondosum is common in 
different habitat types, including deeper reefs (Fran-
cini-Filho et al. 2018, Roos et al. 2019). Differences in 
foraging behavior between the 2 species are somehow 
linked to the observed differences in habitat use and 
spatial distribution. In particular, S. frondosum has a 
relatively broad foraging ecology, which may enable 
it to recover better from habitat-specific anthropic 
 disturbances, whereas S. axillare displays a compara-
tively more specialized foraging ecology. Nonethe-
less, both species are fishing targets and are officially 
listed as Vulnerable by the Brazilian Red List of En-
dangered Species. Understanding the differences in 
their ecological demands for space and food resources 
at a large geographical scale in the Brazilian Province 
is, therefore, of central importance to advance our 
fundamental knowledge of their ecology and to im-
prove ecosystem-based management strategies. 
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