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1.  INTRODUCTION 

Environmental heterogeneity in the context of 
rapid global climate change and ocean acidification 
(OA) could have important consequences for species 
persistence and adaptation (Schindler et al. 2015, 
Morelli et al. 2016, Webster et al. 2017). As average 
pCO2 concentrations and marine sea surface tem-

peratures (SSTs) rise, stochastic variability in pH and 
temperature is also influenced by climate change. 
Marine heatwaves (MHWs) are increasing in fre -
quency and duration (Frölicher et al. 2018, Barkhor-
darian et al. 2022, Jacox et al. 2022) and pH regimes 
can vary greatly over short distances and fluctuate 
rapidly. Some of the most variable pH environments 
are found in temperate waters, eastern boundary cur-
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rent upwelling systems, and nearshore productive 
habitats such as macrophyte habitats (Hofmann et al. 
2011). In the California Current System (CCS), epi-
sodic upwelling brings cold water, low in pH and dis-
solved oxygen (DO) but rich in nutrients, up from 
depth. The frequency, duration, and extent of upwel-
ling is predicted to increase with climate change, 
extending the footprint of undersaturated waters with 
respect to aragonite (Diffenbaugh et al. 2004, Feely et 
al. 2008). In the Santa Barbara Channel (SBC), in the 
southern CCS, pH and oxygen levels vary on diurnal 
and seasonal scales, as well as on ‘event’ scales 
(Frieder et al. 2012, Kapsenberg & Hofmann 2016). 
The lowest pH events can be paired with warm tem-
peratures driven by overnight respiration in the 
summer, or cold temperatures during strong upwel-
ling (Kapsenberg & Hofmann 2016). The interaction 
between physical drivers, such as upwelling, and bio-
logical drivers, such as primary production, makes it 
critical to consider site-specific differences in dyna -
mic ecosystems like the CCS. 

Kelp forests can impact flow and modify local water 
chemistry through photosynthesis (Gaylord et al. 
2007, Krause-Jensen et al. 2016), elevating mean pH 
and DO levels while also increasing diurnal variabil-
ity due to photosynthesis and respiration (Delille et 
al. 2009, Frieder et al. 2012, Kapsenberg & Hofmann 
2016, Hirsh et al. 2020). This process has piqued inter-
est in whether macrophytes provide potential refuges 
from OA (Morelli et al. 2016, Nielsen et al. 2018, 
Woodson et al. 2019, Ricart et al. 2021), and further, 
how differences in the magnitude and variability of 
pH and DO influence organismal performance 
(Mcleod et al. 2011, Wahl et al. 2018). Since the 
change in mean pH around macrophytes comes with 
a corresponding increase in variability, it has mixed 
consequences for processes such as calcification. 
Impacts can vary between taxa and ontogenetic tim-
ing with consequences for community assemblage 
(Cornwall et al. 2018, Kapsenberg et al. 2018, Wahl et 
al. 2018). The spatial heterogeneity and temporal var-
iability of macrophyte habitats with respect to pH, 
DO, and temperature creates a mosaic where con-
ditions can range in hospitability across short dis-
tances (Krause-Jensen et al. 2015, Starko et al. 2022). 

Given this existing abundance of small-scale physi-
cochemical variability, plasticity may play a key role 
for species persistence under global change. Pheno-
typic plasticity is critical to survival in variable envi-
ronments and can be sustained in a population by 
selection (Via 1993). Mechanistically, transgenera-
tional plasticity (TGP), where parental environment 
modifies the phenotype of the offspring without af -

fecting the genotype, could be particularly important 
in conferring tolerance to environmental stressors 
(Donelson et al. 2018). TGP can be derived from 
maternal effects such as nutrient, hormone, protein, 
and lipid provisioning to eggs, or from paternal ef -
fects mediated through sperm (Munday 2014). Males 
and females may pass epigenetic markers such as 
DNA methylation, histones, or small RNAs to their 
offspring, driving phenotypic plasticity through her-
itable changes in gene expression (Gavery & Roberts 
2010, Munday 2014, Hofmann 2017). It is necessary to 
describe the abiotic conditions that promote TGP and 
align investigations with ecologically relevant stress-
ors and the duration of their exposure (Burgess & 
Marshall 2014, Bautista & Crespel 2021). Characteriz-
ing both the magnitude and predictability of variabil-
ity will be critical for considering its implications for 
plasticity, the conditions which drive its evolution, 
and the resulting consequences for population vul-
nerability (Burgess & Marshall 2014, Fox et al. 2019, 
Bitter et al. 2021). 

Environmental variability may align with particular 
life history stages. In the SBC, the spring period of 
strongest upwelling, and thus variation in pH, coin-
cides with when larvae of the purple sea urchin Stron-
gylocentrotus purpuratus are in the water column 
(Strathmann 2017). Early life stages are thought to be 
highly vulnerable with respect to environmental 
stressors for most marine organisms (Kurihara 2008, 
Byrne 2011). As a dominant herbivore, S. purpuratus 
has a major influence on kelp forest ecosystems in the 
CCS. In addition to the variability in pH and DO asso-
ciated with upwelling and kelp forests, purple urchins 
and the kelp that supports them are experiencing 
increased thermal stress from MHWs, which may 
impact biotic interactions and recruitment patterns 
(Okamoto et al. 2020, Starko et al. 2022). A recent 
study found that female adult urchins conditioned 
inside a kelp forest during gametogenesis produced 
eggs with increased protein content compared to 
mothers conditioned outside the kelp, indicating 
elevated maternal provisioning (Hoshijima & Hof-
mann 2019). Previous laboratory-based studies have 
shown that conditioning adult purple urchins to dif-
ferent pH and temperature regimes during gameto-
genesis has transgenerational effects on size, lipid 
content, gene expression, and DNA methylation of 
their larvae raised under different pCO2 conditions 
(Wong et al. 2018, 2019, Strader et al. 2019). However, 
aside from Hoshijima & Hofmann (2019), little work 
has been done to look at this phenomenon in the field. 

While most TGP studies are conducted in the labo-
ratory, temporal variation in environmental con-
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ditions around reproduction can have transgenera-
tional consequences in situ in Atlantic silverside 
Menidia menidia and European squid Loligo vulgaris 
(Murray et al. 2014, Rosa et al. 2014), as can spatial 
temperature variation in California mussels Mytilus 
californianus (Waite & Sorte 2022). In the field, high-
frequency fluctuations, regular cycles, and event-
scale shifts associated with upwelling or MHWs inter-
act to define the acclimation environment. This 
temporal mosaic is further complicated spatially 
across habitat types and depths. It is difficult for lab 
studies to mimic these many axes of variation and 
their correlations accurately; therefore, it is critical to 
supplement lab studies of TGP with field studies in 
dynamic areas such as kelp forests. Studies have ex -
plored ecological changes in recruitment dynamics 
and community assemblage across a kelp gradient 

(Duggins et al. 1990, Schroeter et al. 1996, Carrasco et 
al. 2017), but few have examined the physiological 
consequences of the abiotic gradient, as we do here 
mechanistically via TGP. 

In this study, we investigated TGP driven by field 
acclimation using the natural heterogeneity within 
and outside a kelp forest. To accomplish this, sensors 
were deployed to monitor DO, temperature, and pH 
in side and outside a giant kelp Macrocystis pyrifera 
forest in the SBC. Adult S. purpuratus were simulta-
neously acclimatized on the kelp forest benthos in 
close association with the sensor arrays. Caged adult 
sea urchins were conditioned in the field for 6 mo dur-
ing their gametogenesis period, then spawned in the 
laboratory in order to assess the physiological re -
sponse of their larvae to pCO2 stress (Fig. 1). This 
field to lab experiment allowed us to examine 
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Fig. 1. Experimental design. (1) Adult purple urchins Strongylocentrotus purpuratus were held in cages inside (I) or outside 
(O) the kelp forest for 6 mo prior to spawning. pH, temperature, and dissolved oxygen sensors (yellow and black cylinders) 
were deployed at both sites. (2) Eggs from n = 3 mothers were pooled to create n = 3 pools from each site. (3) Each pool of 
eggs (n = 6) was fertilized with sperm from 1 inside-conditioned male. (4) Fertilized eggs from each pool were then divided 
into low pCO2 (L: ~435 μatm), or high pCO2 (H: ~1050 μatm) treatments to develop until the prism larval stage yielding 4 final 
combinations of maternal and larval treatment: larvae from inside mothers (I) raised under low pCO2 (L), IL; larvae from in-
side mothers (I) raised under high pCO2 (H), IH; larvae from outside mothers (O) raised under low pCO2 (L), OL; and larvae  

from outside mothers (O) raised under high pCO2 (H), OH
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whether and how maternal environmental experience 
inside or outside the kelp forest influences the pheno-
type and performance of their offspring when ex -
posed to low pH/high pCO2. Adult acclimation could 
result in a range of larval responses to pCO2 stress, as 
both positive and negative transgenerational effects 
have been observed in the literature, and the environ-
mental factors inside and outside the kelp forest are 
complex (Fig. 2). 

2.  MATERIALS AND METHODS 

2.1.  Site instrumentation and adult conditioning 

In early June 2018, a SeaFETTM pH and miniDOTTM 
DO sensor were deployed on a benthic mooring within 
the kelp forest (henceforth, ‘inside’) at Arroyo Que-
mado reef, a Santa Barbara Coastal Long Term Eco-
logical Research (SBC LTER) site ((34° 28.040’ N, 
120° 07.084’ W) Rivest et al. 2016). The SeaFETTM re -
corded pH and temperature every 30 min, and the 
miniDOTTM recorded DO and temperature every 
10 min. A complementary pair of sensors was de -
ployed at the base of the LTER mooring ‘outside’ the 
kelp forest (34° 27.897’ N, 120° 07.179’ W) with the 
same sampling intervals (Fig. 1). The 2 sites were 305 

m apart. The sensors were replaced halfway through 
the experiment. There was a depth difference be tween 
the 2 moorings: inside ~9 m and outside ~14 m. The 
benthos inside was rocky reef while outside was sandy 
substrate. To calibrate the pH sensors, water samples 
were taken on scuba using Niskin Go-FLO sampling 
bottles (General Oceanics) and immediately poisoned 
on the boat using HgCl2 at a final concentration of 
0.02%. The pH of these water samples was measured in 
the lab using a UV spectrophotometer (Shimadzu UV-
1800) and m-cresol purple dye, and total alkalinity was 
measured by titration (Mettler-Toledo T50) following 
the procedures outlined by Dickson et al. (2007). Point 
calibrations were aligned with the time and tempera-
ture when a sample was taken, and pH was adjusted to 
the in situ levels using ‘CO2Calc’ (Robbins et al. 2010). 
Calibration coefficients for the raw voltage data from 
the SeaFETTM were calculated using the ‘seaCarb’ 
(Gattuso et al. 2021) in R (v 4.0.3) (R Core Team 2020).  

Four plastic cages reinforced with plastic garden 
fencing (dimensions: 50 cm × 36 cm × 20 cm; volume: 
36 l; mesh size: 0.8 cm) were deployed at both sites 
close to the sensor arrays. Outside cages were se -
cured ~0.5 m above the substrate using sand anchors, 
whereas inside cages were bolted to a rock the same 
height above the benthos. Purple urchins were col-
lected from the Arroyo Quemado kelp forest (Califor-
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Fig. 2. Possible directions for transgenerational effects of conditioning inside and outside kelp forest on purple urchin larval devel-
opment under high pCO2. Based on current support from the literature, transgenerational impacts may align with different hypo -
theses: H0: Conditioning inside and outside a kelp forest has no transgenerational impact. H1: Negative effect from high pCO2: 
urchins that were acclimated outside the kelp forest suffer from higher pCO2 and lower oxygen, and they pass down damage or are 
unable to provision offspring proficiently, while urchins that were acclimated inside the kelp forest may have a more hospitable 
environment of low pCO2 and higher dissolved oxygen, allowing them to provision their eggs more than those acclimated outside 
the kelp forest, creating more resilient larvae. H2: Positive effect of priming urchins that were acclimated inside the kelp forest that 
are naïve to higher pCO2 and lower oxygen and do not confer changes to offspring upregulating pathways to help them cope 
while urchins acclimated outside the kelp forest that experience more acidic, low-oxygen conditions may be primed by poor con-
ditions and confer resilience to these same stressors to their offspring through maternal provisions or epigenetic modifications
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nia Department of Fish and Wildlife Scientific Col-
lecting permit #SC-9228) and randomly assigned to 
the 8 cages, ~12 in each (Fig. 1). The urchins were 
held in these cages from early June through early 
December during their gametogenesis period and fed 
an excess of kelp every 2 wk to control for the effects 
of food availability at each site. Every 2 wk, divers 
opened the cages, visually checked the health and 
number of urchins, removed any dead urchins and re -
maining kelp, and filled the cage with fresh giant kelp 
collected from Arroyo Quemado Reef (the inside 
site). Several urchins (n = 1–2) at each site died in the 
first ~2 wk, presumably from the stress of collection. 
After this, there was no mortality at either site. 

2.2.  Time series analysis 

Temperature observations from the miniDOTTM 
oxygen sensors were used in all analysis. Power spec-
tral density (PSD) estimates were conducted follow-
ing the methods of Hoshijima & Hofmann (2019). 
Time series analysis for DO and temperature was con-
ducted on observations from 10 June to 8 October 
2018 to avoid artifacts due to sensor conditioning at 
the beginning of the deployment and bio-fouling at 
the end. Due to a data gap between the first and sec-
ond deployment, PSD estimates for pH were calcu-
lated separately for each half from 8 June to 21 Sep-
tember and 28 September to 30 October, and a mean 
spectrum was computed by weighting each by their 
duration. A 24 h moving-average filter was applied to 
remove the diurnal signal, and beta (β) statistics were 
calculated as the negative slope of the log10 – log10 
spectral density to measure ‘environmental color’, a 
characterization of predictability based on the struc-
ture of residual variation around a mean trend (Mar-
shall & Burgess 2015, Hoshijima & Hofmann 2019). 
Using NOAA 1/4° Daily Optimum Interpolation Sea 
Surface Temperature (OISST) data (Huang et al. 
2021) for the region between 34.25 and 34.5° N and 
be  tween 120.5 and 119.5° W, MHW events were cal-
culated using the R package ‘heatwaveR’ (v 0.4.5) 
(Schlegel & Smit 2018) as events where SST exceeded 
the 90th percentile of climatological observations, 
based on a 38 yr dataset (1982–2019), for at least 5 d. 

2.3.  Adult spawning and larval culturing 

Adult urchins were recovered on 4 December after 
6 mo of field conditioning. Urchins from each cage 
were kept in separate bags and submerged in flowing 

ambient seawater until spawning 1 wk later. Spawning, 
gamete collection, and quality screening was per-
formed following Wong et al. (2019). Spawning was in-
duced by injection of 0.53 M KCl into the coelom. 
Sperm was collected and stored dry on ice until activa-
tion. Eggs were collected from each female by invert-
ing the female over a beaker filled with UV sterilized 
filtered seawater (FSW). Egg concentrations were cal-
culated by counting 3 aliquots (5 μl each) of eggs per 
female under a microscope. The coefficient of variation 
(CV) for the 3 aliquots was less than 10% for all fe-
males, and the average count was used to determine 
pooling volumes to ensure females contributed an 
equal number of eggs. Eggs were visually checked for 
quality, indicated by uniformity and sphericity, during 
counting, and females with significant numbers of 
eggs containing visible germinal vesicles were deemed 
immature and excluded. Sperm from potential males 
was activated in FSW, checked for motility, and then 
used to fertilize a subset of eggs from each female to 
ensure male–female compatibility. Three females 
with the highest-quality eggs were selected from each 
of 6 cages (1 cage was excluded from each site due to 
the bag failing post collection, leading to uncertainty 
about their source site). Test dia   meters were measured 
for females that contri b uted eggs. Eggs from each of 
the 3 females were pooled in equal numbers to create 3 
egg pools per site, each representing a cage. To reduce 
genetic di versity and control functional variation be-
tween individuals sired with sperm with different envi-
ronmental history, eggs were fertilized with the sperm 
from 1 inside-conditioned male (Fig. 1). All larvae 
were thus a mix of full and half siblings. Dilute acti-
vated sperm was added slowly to each pool of eggs 
until 95% fertilization was reached. Half of the em-
bryos from each pool were then added to a high (H) 
pCO2 (1053.18 ± SD 14.24 μatm) and low (L) pCO2 
(~435 ± 6.23 μatm) 12 l culture vessel for a final con-
centration of 10 embryos ml–1. This yielded 3 culture 
vessels for each of 4 treatment groups: embryos from 
mothers conditioned inside the kelp forest raised 
under high pCO2 (IH), embryos from mothers con-
ditioned inside the kelp forest raised under low pCO2 
(IL), embryos from mothers conditioned outside the 
kelp forest raised under high pCO2 (OH), embryos 
from mothers conditioned outside the kelp forest 
raised under low pCO2 (OL). 

2.4.  CO2 mixing system and seawater chemistry 

Larval cultures were held constant at a mean ± SD 
of 15.01 ± 0.52°C and a salinity of 33.2 ppt, reflective 
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of the collection site during the last weeks of adult 
conditioning. Temperature was maintained using a 
Delta Star heat pump with a Nema 4× digital tem-
perature controller (AquaLogic). A flow-through CO2 
system was modified from the design of Fangue et al. 
(2010) to create the desired carbonate chemistry 
para  meters. To generate filtered seawater (FSW), 
incoming seawater was UV- and 0.35 μm filter-steril-
ized. Desired pCO2 treatments were created by mix-
ing CO2 gas with CO2 scrubbed dry air in the appro-
priate ratios using mass flow controllers (Sierra 
Instruments) and injecting the gas mixture into 2 res-
ervoir tanks using Venturi injectors. The 2 reservoir 
tanks then fed 6 culture vessels per treatment at a 
rate of 6 l h–1 using irrigation drippers. Each culture 
vessel consisted of 2 nested 12 l buckets: the inner 
bucket had holes covered with 30 μm mesh allowing 
water to flow to the outer bucket and overflow with-
out losing any larvae. Temperature, pH, and salinity 
were measured daily for each bucket to confirm uni-
form conditions across each treatment. Tempera-
ture was measured using a thermocouple (Omega 
HH81A), and salinity was measured using a conduc-
tivity meter (YSI-3100). pH was measured following 
SOP 6b using a spectrophotometer and m-cresol pur-
ple dye (Dickson et al. 2007). Total alkalinity 
(2236.89 ± SD 0.17 μmol kg−1) was measured from 
in coming water samples poisoned with HgCl2 fol-
lowing the SOP 3b procedure (Dickson et al. 2007). 
‘CO2calc’ (Robbins et al. 2010) was used to calculate 
carbonate chemistry para meters using the equilib-
rium constants from Mehrbach et al. (1973) refit by 
Dickson & Millero (1987). 

2.5.  Egg and larval sampling 

Prior to conducting fertilizations, eggs were sam-
pled from all 18 females that would mother offspring 
(n = 9 females per treatment). From each female, 1000 
eggs estimated by volume were placed in 6 replicate 
tubes for protein and lipid quantification. Eggs were 
centrifuged to remove excess seawater and flash 
frozen with liquid nitrogen. For morphometric analy-
sis, 1000 eggs estimated by volume were preserved 
per female by addition of formalin (in 0.01 M phos-
phate-buffered saline with borax) to the same volume 
of eggs in FSW for a final concentration of 2% for-
malin and stored at +4°C. The offspring from each 
bucket were also sampled as prism larvae, an early 
echinopluteus stage of pre-feeding larvae, at ~45 h 
post fertilization. The prism stage was defined by the 
archenteron merging to one side of the body and 

becoming tripartite, the first development of skeletal 
rods, and a pyramid like shape. Prism larvae (~1000 
per bucket per stage) were preserved in a final con-
centration of 2% formalin in FSW (larval concentra-
tions were determined in the same manner as for 
eggs, described in Section 2.3 using 20 μl aliquots of 
larvae after larvae were concentrated for sampling 
from each bucket using a 30 μm mesh to reduce the 
volume of FSW). Some larvae were also sampled at 
the prism stage and were immediately used for live 
assessment in an acute thermal stress trial and whole-
animal respirometry. 

2.6.  Thermal tolerance 

To assess the effect of maternal conditioning and 
larval pCO2 treatment on response to acute thermal 
stress, larvae from each treatment were subjected to a 
range of acute heat shocks for 1 h and then scored as 
alive or dead following a procedure adapted from 
Hammond & Hofmann (2010). FSW (3.5 ml) with 
ambient pCO2 in scintillation vials was brought to 
temperature across a gradient from 24.8 to 33.4°C. At 
the prism stage, ~3333 larvae from each of the 3 larval 
cultures per treatment were combined into an aggre-
gate pool. Larvae from each pool were gently mixed 
before 1000 larvae (0.5 ml) were pipetted into 10 treat-
ment vials per treatment across the temperature gra-
dient and were then incubated for 1 h. Control larvae 
were held at 15°C. After 1 h, all vials were transferred 
to a 15°C cold room, and scoring was performed im -
mediately. A volume of 1 ml was loaded onto a rafter 
slide, and the larvae were viewed through a com-
pound microscope with the 4× objective. The first 100 
larvae seen were scored as either alive (denoted by 
swimming and/or cilia movement) or dead. All scor-
ing was blind to treatment and temperature. The sur-
vivorship curve for each treatment group was used to 
calculate the lethal temperature at which 50% of the 
individuals died, LT50, using logistic regression with 
the ‘MASS’ package (Venables & Ripley 2013) in R 
(v 4.0.3). A generalized linear model fitted using a 
logit link function was used to analyze differences in 
thermal tolerance, including vial temperature, mater-
nal treatment, and larval treatment as fixed effects. A 
Wald chi-squared test was used to assess the signifi-
cance of each factor with the ‘car’ package (v 3.0-10) 
(Fox & Weisberg 2019), and post hoc tests to compare 
individual treatments were conducted in the 
‘lsmeans’ package (Lenth 2013) using the Tukey 
method to adjust for multiple comparisons. An α level 
of 0.05 was used for all statistical tests. 
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2.7.  Respirometry 

To assess the effect of maternal conditioning and 
larval pCO2 treatment on larval metabolism, oxygen 
consumption rates of prism-stage larvae were mea-
sured using the method outlined by Marsh & Mana -
han (1999) with minor modifications. A gradient of lar-
vae (n = 100–600) from each culture bucket (n = 3 per 
treatment, n = 12 total) were loaded into 5 ground-
glass μBOD vials per culture bucket containing a 
known volume of high or low pCO2 FSW with no 
headspace. One blank vial per culture bucket was also 
loaded with high or low pCO2 FSW corresponding the 
larval treatment. End-point oxygen concentrations for 
each vial were measured following a 5–7 h incubation. 
Water (~315 μl) from each μBOD vial was loaded into 
an optode cell using a gas-tight syringe. Oxygen con-
centration was measured using a fiber optic oxygen 
probe inside the cell (Micro TX3; PreSens). The probe 
reading was calibrated using a 2-point (0 and 100%) 
calibration with 0.01 g ml–1 Na2SO3 solution and aer-
ated 0.2 μm re-filtered FSW. Baseline respiration over 
the 5–7 h incubation, determined from blank vials, 
was subtracted from each μBOD vial measurement. 
Oxygen consumption rates per individual (in pmol O2 
h–1 larva–1) were then calculated from a standard 
curve of oxygen consumption rate generated from the 
cumulative oxygen consumption over time at each 
larval concentration (n = 100–600). Oxygen con-
sumption rates per individual were divided by larval 
volume, which was calculated as: 

                                                                   (1)  

Average oxygen consumption rate per unit volume 
(pmol O2 h–1 mm–3) for each bucket was used for 
analysis. Distribution normality was tested using a 
Shapiro-Wilk test, and homogeneity of variance 
between treatment groups was confirmed using Bart-
lett’s test. Differences in size-corrected respiration 
rates across treatments were tested using an ANOVA 
including the maternal and larval treatment as well as 
their interaction as fixed effects in base R (v 4.0.3). 

2.8.  Morphometric analysis 

Eggs and larvae preserved in 2% formalin were pho-
tographed on a compound microscope (Olympus 
BX50) with an attached digital camera (Motic 10MP) 
using the Motic Images Plus software. Images were 
calibrated using a stage micrometer with the 10× ob-
jective and analyzed using ImageJ (National Institutes 

of Health, USA). Average diameter was calculated for 
35 eggs from each of the 18 females (n = 9 per treat-
ment) using 3 roughly orthogonal diameters. Prism 
larvae were photographed from a lateral view where 
both the tip of the body rod and branching point of the 
postoral rod were in focus. Spicule length was mea-
sured as the length from the tip of the body rod to the 
branching point of the postoral rod, and body length 
was measured as the top of the arch to the top of the 
pyramid parallel to the ventral plane (Fig. A1 in the 
Appendix). Spicule and body length for each individ-
ual were used to calculate the spicule:body length 
ratio. Approximately normal distributions were con-
firmed through histograms and qqplots, and homoge-
neity of variance was confirmed between treatment 
groups using Bartlett’s tests. A linear mixed effects 
model (LMM) was used to compare size between 
treatments with maternal and larval treatment and 
their interaction as fixed effects and pool as a random 
effect. A Wald chi-squared test was used to assess the 
significance of each factor in the ‘car’ package (v 3.0-
10) (Fox & Weisberg 2019). For egg morphometrics, 
the inverse (1/average diameter) was used to adjust 
for skew in the distribution before performing an 
ANOVA. Maternal treatment was treated as a fixed ef-
fect while maternal identity was treated as a random 
effect. Statistical tests were run in R (v 4.0.3) using the 
‘lme4’ (Bates et al. 2015) and ‘lmerTest’ (Kuznetsova 
et al. 2015) packages. Post hoc tests were conducted in 
the ‘lsmeans’ package (Lenth 2013) using the Tukey 
method to adjust for multiple comparisons. 

2.9.  Protein quantification 

Total protein was extracted from frozen egg sam-
ples (n = 3 tubes per female) using the method de -
scribed by Wong et al. (2019), modified from Byrne et 
al. (2008) and Prowse et al. (2008). Samples were son-
icated on ice for 20 s in 100 μl homogenization buffer 
(20 mM Tris-HCl [pH 7.6]; 130 mM NaCl, 5 mM 
EDTA) containing 1% Triton X and 1% protease in -
hibitor cocktail using a Sonic Dismembrator 550 
(Fisher Scientific). Samples were shaken on ice for 
15 min and centrifuged for 20 min at 18000 × g. After 
extraction, the retained supernatant of total soluble 
protein was quantified at 562 nm on a microplate 
reader (Bio Rad) using a BCA protein assay kit follow-
ing the manufacturer’s instructions (Catalog number 
23225, Pierce Biotechnology). For protein and lipid 
measurements, distribution normality was tested 
using Shapiro-Wilk tests, and homogeneity of vari-
ance between treatment groups was confirmed by 

3
  Mean ody engthb l 3f p

65



Mar Ecol Prog Ser 733: 59–77, 2024

Bartlett’s tests using R base packages. Differences in 
biochemical content of inside and outside eggs were 
assessed using Welch’s 2-sample t-tests. 

2.10.  Lipid content analysis 

Total lipid was extracted from frozen egg samples 
(n = 3 tubes per female) following the methods de -
scribed by Wong et al. (2019) based on Sewell (2005), 
the only difference being that no internal standard was 
needed. Each sample was sonicated on ice for 25 s 
bursts (n = 3). Samples were then transferred to glass 
V-vials and combined with 250 μl of methanol and 
125 μl of chloroform (Parrish 1987). After vigorous 
shaking, V-vials were centrifuged for 5 min at 4°C. 
Using a pulled Pasteur pipette, both the aqueous and 
chloroform layers were transferred to a clean V-vial, 
and chloroform and water were added to a final volume 
ratio of 4:3:2 (water:chloroform:methanol). After cen-
trifuging under the same conditions, only the bottom 
chloroform layer was transferred and stored under ni-
trogen at –20°C. Immediately prior to quantification, 
total lipid extracts were dried in glass vials using ni-
trogen gas. Total lipid was quantified using a spectro-
photometric method (Marsh & Weinstein 1966). 
Briefly, 500 μl of sulfuric acid were added to each of 
the dried samples; the vials were then covered with 
aluminum foil caps and heated in a furnace at 200°C 
for 15 min. The vials were allowed to cool for 15 min, 
and then 2.5 ml of water were added to each, followed 
by an additional 15 min cooling period. The absorption 
of each re-constituted lipid sample was read on a UV 
spectrophotometer (Shimadzu UV 1800) at 375 nm 
using disposable cuvettes. A standard curve of known 
mass of lipid ranging from 25 to 300 μg was prepared 
in the same way and measured alongside each batch of 
samples. The lipid profile of the standards was com-
posed of the major lipid classes found in Strongylocen-
trotus purpuratus eggs in the ratios reported by Wong 
et al. (2019) (51% triacylglycerol, 38% phospholipid, 
11% cholesterol). Principal component analysis was 
conducted on all egg metrics (size, protein, and lipid 
content) and maternal test diameter in R (v 4.0.3) using 
‘ggfortify’ (Tang et al. 2016) and base packages. 

3.  RESULTS 

3.1.  In situ water properties 

The average in situ water temperature varied be -
tween the inside and outside sites for the time period 

analyzed, with the shallower inside site warmer by 
approximately 1.5°C (17.65 ± SD 3.14°C) than the 
deeper outside site (16.10 ± 3.91°C) (Fig. 3). The aver-
age (±SD) DO concentration and saturation were also 
higher inside the kelp forest (7.28 ± 0.80 mg l–1, 93.20 
± 11.78%) than outside (7.03 ± 0.67 mg l–1, 87.49 ± 
11.32%). With regard to pH, on average, seawater 
inside the kelp forest tended to be more alkaline than 
was measured outside the kelp; pH was 8.13 ± 0.13 
inside the kelp forest vs. 7.89 ± 0.07 outside (Fig. 3). 
Lastly, there was a greater degree of high-frequency 
variation in temperature, DO (concentration and sat-
uration), and pH outside the kelp forest compared 
with inside. β-values, a metric of environmental color, 
were higher inside the kelp forest relative to outside 
for all parameters, indicating a tendency to lower-
frequency and more predictable variation over time 
(Fig. 3). Multiple MHW events occurred during the 
conditioning period of the experiment (Fig. 4). 

3.2.  Thermal tolerance 

Using acute thermal tolerance trials, we found an 
effect of both maternal conditioning environment and 
developmental pCO2 treatment on the capacity of lar-
vae to deal with an additional environmental stressor, 
temperature. Specifically, LT50, the lethal tempera -
ture at which 50% of the larvae died from a 1 h expo-
sure, varied by up to 1.0°C across treatment groups 
(Fig. 5). The effect of both maternal (Wald chi-
squared test: χ2 = 9.5, df = 1, p = 0.002) and larval 
treatment (χ2 = 17.3, df = 1, p < 0.0001) were signifi-
cant, along with vial temperature (χ2 = 3224.7, df = 1, 
p < 0.0001). The interaction between maternal and 
larval treatment was not significant (χ2 = 0.5, df = 1, 
p = 0.483). LT50 varied by ~0.6°C between larvae 
raised under the low (L) versus high (H) larval pCO2 
treatment, within each maternal treatment (Fig. 5, 
Table 1). Within each larval pCO2 treatment, larval 
LT50 varied by 0.4°C across mothers conditioned out-
side (O) versus inside (I) the kelp forest (Fig. 5, 
Table 1). Within the same larval treatment (H or L), 
those from inside (I) mothers had lower thermal toler-
ance, while within a maternal group (O or I), those ex-
posed to high pCO2 (H) had lower thermal tolerance 
(Fig. 5). Larvae from mothers conditioned outside the 
kelp forest raised under low pCO2 (OL) had the high-
est LT50 (±SD) at 29.9 ± 0.1°C. Those from inside 
mothers who were raised under high pCO2 conditions 
(IH) had the lowest LT50 at 28.9 ± 0.1°C. Larvae from 
outside mothers raised under high pCO2 conditions 
(OH), and those from inside mothers raised under low 
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pCO2 (IL) had intermediate LT50, at 
29.3 ± 0.1 and 29.5 ± 0.1°C, respec-
tively. The same trends held for calcu-
lated LT10 and LT25 values, although 
overall variation was more extreme, 
with a difference of 1.4°C be tween the 
LT25 values and a difference of 2°C be-
tween the LT10 values of IH and OL lar-
vae (Table 1). In pairwise contrasts be-
tween treatments, using a Tukey 
correction, all treatments were signifi-
cantly different except for OH and IL, 
which displayed intermediate LT50 
values, (IL–IH p < 0.001, IL–OL p < 
0.001, IL–OH p = 0.693, IH–OL p < 
0.0001, IH–OH p = 0.012, OL–OH p 
< 0.0001). 

3.3.  Metabolic rate 

Using whole-animal respirometry, we 
saw that larval pCO2 treatment seemed 
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Fig. 3. Temperature (°C), dissolved oxygen (concentration in mg l–1 and saturation in %), and pH inside (brown) and outside 
(blue) of a kelp forest environment, shown as (A) power spectra, (B) calculated β indexes (±SE), and (C) mean (±SD) values for 
the deployment of temperature (°C), dissolved oxygen (concentration, mg l–1 and saturation,%), pH, and pCO2 (μatm) inside  

and outside of a kelp forest environment
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Fig. 4. Marine heatwave (MHW) events during the deployment period calcu-
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threshold at the 90th percentile (green line), and MHW events (red areas) were 
determined from sea surface temperature encompassing the region of the 
Santa Barbara Channel containing Arroyo Quemado Reef. Darker red shade  

denotes most severe event in the time frame
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to have a greater impact on offspring from mothers 
conditioned inside the kelp than those from mothers 
conditioned outside, al though the difference was not 
statistically significant. Larvae from inside-con-
ditioned mothers raised under high pCO2 conditions 
(IH) had the highest metabolic rate per unit size (mean 
± SE: 17 094.86 ± 926.65 pmol O2 h–1 mm–3); the rate 
for IL larvae was lower (14 812.77 ± 744.60 pmol O2 h–1 
mm–3) (Fig. 6). The metabolic rates for both groups of 
larvae from outside mothers were similar under both 
larval pCO2 levels (15 415.00 ± 1651.14 pmol O2 h–1 
mm–3 for OH larvae and 15 250.96 ± 717.69 pmol O2 
h–1 mm–3 for OL larvae) (Fig. 6). Without size correc-
tion, the pattern was similar (IH: 12.11 ± 0.66 pmol O2 
h–1; IL: 11.05 ± 0.56 pmol O2 h–1; OH: 10.56 ± 

1.13 pmol O2 h–1; OL: 10.89 ± 0.51 pmol 
O2 h–1). There was no effect of maternal 
treatment (ANOVA: F1,8 = 0.015, p = 
0.906), larval treatment (F1,8 = 2.212, 
p = 0.175), or their interaction (F1,8 = 
0.009, p = 0.927). 

3.4.  Morphometrics 

Considering morphometrics, body 
length was similar across treatments, 
and initial skeletal development was 
impacted by the interaction between 
maternal and larval environment. At 
the prism stage, there was no signifi-
cant effect of maternal or larval treat-
ment or their interaction on body size 
(LMM: maternal-O df = 6.357, t = 
–0.939, p = 0.382, larval-L df = 
412.295, t = 0.223, p = 0.824, mater-
nal-O:larval-L df = 412.984, t = 1.570, 
p = 0.117). The average larval body 
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                                                     Temperature treatment 
 
Mother – Offspring         LT10               LT25               LT50 
Inside – Low                 27.4 ± 0.2    28.4 ± 0.1    29.5 ± 0.1 
Inside – High               26.8 ± 0.2    27.9 ± 0.1    28.9 ± 0.1 
Outside – Low             28.8 ± 0.1    29.3 ± 0.1    29.9 ± 0.1 
Outside – High            27.2 ± 0.2    28.3 ± 0.1    29.3 ± 0.1

Table 1. Lethal temperature (LT50, LT25, and LT10) values for 
echinopluteus larvae from different maternal and larval treat-
ments. Adult purple urchins were held in cages inside or out-
side of kelp forest for 6 mo prior to spawning. Urchin larvae 
were then reared under low pCO2 (~435 μatm) or high pCO2  

(~1050 μatm) conditions. Values are given as mean ± SD
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Fig. 5. Effect of maternal (I: inside or O: outside kelp forest) and larval (H: high 
pCO2 or L: low pCO2) treatment on Strongylocentrotus purpuratus prism larval 
thermal tolerance, measured as proportion survival after a 1 h acute heat shock 
and recovery. Acute heat shock temperature is shown on the x-axis. Maternal 
group is shown by color and larval treatment is shown by pattern; IL: brown, 
solid line; OL: blue, solid line; IH: brown, dashed line; OH: blue, dashed line. 
Inset displays the calculated lethal temperature (LT50) for each treatment ± SD

Inside Outside

L H L H

0

5000

10000

15000

Larval pCO2 treatment

O
2 c

on
su

m
pt

io
n 

(p
m

ol
 h

–1
 m

m
–3

)

Fig. 6. Effect of maternal (I: inside or O: outside kelp forest) 
and larval (H: high pCO2 or L: low pCO2) treatment on size-
corrected oxygen consumption of Strongylocentrotus pur-
puratus at the prism larval stage. The consumption rate 
from each culture bucket (n = 3 per treatment, n = 12 total) 
was calculated from a 5-point regression using μBOD vials 
containing a density gradient of larvae (n = 100–600 larvae 
per vial). The calculated consumption rates (n = 3 per treat-
ment) were averaged to calculate the treatment average 
shown and size-corrected to the mean larval size in the cor-
responding treatment. Error bars represent standard error
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length was tightly constrained across treatments: 
ranging from 126.25 μm for OH larvae to 129.50 μm 
for OL larvae (Fig. 7B). The interaction between 
maternal and larval treatment was statistically sig-
nificant (p = 0.028) for spicule length (maternal-O 
t = 0.419, df = 6.939, p = 0.688, larval-L t = 1.248, 
df = 412.441, p = 0.213, maternal-O:larval-L t = 
2.209, df = 413.215, p = 0.028) and close to signifi-
cant (p = 0.057) for spicule to body ratio (maternal-
O t = 0.53, df = 4.43, p = 0.621, larval-L t = 1.31, 
df = 410.033, p = 0.191, maternal-O:larval-L t = 
1.91, df = 410.56, p = 0.057). OL larvae had the 
longest spicules (77.78 ± SD 14.62 μm), followed by 
IL (69.08 ± 14.23 μm) and OH (67.67 ± 15.59 μm). 
IH larvae had the shortest spicules (64.75 ± 12.58 
μm) (Fig. 7A). The ratio of spicule length to body 
length was highest for OL larvae (0.60 ± 0.10), fol-
lowed by IL (0.54 ± 0.10) and OH (0.53 ± 0.11), 
while IH larvae had the lowest ratio of spicule 
length to body length (0.51 ± 0.09) (Fig. 7C). A 
Tukey test confirmed that OL larvae had signifi-
cantly longer spicules (p < 0.0001) and a higher spi-
cule to body ratio (p < 0.001) than OH larvae. All 
other treatments were not significantly different 
from one another in pairwise comparisons. For body 
length, OL larvae tended to be longer than OH lar-
vae (p = 0.059), but all post hoc body length com-
parisons were insignificant at an alpha level of 0.05. 

3.5.  Eggs 

With regard to traits of the eggs from females con-
ditioned inside vs. outside the kelp, egg phenotype 
tended to be more variable among inside females 
compared to outside, but size and biochemical stor-
age (lipid or protein) did not differ significantly be -
tween treatment groups. The eggs from inside 
females tended to be larger (92.49 ± 2.47 μm) than 
those from outside females (90.86 ± 2.25 μm). This 
difference in diameter was not statistically signifi-
cant when taking into consideration variation 
between mothers of a given treatment as a random 
effect (ANOVA: F1,16 = 3.6249, p = 0.075). There was 
no significant effect of maternal treatment on lipid 
content per egg (Welch’s t-test, t = 0.93763, df = 
14.230, p = 0.364) or size corrected per unit volume 
(t = 0.3694, df = 14.302, p = 0.717). There was also 
no significant effect of maternal treatment on protein 
content per egg (t = –0.36869, df = 15.248, p = 
0.717) or size corrected per unit volume (t = –
1.2298, df = 15.229, p = 0.237). In a PCA of egg traits 
and female test diameter, PC1 and PC2 accounted 
for 37.96 and 27.48% of the variation in the data, 
respectively (Fig. 8). Protein and lipid content per 
egg were negatively correlated in PCA space, while 
test diameter and egg volume were positively corre-
lated with one another. Overall maternal treatments 
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did not separate in PCA space, but the outside treat-
ment encompassed less variation than the inside 
treatment. 

4.  DISCUSSION 

4.1.  Summary 

Our goal was to assess the transgenerational effects 
of field acclimation to natural variability in water 
properties associated with a kelp forest on the purple 
urchin. As a foundation to the field experiment, we did 
find differences in abiotic conditions inside vs. outside 
the kelp forest, as has been noted by other investi-
gators (Delille et al. 2009, Frieder et al. 2012, Hoshi-
jima & Hofmann 2019, Hirsh et al. 2020). At our SBC 
study site, pH and temperature were generally higher, 
and the variability of pH, temperature, and oxygen 
was more predictable inside the kelp forest, while 
high-frequency variation was greater outside (Fig. 3). 
At the biological level, these physico chemical differ-
ences aligned with differences in the physiological 
parameters assessed in the larvae of differentially 
 acclimatized mothers. Larvae from mothers con-
ditioned inside the kelp displayed lower thermal toler-
ance, indicating potential increased vulnerability to 
future MHWs (Fig. 5). Conversely, larvae from out-

side-conditioned mothers raised under 
low pCO2 had the highest thermal tol-
erance. The LT10 values observed in 
this experiment still have a buffer 
above MHW temperatures commonly 
experienced in the region. However, 
the thermal tolerance patterns ob-
served indicate treatment level differ-
ences in the cellular and biochemical 
function of the urchin larvae, which 
may make urchins from inside sites, or 
those experiencing elevated pCO2, 
more vulnerable to sub-lethal thermal 
stress at current MHW temperatures 
as well as the more extreme MHWs 
forecasted for the future in the North 
Pacific (Bar khordarian et al. 2022). 
Overall, the fitness implications of the 
observed pattern of transgenerational 
effects on larval traits may vary based 
on the compounding stressors of the 
larval environment at critical points in 
development. 

4.2.  Conditions inside and outside the kelp forest 

The difference in average pH and temperature be -
tween inside and outside was likely due to the depth 
difference, time of year, and thermal regime during a 
MHW in addition to the biological activity of the 
kelp. We observed colder water offshore at the out-
side site, likely driven by the difference in water 
depth (~5 m) in addition to the flow attenuation 
created by the kelp (Gaylord et al. 2007). This differ-
ence may have been exacerbated by a series of 
MHWs that occurred in 2018 during the first half of 
our deployments which extended the vertical stratifi-
cation of summer in addition to elevating tempera-
tures throughout the water column (Fig. 4). This 
depth difference may also have contributed to the pH 
difference between inside and outside sites, with the 
inside showing elevated pH, particularly for the first 
half of our deployment. Depth can be a large determi-
nant of pH difference at coastal sites, sometimes 
exhibiting more influence than horizontal spatial 
variation (Frieder et al. 2012, Koweek et al. 2017). 

The elevated pH inside the kelp forest was largely 
concentrated in the first half of our deployments 
when temperatures were highest and the kelp can-
opy was very dense. As high temperatures persisted, 
the kelp began to die and the pH regimes across 
sites converged for the second half of the condition-

70

volume (mm3)

lipid (ng/egg)

protein (ng/egg)

test diameter

volum

g)

test diameter

−0.50

−0.25

0.00

0.25

0.50

−0.4 −0.2 0.0 0.2 0.4
PC1 (37.96%)

PC
2 

(2
7.

48
%

)

Treatment
Inside
Outside

Pool
I1
I2
I3
O1
O2
O3

Fig. 8. Principal component analysis of Strongylocentrotus purpuratus egg 
measurements including egg volume, protein, and lipid, averaged to match 
individual female test diameter measurements. Different egg pools are shown  

by symbols



Kozal et al.: Urchin transgenerational effects in kelp forests

ing period, a pattern consistent with decreased pho-
tosynthetic activity from the kelp. In a prior study in 
the SBC with a similar experimental setup, Hoshi-
jima & Hofmann (2019) found that pH and oxygen 
were slightly higher outside the kelp forest relative 
to inside, while temperature was slightly lower out-
side. However, the reef at which their sensors were 
de ployed was far shallower, and the regime compar-
isons took place in spring when upwelling is 
stronger in the SBC. We also saw cooler tempera-
tures outside the kelp forest; yet, the temperatures 
were higher at both of our sites than in their study, 
despite the deeper depth, indicative of the time of 
year and the thermal anomaly during our experi-
ment. Recent studies conducted in the Monterey 
Bay region have seen that small differences in pH 
and DO associated with kelp were outweighed by 
site-specific impacts based on wave exposure and 
currents and that the buffering effects of kelp were 
isolated to a narrow depth band at the canopy and 
diminished at depth, indicating that any potential 
pH refuge was unlikely to benefit benthic animals 
(Hirsh et al. 2020, Traiger et al. 2022). Our study 
looked only at the benthic water properties, as our 
primary goal was to co-locate the physicochemical 
monitoring with our biological conditioning of the 
adult urchins, so we are unable to compare to the 
surface conditions. However, the discrepancy be -
tween our findings and those of other recent studies 
suggests that the differences observed may be spa-
tiotemporally specific. 

The most consistent pattern in seawater chemistry 
was that the inside site displayed more predictable 
variation, weighted towards lower frequencies, while 
the outside site showed less predictable, high-
frequency variation (Fig. 3). These findings are con-
sistent with those seen at a different shallower site, 
Mohawk Reef, in the SBC in spring, indicating that 
this pattern is likely persistent throughout the year 
(Hoshijima & Hofmann 2019). The extreme physico-
chemical variability of coastal sites across space and 
time necessitates improved monitoring of pH, DO, 
and temperature across a range of habitats and at 
high temporal resolution, as it is difficult to charac-
terize and mimic all axes of variation accurately in 
the lab (Waldbusser & Salisbury 2014, Baumann et 
al. 2015). Field-based studies that leverage natural 
variations and gradients will clarify how different 
scales of variation impact the biology of critical spe-
cies, and studying transgenerational effects in situ 
will illuminate how variability impacts recruitment 
and fitness across generations (Murray et al. 2014, 
Griffiths et al. 2021). 

4.3.  Transgenerational effects 

We raised the larvae from females acclimated to the 
physicochemical regimes inside and outside an SBC 
kelp forest under high and low pCO2 treatments in 
order to assess how their maternal conditioning im -
pacted their capacity to deal with environmental 
stress. We saw that the differences in maternal con-
ditioning in combination with the larval environment 
impacted the thermal tolerance of offspring as well as 
their skeletal growth. These findings indicate that the 
natural heterogeneity in coastal environments can 
have effects across generations and that the interac-
tion between multiple stressors may impact the local 
success and survival of larvae of key species. 

Similar to this study, Hoshijima & Hofmann (2019) 
did not see a significant difference in egg size, but 
found less variation in egg provisioning of proteins 
among outside-conditioned mothers. Previous lab 
experiments showed that eggs from females held 
under cooler, more acidic conditions (similar to the 
outside conditions in our field experiment) tended to 
be larger when compared to eggs from ambient-con-
ditioned mothers, though not significantly (Wong et 
al. 2018, 2019). We saw the opposite pattern compar-
ing eggs from mothers outside the kelp forest to those 
from mothers inside. Colder temperatures have been 
associated with larger egg volumes in several species 
(Pettersen et al. 2019). However, it is worth noting 
that although we detected a temperature difference 
be tween sites, the entire region was impacted by 
MHWs during this experiment, causing elevated 
temperatures both inside and outside the kelp forest. 

After development under high or low pCO2 con-
ditions, we found a significant effect of larval treat-
ment on spicule development mediated by maternal 
treatment, with outside larvae developing under high 
pCO2 displaying reduced skeletal formation. The 
pattern of reduced spicule growth under high pCO2 
has been seen in prior studies (Yu et al. 2011, Padilla-
Gamiño et al. 2013, Strader et al. 2020). This contrasts 
with the lab experiment of Wong et al. (2019), who 
found that the maternal conditioning environment 
impacted skeletal growth at the prism stage while 
developmental pCO2 treatment did not. In our inves-
tigation, prism larvae from outside mothers raised at 
low pCO2 (OL) had significantly greater skeletal 
development and a significantly higher spicule to 
body ratio than their counterparts under high pCO2. 
In contrast, at the earlier hatched blastula stage, 
Hoshijima & Hofmann (2019) saw that larvae which 
came from outside mothers but were raised under 
high pCO2 conditions (OH) had larger body size than 
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all other treatment groups. Interestingly, in both 
cases, the largest embryos and larvae came from out-
side-conditioned mothers. The differences in the im -
pact of the developmental treatment on body size be -
tween the 2 studies could be due the crossing design 
employed, or the developmental stage assessed. Lar-
vae are generally more vulnerable to pH and tempera-
ture stress than embryos, and the onset of calcifica-
tion begins between the stages investigated in these 2 
studies (Przeslawski et al. 2015). In our study, this 
elevated performance of OL larvae was matched with 
elevated thermal tolerance relative to the other treat-
ment groups. 

Within each maternal treatment group, those lar-
vae which developed under high pCO2 were less tol-
erant of an additional stressor in the form of acute 
thermal exposure than those which developed under 
low pCO2. This pattern varies from those seen by 
Karelitz et al. (2017), who found that larval thermal 
tolerance of 5 echinoderm species was not diminished 
by low pH exposure. In red urchins Mesocentrotus 
franciscanus, developmental pCO2 treatment also did 
not impact thermal tolerance of prism larvae (Wong & 
Hofmann 2020). However, similar to our findings, 
elevated pCO2 can impact thermal stress response in 
M. fransciscanus at the pluteus stage (O’Donnell et al. 
2009). Within each larval treatment (high and low 
pCO2), larvae which came from outside mothers had 
higher thermal tolerance than those from inside 
mothers. Adult exposure to warmer temperatures can 
increase developmental thermal tolerance in some 
species of urchins (Pecorino et al. 2013); however, in 
our study, the larvae whose mothers were at the 
deeper, cooler site displayed higher larval thermal 
tolerance. There was no significant effect of maternal 
treatment on larval metabolic rate; however, larval 
high pCO2 exposure seemed to induce elevated 
metabolic rate only in larvae from in side-conditioned 
mothers. Effects of acidic conditions on larval meta-
bo lic rates vary with larval stage, feeding or non-
feeding, and are mediated by other stressors (Stumpp 
et al. 2011, Padilla-Gamiño et al. 2013). 

The implicati ons of the larval performance metrics 
are likely context dependent. Purple urchin larvae 
reach their feeding larval stage, pluteus, after ~48 h, 
followed by a planktonic pelagic larval duration of 
29–86 d (Strathmann 1978). The oceanographic con-
ditions during their first lecithotrophic 48 h of initial 
development, or the following month(s) feeding prior 
to settlement will have large consequences on their 
survival. With the rise of MHWs and the forecasted 
increase in the frequency and duration of upwelling, 
there is an extreme range of oceanographic con-

ditions in which larvae could develop (Feely et al. 
2008, Frölicher et al. 2018). Interannual variability 
and slight differences in spawning time could lead to 
larvae recruiting under drastically different thermal, 
pH, and/or oxygen regimes. Larval settlement pat-
terns for the purple urchin vary based on temperature 
and climate variations and are negatively correlated 
with SST in the SBC (Okamoto et al. 2020). In our 
experiment, larvae from outside-conditioned mothers 
showed higher acute thermal stress tolerance. As the 
larval stage is a major bottleneck in the lifecycle, if 
the larvae enter the water column during an MHW, 
larvae from outside mothers or deeper sites likely 
have increased probability of survival. OL larvae also 
had the greatest skeletal growth, which could be 
advantageous in avoiding predation or acquiring 
food in low-food conditions (Hart & Strathmann 1994, 
Hart 1995, Allen 2008, Chan et al. 2011). Therefore, 
the combination of stressors experienced during key 
times of their development might determine the bene-
fit of any maternal transgenerational effect (Byrne & 
Przeslawski 2013). 

This experiment isolated the effect of the physico-
chemical environment inside and outside a kelp for-
est, by feeding the urchins consistently to control for 
food availability. However, the availability and com-
position of food would vary drastically between sites 
in nature, with strong implications for maternal provi-
sioning. Inside-conditioned urchins might have 
higher metabolic costs due to warmer temperatures 
but also have access to kelp, whereas outside-
conditioned urchins would rely on other food sources 
including diatoms and encrusting algae. Urchins in 
barrens therefore have different, and even more 
diverse, microbiomes which may influence their 
meta bo lism and stress response (Marangon et al. 
2021, Miller et al. 2021). The nutritional quality of 
kelp itself declines at warmer temperatures, which 
would drive urchins to eat more to meet higher meta-
bolic costs under MHW regimes (Lowman et al. 2022). 
Therefore, the balance between the abiotic environ-
ment and food availability would reshape the con-
sequences of each acclimation regime. 

Overall, isolating the physiochemical differences 
by site, the results of this study indicate a benefit of 
maternal conditioning outside a kelp forest. The rel-
ative stress of a lower pH environment outside the 
kelp forest may have primed the offspring of those 
mothers with increased resilience to environmental 
stress, allowing them to increase skeletal develop-
ment under low pCO2 regimes and endure acute ther-
mal stress. The relative predictability of the inside 
environment would be more likely to induce TGP 
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(Burgess & Marshall 2014). However, it is also pos-
sible that the high-frequency variability of the outside 
site induced epigenetic modifications, enhancing the 
plasticity of gene regulation to respond to rapid 
change which could have passed down to the off-
spring. Although it was not intended in the design of 
the study, an MHW persisted through a significant 
proportion of the adult field acclimation. Therefore, 
temperature differences across the 2 sites may likely 
have been the most important driver of transgenera-
tional effects during acclimation. While temperatures 
were elevated at both sites, the relatively lower tem-
perature at the deeper, less sheltered, outside site 
may have provided a relative thermal refuge for those 
mothers. 

4.4.  Kelp, urchins, and MHWs 

One inadvertent aspect of this field experiment was 
that during late summer and early fall of 2018, several 
MHWs occurred in our study region. Specifically, 
from late June to December, 5 MHW events occurred 
on the benthos at our study site and were 7–21 d long 
with a total of 76 d of extreme thermal stress; 4 MHW 
events were detectable channel-wide using SST data 
(Fig. 4). This temperature regime likely interacted 
strongly with pH and DO and influenced our TGP 
results (Bautista & Crespel 2021). Giant kelp forests 
provide critical habitat and food as a foundation spe-
cies in the CCS, and urchins shape this ecosystem as 
dominant herbivores. Recently, MHWs have caused 
shifts in kelp forest community structure in the SBC 
(Michaud et al. 2022). Therefore, it is essential to con-
sider how giant kelp and key grazers such as urchins, 
and their ecological relationship, will be impacted by 
future climate change (Starko et al. 2022). 

MHWs can occur in the SBC during key periods of 
the purple urchin life cycle such as gametogenesis 
(summer–fall) as well as early larval development 
through metamorphosis (winter) (Chamorro et al. 
2023; Fig. 4). MHWs may impact the dispersal and 
recruitment of purple urchin larvae, influencing gene 
flow and population dyna mics (Byrne 2011, Okamoto 
et al. 2020). Where settlement is not reduced, 
elevated temperatures may shorten pelagic larval 
duration, impacting dispersal (O’Connor et al. 2007, 
Byrne 2011). Adult exposure to MHWs may have 
negative effects on gonad quality or increase suscep-
tibility to disease (Tajima et al. 1997, Uthicke et al. 
2014). Sperm of male urchins exposed to MHW tem-
peratures during spermatogenesis displays reduced 
fertilization success (Leach et al. 2021), underscoring 

the importance of considering transgenerational 
impacts through both parental lines, not solely the 
maternal line as in our study. Temperature variation 
across depth and small spatial scales has a significant 
impact on kelp resilience through MHW events, yet 
biotic interactions with urchin populations can regu-
late the capacity for cool areas to serve as kelp refugia 
(Starko et al. 2022). Since we found that water prop-
erty differences associated with depth and macro-
phyte habitat can have transgenerational effects on 
larval performance including acute heat tolerance, 
this could exacerbate biotic feedbacks be tween kelp 
and urchin populations. MHWs can impact adult 
populations and can have transgenerational effects 
influencing early bottlenecks such as fertilization; 
even sub-lethal exposure at early life stages may have 
negative carryover effects at later life stages (Byrne 
2011, Przeslawski et al. 2015). Overall, it is crucial to 
consider the interaction of MHWs, such as the one 
which occurred during the acclimation period of our 
experiment, with environmental heterogeneity in fac-
tors such as salinity, pH, and DO within and across 
generations, as these interactions are most often syn-
ergistic (Przeslawski et al. 2015), and conditions in the 
North Pacific are likely to support even more extreme 
MHWs in the future (Barkhordarian et al. 2022). 

4.5.  Concluding statements 

Overall, in this study, larvae from mothers con-
ditioned outside the kelp forest performed better on 
average when developing under high pCO2 con-
ditions, displaying increased thermal tolerance com-
pared to their counterparts from inside-conditioned 
mothers. The fitness implications of the transgenera-
tional effects observed may vary based on the com-
pounding stressors of the larval environment at criti-
cal points in their development. It is difficult for 
multi-stressor lab studies to capture the full complex-
ity of variability experienced across space and time in 
ecosystems such as coastal kelp forests, and therefore 
should be complemented by field-based monitoring 
and acclimation experiments. 
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Fig. A1. (A) Prism urchin larvae, with examples of how measurements were taken for (B) spicule length and (C) body length
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