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1.  INTRODUCTION 

Substantial progress has been made in increasing 
the sustainability of fisheries worldwide over the past 
2 decades (Lynch et al. 2017, Farmery et al. 2019, 
 García-Lorenzo et al. 2021). This is important not only 
for the sustainable exploitation of target species, but 

also because of the role of marine biodiversity in pro-
viding multiple ecosystem services (Barbier 2017, 
Shin et al. 2022). This shift in emphasis towards 
broader sustainability objectives for exploited marine 
ecosystems under lies the urgency of implementing 
the ecosystem approach to fisheries (EAF) (Jennings 
& Rice 2011, Serpetti et al. 2017). Ecosystem modelling 
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has emerged as a useful tool to support the practical 
implementation of the EAF (Plagányi 2007). An in-
creasingly large scientific community has been im-
proving the scope and performance of complex marine 
ecosystem models (e.g. Tittensor et al. 2018, Heymans 
et al. 2020, Steenbeek et al. 2021), but these types of 
models have come under criticism because their high 
degree of complexity can generate substantial uncer-
tainty in ecosystem model predictions and therefore 
limit their use in decision-making (Fulton et al. 2003). 
This study shows that it is possible to characterise un-
certainty in a widely used complex marine ecosystem 
model using a formal uncertainty analysis (UA) and 
that this provides important insights into how com-
monly used indicators of marine ecosystem structure 
and function respond to model uncertainty. 

UA characterises the uncertainty in model predic-
tions (Saltelli et al. 2019) by quantifying the variability 
in model outputs (Cariboni et al. 2007); for the pur-
pose of this study, in response to uncertainty in model 
input parameters. Implementing UA of ecosystem 
models is a complicated task due to their high compu-
tational requirements (in terms of simulation time 
and memory space) and the multiple model evalua-
tions that a UA requires (Fulton 2010). For these rea-
sons, and despite the abundant literature explaining 
the importance of dealing with uncertainty in the use 
of ecosystem models (Link et al. 2012, Lehuta et al. 
2016, Payne et al. 2016, Steenbeek et al. 2021), few 
practical applications have been published using UA 
for marine ecosystem models (e.g. McGregor et al. 
2020, Heath et al. 2021). However, to improve the 
credibility of these models and increase their useful-
ness for the practical implementation of the EAF, we 
urgently need to strengthen our capacity to quantify 
the uncertainty in model outputs. 

To address these issues, we have focused on quan-
tifying the effect of parameter uncertainty in the 
Object-oriented Simulator of Marine ecOSystEms 
(OSMOSE) model ap plied to the northern Peru Cur-
rent ecosystem (the NPCE OSMOSE model; Oliv-
eros-Ramos et al. 2017). This model was built primar-
ily as a tool to improve understanding of ecosystem 
functioning under global change and to support 
ecosystem-based management and decision-making 
(Oliveros-Ramos 2014). Therefore, the credibility of 
this tool is essential, but until now the uncertainties 
in this model have never been quantified using a for-
mal approach. In this study, we have addressed this 
challenge by focusing on the uncertainty in mod-
elling the NPCE (also known as the Humboldt Cur-
rent ecosystem). In this paper, the NPCE is defined 
from 20° S to 6° N. The NPCE is one of the 4 eastern 

boundary upwelling systems. It provides the highest 
fish production in the world, around 10% of global 
fish catches, and supports the fishery of the Peruvian 
anchovy (Bakun & Weeks 2008, Chavez et al. 2008), 
the most significant single-species fishery in the 
world (Chavez et al. 2003). This ecosystem is also 
characterised by high environmental variability at 
diverse temporal scales (i.e. at seasonal, interannual, 
and decadal scales; Gutiérrez et al. 2016). For the 
study of the NPCE, it is necessary to use holistic 
frameworks that integrate the effects of fisheries and 
climate, among which ecosystem end-to-end models 
are key tools (Tittensor et al. 2018). 

Several ecosystem models have already been de -
veloped for the NPCE. Some examples are the Eco-
path with Ecosim (EwE) platform (Walters et al. 1997, 
Christensen et al. 2005), used by Tam et al. (2008) 
and Taylor et al. (2008), and the OSMOSE modelling 
platform (Shin & Cury 2001, 2004) used in Marzloff et 
al. (2009) and more recently in Oliveros-Ramos et al. 
(2017). However, none of these applications have 
studied uncertainty in model outcomes. From our 
perspective, this is mainly due to the lack of practical 
guidance on how to implement a UA in a complex 
model. This includes a list of technical decisions to be 
made; for example, the selection of model inputs as 
well as of model outputs through which the uncer-
tainty will be quantified, and the methodological 
approach to reduce the computational costs of uncer-
tainty simulations. In addition, it is also important to 
show the practical benefits of uncertainty analyses 
from an ecological perspective. UA can help to shed 
light on the credibility of ecosystem models and can 
also provide insight into the dynamics of complex 
trophic relationships, the performance of ecological 
indicators in the face of uncertainty, and many other 
aspects of complex marine ecosystems that are diffi-
cult to study in situ. These are the key points that we 
develop in the present work. 

We chose the NPCE OSMOSE model for this study 
be cause of its ability to consider the complexity and 
high stochasticity of the NPCE. This model explic itly 
takes into account the life history and spatio-temporal 
dynamics of 9 interacting species (one macro-zoo-
plankton group, one crustacean, one cephalopod and 
6 fish species). In addition, this model provides a vari-
ety of ecological indicators as model outputs (e.g. size-
based, species-based, trophic-level based; Shin et 
al. 2018, Fu et al. 2019), which allows us to analyse 
and compare the responses of a set of ecological in -
dicators to different levels of uncertainty. In this 
study, we hypothesised that (1) the uncertainty com-
ing from one species’ parameters could propagate 
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through the food web, (2) the response of ecological 
indicators to uncertainty is not homogeneous, and (3) 
depending on the indicators chosen in output of the 
model, these could amplify or dampen the level of 
uncertainty compared to uncertainty in inputs. 

2.  MATERIALS AND METHODS 

To run the UA of the NPCE OSMOSE model, we (1) 
selected the model input parameters to be used in this 
study, (2) sampled the parameter values using a range 
of variability to then (3) run multiple model simulations 
using the sampled parameter values, and finally (4) 
characterise the uncertainty in the model outputs. 

2.1.  The NPCE OSMOSE model and selection  
of model parameters 

We performed an UA on the NPCE OSMOSE 
model (Oliveros-Ramos et al. 2017). OSMOSE is a 
size-based trophic model that represents the life 
story and spatio-temporal dynamics of fish and 
macro-invertebrate species (Shin & Cury 2001, 2004). 
It is an individual-based model which assumes size-
based opportunistic predation based on the spatial 
co-occurrence of a predator and its prey. OSMOSE 
models major life cycle processes (i.e. growth, repro-
duction, predation, natural and starvation mortali-
ties) and fisheries impacts. It is forced by physical 
and biogeochemical models, enabling it to simulate 
the impacts of climate change and variability. 
 OS MOSE applications simulate the complexity and 
stochas ticity of marine ecosystems, integrating physi-
cal, biogeochemical, and biological processes. This 

model has been applied across diverse marine eco sys -
tems (e.g. Travers et al. 2009, Fu et al. 2013, Oliveros-
Ramos 2014, Travers-Trolet et al. 2014, Halouani et al. 
2016, Moullec et al. 2019). Complementary informa-
tion about OSMOSE can be found on its official web-
site (www.osmose-model.org). 

The NPCE OSMOSE model, developed with the 
aim of having an integrated and multidisciplinary 
model for the ecosystem-based management of the 
NPCE, includes explicit forcing of the physical envi-
ronment, primary and secondary production, as well 
as the spatio-temporal dynamics of the most im portant 
exploited fish communities. The NPCE OSMOSE 
model covers an extension of the northern Peru Cur-
rent and the Peruvian Upwelling Ecosystem between 
the ranges of 20° S to 6° N and 93° W to 70° W, with 
1/6° spatial resolution. Fitted to time series data from 
the years 1992 and 2008, the NPCE OSMOSE model 
includes 13 species (Table 1): 9 are explicitly mod-
elled in OSMOSE (also called focal species) and 4 
plankton groups (also called biotic resources) are 
represented in the Pelagic Interaction Scheme for 
Carbon and Ecosystem Studies (PISCES) biogeo-
chemical model coupled to the Regional Ocean Mod-
eling System (ROMS) physical model as part of model 
forcing (Aumont & Bopp 2006, Echevin et al. 2008). 
Additional information about the NPCE OSMOSE 
model can be found in Oliveros-Ramos (2014) and 
Oliveros-Ramos et al. (2017). 

For the selection of model parameters, we used a 
broad approach including as many input parameters 
as we could, prioritising the consideration of para -
meters in relation with each simulated process in 
 OSMOSE (i.e. major life cycle processes and fisheries 
impacts). We did not take into account the initial con -
ditions or the model forcings in the UA. In ad dition, 
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Types of                    Species                 Group                      Species or                    Scientific name                       Model 
model species       abbreviation                                         functional group 
 
Biotic resources            pg1               Phytoplankton       Nanophytoplankton                        −                            ROMS-PISCES 
                                      pg2               Phytoplankton                 Diatoms                                  −                            ROMS-PISCES 
                                      pg3                Zooplankton          Microzooplankton                          −                            ROMS-PISCES 
                                      pg4                Zooplankton          Mesozooplankton                          −                            ROMS-PISCES 

Focal species                sp1               Small pelagics                 Anchovy                    Engraulis ringens                  OSMOSE 
                                      sp2                   Demersal                Peruvian hake        Merluccius gayi peruanus           OSMOSE 
                                      sp3               Small pelagics                  Sardine                      Sardinops sagax                   OSMOSE 
                                      sp4             Medium pelagics         Jack mackerel              Trachurus murphyi                 OSMOSE 
                                      sp5             Medium pelagics         Chub mackerel             Scomber japonicus                 OSMOSE 
                                      sp6               Other pelagics            Mesopelagics                 Vinciguerria sp.                    OSMOSE 
                                      sp7               Other pelagics                 Munida                Pleuroncodes monodon              OSMOSE 
                                      sp8               Other pelagics          Humboldt squid               Dosidicus gigas                    OSMOSE 
                                      sp9                Zooplankton               Euphausiids             Euphausia mucronata               OSMOSE

Table 1. Species or functional groups included in the NPCE OSMOSE model
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we did not include the parameters of species’ life his-
tory that are well constrained by data (e.g. lifespan, 
the exponent of the length−weight relationship [allo-
metric power], spawning period). Also, in order to 
 fo cus on parameter uncertainty, we removed the 
stochasticity in the spatial reallocation of schools by 
fixing the random number seed for that process. De-
spite this, the model retains some sto chas tic elements 
due to the order in which schools act and interact and 
the ordering of mortality events within a time-step. 
From the many possible NPCE OS MOSE model 
inputs (related to the 9 focal species), we focused on 
predation, growth, reproduction para meters, and the 
starvation, natural, fishing, and larval mortality rates 
(Fig. 1). This encompassed 237 para meters used 
for  the UA (and 18 parameter types; Table 2). See 
Table S1 in the Supplement at www.int-res.com/
articles/suppl/m14465_supp.pdf for the complete list 
of parameter values used in the UA. To en sure the 
compliance of mathematical constraints of the param-
eters needed to carry out the UA (e.g. para meters 
standardised between 0 and 1), we performed a re-
parametrization of the NPCE model before imple-
menting the analysis (see Text S1).  

2.2.  Simulation design 

When information about the distribution of para -
meter values is available, it is used to specify the 
probability density functions (e.g. in Brown et al. 
2015, Engström et al. 2016). In the absence of infor-

mation on parameter distribution, another alternative 
is to use ranges of variability, i.e. using a numeric 
value and increasing and decreasing it on either side 
of the parameter reference value. This method is used 
to create a range of parameter values where the sam-
pling will occur. Because we lacked detailed informa-
tion on the distributions of most parameter values, we 
worked with ranges of 10, 20, and 30% in this study, 
which are typical ranges found in uncertainty studies 
(e.g. Lehuta et al. 2010, Ciric et al. 2012, Morris et al. 
2014, Dantec-Nédélec et al. 2017). Where data were 
available, we also checked that these ranges were 
consistent with the expected ranges of parameter un-
certainty based on data. In most cases, uncertainty es-
timated from observations for key parameters fell 
within parameter uncertainty ranges of 10−20% that 
we explored in this modelling study. For example, for 
the anchovy, the most studied species of this marine 
ecosystem, we have reviewed the literature where we 
found a theoretical range (with lower and upper 
bound). Using these bounds we calculated an uncer-
tainty range, defined as the absolute value of: [(lower 
bound or upper bound / average bound) –1] × 100. 
Following this, the constant of proportionality of the 
allometric length−weight relationship has a range of 
7.7% uncertainty (Ochoa et al. 2020), the ratio of the 
size at maturity and the asymptotic size (L∞) of 11.1% 
(Froese & Pauly 2009), the fraction of females (Fracfem) 
of 13.1% (Castillo 2012) and the growth coefficient 
(K) of 14.3% (Oliveros-Ramos et al. 2010). 

We used the Monte Carlo method for the UA, under-
taking multiple model simulations using sampled 
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Fig. 1. Graphical representation of the OSMOSE model. The modelled processes are represented by the grey boxes: natural, 
predation, starvation and fishing mortality, growth and reproduction. The parameters related to each OSMOSE process that 
have been used for the uncertainty analysis of the NPCE OSMOSE model are in blue. See Table 2 and Table S1 for more details  

about the complete list of parameters used in this work

https://www.int-res.com/articles/suppl/m14465_supp.pdf
https://www.int-res.com/articles/suppl/m14465_supp.pdf
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parameter values. This method performs numerous 
model evaluations using random samples. Then the 
results of model evaluations are used to determine 
the uncertainty in model outputs. However, a draw-
back of this method is the high number of simula-

tions required during the sampling process. We com-
bined the Morris method (Morris 1991) with the 
Monte Carlo simulation approach to deal with this 
problem. Morris is a screening method composed 
of  several randomized one-factor-at-a-time experi-

5

No.    Parameter type                                                   Species                  Re-parametrization           Parameter         No. of  
                                                                                                                             for the UA                   and scale      parameters 
 
1        Predation accessibility of prey to          For the 9 focal species                  None                           Logit                 72 
         predators A(predator, prey) 

2        Minimum predator-prey size ratio       For the 9 focal species          Rmin = ƒ1(θstage)                                       17 
         for each species stage (θstage)                                                                                                            Logit 

3        Maximum predator-prey size ratio       For the 9 focal species     Rmax = ƒ2(θstage, αstage)                                  17 
         for each species stage (αstage)                                                                                                            Logit 

4        Predator−prey stage threshold            For 7 focal species (sp1,             ƒ3(sthr, L∞)                       sthr/L∞                  8 
         (sthr in cm)                                             sp2, sp3, sp4, sp5, sp8, sp9)                                                    Logit 

5        Maximum starvation mortality             For the 9 focal species                  None                     Logarithmic             9 
         rate (Mεmax in y–1) 

6        von Bertalanffy threshold                     For the 9 focal species             ƒ4(athr, amax)                                           9 
         (athr in y)                                                                                                                                              Logit 

7        Egg size (cm)                                          For the 9 focal species                  None                     Logarithmic             9 

8        Critical threshold of predation              For the 9 focal species                  None                           Logit                  9 
         efficiency (εcrit) 

9        Maximum rate of predation                  For the 9 focal species                  None                     Logarithmic             9 
         ingestion (Imax in g body g–1 y–1) 

10      Natural mortality rate                            For the 9 focal species                  None                     Logarithmic             9 
         (M in y–1) 

11      Larval mortality rate                              For the 9 focal species                  None                     Logarithmic             9 
         (M0 in month–1) 

12      Fishing mortality multiplier (ƒm)               For 6 focal species                     None                     Logarithmic             6 
                                                                       (sp1, sp2, sp3, sp4, sp5, sp8) 

13      Sex ratio (Fracfem)                                   For the 9 focal species                  None                           Logit                  9  

14      Lt = 0 (von Bertalanffy growth                For the 9 focal species             ƒ5(Lt = 0, L∞)                                           9 
         parameter in cm)                                                                                                                                Logit 

15      k (von Bertalanffy growth                     For the 9 focal species                  None                     Logarithmic             9 
         parameter in y–1) 

16      L∞ (von Bertalanffy growth                   For the 9 focal species                  None                     Logarithmic             9 
         parameter in cm) 

17      Size at maturity (smat in cm)                   For the 9 focal species      smat = ƒ6(L0, sx,L∞) =                                    9 
                                                                                                                          L0 + sx(L∞ – L0)                    logit 

18      Constant of proportionality of               For the 9 focal species                  None                      logarithmic             9 
         the allometric length−weight 
         relationship (c in g cm–3)

stage

( /2)

stage

( /2) – stage

athr

amax

L0

L∞


smat – L0

L∞ – L0

s
x
 = 

Table 2. NPCE OSMOSE parameters used in the uncertainty analysis (UA). The UA was implemented using baseline values which 
are outcomes of model re-parametrization. The ƒ function describes the model re-parametrization. See Table S1 for additional infor-
mation about baseline values of model parameters and Text S1 in the Supplement for details about model re-parametrization
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ments. This method is recommended for models 
with long run times and is typically used to perform 
global sensitivity analyses (e.g. Specka et al. 2015, 
Bracis et al. 2020). In this work, we applied the 
Morris method only to sample the parameter values 
during the sampling process and produce the de -
sign of experiments to be used in the Monte Carlo 
simulations. 

Using the Morris method and considering a model 
with n parameters xi (where i = 1,2,...,n), each xi will 
be scaled to take on values in the interval [0,1]. This 
creates a discrete parameter space Ω (the n-dimen-
sional unit hypercube) by dividing the parameter 
ranges into p discrete levels. Then the model is eval-
uated for r replicates within the parameter space, 
each of them building a trajectory inside Ω. The start-
ing point of a trajectory is selected randomly. Only a 
single parameter is changed for each trajectory, tak-
ing an element of the parameter space as a new 
value. In each trajectory, each parameter (xi ) is only 
modified once, so it results in n + 1 simulations. This 
procedure is repeated r times (r trajectories), result-
ing in a computation cost of r (n + 1) simulations. In 
this work, since each parameter was on a particular 
scale (Table 2), the sampling was done in the stan-
dardised interval [0,1] after the corresponding trans-
formation of scale. 

2.3.  UA experiments 

Using the NPCE OSMOSE model, we executed 27 
experiments for the UA (Fig. 2). The first 9 correspond 
to the uncertainty scenario of 10% for the parameters 
of each of the 9 species, the other 9 to 20% un -
certainty scenario, and the last 9 to 30% uncertainty 
scenario. Within each uncertainty scenario, the exper-
iments evaluated the effect of the uncertainty from 
each species separately (called species uncertainty). 
For example, in experiment sp1 at 10%, we addressed 
the uncertainty arising from the parameters related to 
species sp1 using the uncertainty scenario of 10%; ex-
periment sp1 at 20% relates to sp1 parameters using 
the uncertainty scenario of 20%; experiment sp1 at 
30% relates to sp1 parameters using the uncertainty 
scenario of 30%; and so on. We only perturbed the pa-
rameter values related to the species under study in 
each experiment, leaving the rest of the model config-
uration unchanged (i.e. their corresponding baseline 
values). 

For each experiment, we performed r = 200 trajecto-
ries (i.e. Morris replicates) by dividing the corre-
sponding parameter range into 8 levels (p = 8), includ-
ing upper and lower bounds with values uniformly 
distributed between them, and using the grid jump (Δ) 
of 4/7 when p = 8 (Δ = p / [2(p – 1)]) that is recom-
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Scenario
uncertainty Species Uncertainty

sp1: anchovy sp2: hake sp3: sardine

sp4: jack mackerel sp5: chub mackerel sp6: mesopelagics

sp7: munida sp8: humboldt squid sp9: euphausiids

27 parameters 27 parameters 27 parameters

27 parameters 27 parameters 23 parameters

23 parameters 30 parameters 26 parameters

ƒ(x)

ƒ(x)

ƒ(x)

10%

20%

30%

Fig. 2. In total, 27 experiments were run as part of the uncertainty analysis of the NPCE OSMOSE model (3 uncertainty scenar-
ios for 9 species). Within each experiment for a given species, and for each Morris replicate, all the parameters of that species 
are varied (e.g. the 26 parameters of the euphausiids), while the parameters of other species are fixed. The 10, 20, and 30% 
uncertainty scenarios correspond to the experiments using a range of variability of 10, 20, and 30%, respectively, for the pa-
rameters of the 9 NPCE OSMOSE focal species. The complete list of parameter values related to each species is detailed in  

Table S1. The number of parameters related to each species is also indicated
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mended in Morris (1991). However, given the stochas-
ticity of the OSMOSE model, 10 simulation replicates 
were executed (i.e. OSMOSE replicates) per Morris 
run. Thus, we performed a total of 1 476 000 simula-
tions for this work, considering the parameters associ-
ated with the 9 species included in the model (Fig. 2), 
3 uncertainty scenarios, 200 Morris trajectories, and 
10 OSMOSE replicates. Finally, we characterised 
the uncertainty in model outputs for a set of selected 
indicators. 

2.4.  Uncertainty characterization 

The NPCE OSMOSE model provides a very large 
set of model outputs. For the uncertainty characteri-
zation, we decided to focus on a set of ecological 
indicators as model outputs that are frequently stud-
ied by the scientific community (Table 3). Most of 
them were chosen from the IndiSeas program (www.
indiseas.org/). This program aimed to analyse a set of 
ecological indicators to assess the ecosystem effects 
of fishing in the context of environmental change and 
provide decision support for fisheries management. 
This set of indicators was tested against several per-

formance criteria, namely sensitivity, specificity and 
responsiveness (Shin et al. 2018, Fu et al. 2019), and 
have been already applied in studies using OSMOSE 
models (e.g. Halouani et al. 2019, Moullec 2019). 

For each level of uncertainty (i.e. species (sp) and 
scenario (sc) uncertainty), we estimated the relative 
change (RC ind) in the indicator (Ind), which is calcu-
lated as: 

                                                                              (1) 

The baseline represents the corresponding indicator 
estimated using the parameter reference values of 
the NPCE OSMOSE model with 10 OSMOSE repli-
cates. Ten OSMOSE replicates were also run for 
each Indsp,sc. Additionally, we estimated the coeffi-
cient of variations (CV) of the indicators, where the 
standard deviation and mean were calculated over 
each Monte Carlo simulation by time step. All sim-
ulations and analyses were performed on the 
Datarmor supercomputer (a high-performance com-
puting system hosted by IFREMER, https://wwz.
ifremer.fr/pcdm/Equipement) using R 3.6.1 (R Core 
Team 2019). 

RCind =  
Ind

sp,sc
 – Indbaseline

Indbaseline
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Indicator                                                    Calculation                   Description                                                     Suggested references 
 
Biomass (by species) (t)                                     B                            Biomass for each focal species                                       − 

Mean length (ML) of fish                                                         Where Li is the average length and                 Shin et al. (2005) 
in the community                                                                            Ni is the mean abundance of species i 

Mean trophic level (MTL)                                                       Where TLi is the trophic level and                  Reed et al. (2017), 
in the community                                                                            Bi the biomass (t) of species i                             Shin et al. (2018) 

Mean lifespan (MLS)                                                               Where Ai is the lifespan (yr) and                     Shin et al. (2018), 
of community (yr)                                                                            Bi the biomass (t) of species i.                             Fu et al. (2019) 
                                                                                                         Ai is defined for each species in the                                
                                                                                                         model input configuration 

Biomass over yield                                          B /Y                         Where B and Y are the total biomass              Shin et al. (2010) 
                                                                                                         and catch of all modelled species 

Marine trophic index (MTI)                                                     Where TLi is the trophic level and              Pauly & Watson (2005), 
                                                                                                         Yi the catch (t) for species i with                   Shannon et al. (2014) 
                                                                                                         TL > 3.25 

Slope of the size spectrum                                                      Where Nk is the total fish numbers in         Rice & Gislason (1996), 
(SSP) of community                                                                         the length interval [Lk–1, Lk] and                    Shin & Cury (2004) 
                                                                                                         k ∈[1,…,kmax] is the index of length class 

Large fish index (LFIx):                                                           Where Bi is the biomass of species i          Greenstreet et al. (2011) 
LFI20, LFI30, LFI40 of community                                                     larger than x cm (L > x) and B the total  
                                                                                                         biomass of the community.  
                                                                                                         This indicator is calculated for  
                                                                                                         x = {20, 30, 40 cm}
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Table 3. Ecological indicators used for the uncertainty characterisation using the NPCE OSMOSE model
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3.  RESULTS 

3.1.  The effects of species uncertainty on  
the modelled ecosystem 

Under the 3 uncertainty scenarios (10, 20, and 
30%), species uncertainty propagated through the 
modelled ecosystem (Fig. 3). For species like an -
chovy, hake, sardine, munida and Humboldt squid, 
the greatest uncertainty arose from their own biolog-
ical parameters, although other focal species also 
caused uncertainty. For example, the uncertainty of 
anchovy biomass arises mainly from the uncertainty 
in its own parameters and those of euphausiids. In 
contrast to species like jack mackerel, chub mackerel 
and mesopelagics, the main source of uncertainty 

comes from other modelled focal species. Only in the 
case of euphausiids and Humboldt squid did the 
uncertainty in their biomass come almost entirely 
directly from the uncertainty in its own parameters. 
In general, the uncertainty due to the parameters of 
Humboldt squid and especially euphausiids were 
particularly influential and af fected the whole set of 
focal species. 

3.2.  Ecological indicators behaviour  
under uncertainty 

Uncertainty in ecological indicators across sce-
narios (Fig. 4) showed that in general, for all evalu-
ated indicators, the 30% scenario produced a higher 
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level of uncertainty than the 20% scenario, and the 
20% scenario produced a higher level of uncertainty 
than the 10% scenario. Though only a limited range 
of uncertainty was explored, this suggests that the 
level of uncertainty in the model outputs depends on 
the level of uncertainty in the inputs. However, the 
level of uncertainty captured in model outputs was 
heterogeneous across the evaluated indicators. In 
addition, the uncertainty impact of individual species 
differed greatly depending on the indicators consid-
ered, ex cept for the mean length and the slope of the 
size spectrum, which in general showed similar re -
sponses to individual species uncertainties (Fig. 4). 
Of all evaluated indicators, the mean trophic level 
and the marine trophic index had the lowest levels of 
uncertainty (with CVs less than 3% for the 10 and 

20% uncertainty scenarios) and were substantially 
less than uncertainty in input parameters. These 2 
indicators are followed in terms of uncertainty by the 
slope of the size spectrum (with CVs less than 5% in 
absolute value) and the mean lifespan (with CVs 
less than 10% on average for the 3 scenarios). Mean 
length uncertainty was very low (CV < 1%) in re -
sponse to all species’ uncertainties, except in re -
sponse to euphausiid uncertainty (but still dam -
pening the input uncertainty). Biomass over yield 
had a relatively high uncertainty (with a CV up to 
70% in response to 20% and 30% anchovy uncer-
tainty). This indicator had the highest value in 
response to 30% euphausiid uncertainty. Finally, the 
large fish indices LFI20, LFI30 and LFI40 were the 3 
indicators that displayed the highest levels of un -

9

0% 1% 2% 3% 4%

Uncertainty on Mean Trophic Level

0% 1% 2% 3% 4% 5%5%

Uncertainty on Marine Trophic Index

0% −2% −4% −6% −8% −10%

Uncertainty on Slope Sizes Spectrum

0% 10% 20% 30%

Uncertainty on Mean Length

0% 10% 20% 30% 40%40%

Uncertainty on Mean Lifespan

0% 100% 200% 300% 400%

Uncertainty on Biomass Over Yield

0% 20% 40% 60% 80% 100%

Uncertainty on LFI20

0% 20% 40% 60% 80% 100%

Uncertainty on LFI30

0% 20% 40% 60% 80% 100%

Uncertainty on LFI40

Coefficient of variation (%)

Euphausiids
Humboldt Squid

Munida
Mesopelagics

Chub Mackerel
Jack Mackerel

Sardine
Hake

Anchovy

Euphausiids
Humboldt Squid

Munida
Mesopelagics

Chub Mackerel
Jack Mackerel

Sardine
Hake

Anchovy

Euphausiids
Humboldt Squid

Munida
Mesopelagics

Chub Mackerel
Jack Mackerel

Sardine
Hake

Anchovy

Eu
Hs
Mu
Me
Cm
Jm
Sa
Ha
An

Eu
Hs
Mu
Me
Cm
Jm
Sa
Ha
An

Eu
Hs
Mu
Me
Cm
Jm
Sa
Ha
An

Eu
Hs
Mu
Me
Cm
Jm
Sa
Ha
An

Eu
Hs
Mu
Me
Cm
Jm
Sa
Ha
An

Eu
Hs
Mu
Me
Cm
Jm
Sa
Ha
An

Scenario 10% Scenario 20% Scenario 30%

Fig. 4. Coefficient of variation of ecological indicators in the output of the NPCE OSMOSE model under uncertainty scenar-
ios of 10%, 20%, and 30%. Each panel shows the uncertainty of an indicator due to the uncertainty in the parameters of the  

9 species



Mar Ecol Prog Ser · Advance View

certainty, amplifying the uncertainty compared to 
uncertainty in input parameters (with CVs up to 
90%). 

Since the model produces time-varying outputs, 
we analysed the propagation of uncertainty through 
time and explored whether looking at mean uncer-
tainty only could mask some important temporal fea-
tures. For this analysis, we focused on the indicator 
with the highest uncertainty on average across all 
species: the LFI40 under the 30% scenario (Fig. 5). 
We find that the uncertainty in LFI40 is reduced dur-
ing the El Niño event (the light grey area in Fig. 5, 
be tween the years 1997 and 1998), whereas it 
sharply increases after the El Niño event. This pat-
tern is particularly marked for simulations that im -
plement parameter uncertainty in low trophic level 
species such as mesopelagics, anchovy and euphau -
siids, but also other higher trophic level species such 

as hake, sardine, jack and chub mackerel and Hum-
boldt squid. The case of munida is particular because 
this species experienced a significant bloom in the 
NPCE after 1996 and was introduced in the model 
after the 1997−1998 El Niño. 

We also compared the relative change of species 
biomass under the 30% uncertainty scenario before 
and after the El Niño event (Fig. 6). The results show 
that the uncertainty in species biomass is larger after 
El Niño than before; this was observed for almost all 
species except for euphausiids (and obviously muni -
da, which was included in the model after El Niño 
1997−1998). In addition, we analysed the behaviour 
of some output ecological indicators before and after 
El Niño (Fig. 7). The temporal changes of these indi-
cators in response to species’ parameter uncertainty 
are heterogeneous, but overall with more uncer-
tainty after El Niño. 

10

−100%

−50%

0%

50%

100%
Anchovy

−100%

−50%

0%

50%

100%
Hake

−100%

−50%

0%

50%

100%
Sardine

−300%

−200%

−100%

0%

100%

200%

300% Jack Mackerel

−60%

−40%

−20%

0%

20%

40%

60% Chub Mackerel

−100%

−50%

0%

50%

100%
Mesopelagics

1992 1995 1998 2001 2004 2007
−20%

−10%

0%

10%

20% Munida

1992 1995 1998 2001 2004 2007

−3000%

−2000%

−1000%

0%

1000%

2000%

3000%
Humboldt Squid

1992 1995 1998 2001 2004 2007

−150%

−100%

−50%

0%

50%

100%

150%
Euphausiids

Re
la

tiv
e 

ch
an

ge
 (%

)

Fig. 5. Projected uncertainty in the large fish index (LFI40; see Table 3) indicator under the scenario of 30% uncertainty in 
species’ parameters. Dark grey area: uncertainty between the lower quantile (2.5%) and upper quantile (97.5%); black line: 
median of the distribution; light grey vertical area: duration of the El Niño event in the northern Peru Current ecosystem  

(Dewitte et al. 2012)



Luján et al.: Key species and indicators revealed by UA

4.  DISCUSSION 

Despite the known importance of uncertainty 
quantification in ecosystem models, UA has gener-
ally been neglected due to the computational chal-
lenges it requires. In this work, even with the com-
mon limitations of implementing a UA in the NPCE 
OSMOSE model, the simulation experiments al -
lowed us to evaluate uncertainty propagation from 
one species to the modelled ecosystem. The simula-
tion results showed that as an outcome of the com-
plex interactions in the NPCE OSMOSE model, the 
uncertainty from one species could impact the rest of 

the modelled food web. In particular, uncertainty in 
the parameters of the euphausiids and Humboldt 
squid substantially affected the entire food web. 
Euphausiids are a key zooplankton species group 
that can exert bottom-up control on food webs by 
being the main prey of pelagic fishes such as chub 
mackerel and jack mackerel (Alegre et al. 2015), but 
also of anchovy (Espinoza & Bertrand 2008, 2014) 
and, to a lesser extent, of sardine (Espinoza et al. 
2009) and Humboldt squid (Alegre et al. 2014). They 
also interact with hake, which feeds on both pelagic 
and benthic fish species as well as euphausiids (Ware 
1992). On the other hand, Humboldt squid plays an 
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important role in marine food webs as a predator 
(Budelmann 1995), exerting top-down control on 
euphausiids, mesopelagics, and sometimes on them-
selves (Alegre et al. 2014). However, there is not 
enough evidence that squids act as main predators of 
small pelagic fish such as chub mackerel and jack 
mackerel. This needs to be clarified and requires fur-
ther trophic ecology studies. 

Other instances in which zooplankton could pro-
duce a trophic cascade effect have also been re ported 
by using the marine ecosystem models SthrE2E2 
(Thorpe et al. 2022) and EwE (Whitehouse & Aydin 
2020). These studies highlight the need to improve 
the understanding of bottom-up processes as well 
as  their representation within simulation tools. For 

Hum boldt squid, but also for squids and cephalopods 
in general, despite their central role in marine 
pelagic food webs (Young et al. 2013), their ecology 
is still poorly understood, making it difficult to repre-
sent them in ecosystem models (de la Chesnais et al. 
2019). Thus, both euphausiids and Humboldt squid 
need to be further studied to ensure a realistic repre-
sentation of their dynamics in the modelled system. 
Also, the information used to parameterize these 2 
species must rely on high data quality. The use of 
poor data quality and the resulting poor representa-
tion in the model could also explain the large contri-
bution of some species to the uncertainty in the 
model output. Although we lacked the evidence to 
fully understand the main roles of euphausiids and 
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Humboldt squid in the NPCE, it should be noted that 
these 2 species lacked reliable time series of abun-
dance indices (Oliveros-Ramos et al. 2017). 

The relatively low contribution of the uncertainty 
in anchovy’s input parameters to the biomass of other 
species was unexpected (Fig. 3) since the an chovy is 
considered a key species in the NPCE (Bertrand et al. 
2008, Chavez et al. 2008, Gutiérrez et al. 2012). In 
addition, of the 9 focal species modelled, only 2 
species (euphausiids and the anchovy itself) gener-
ated uncertainty in anchovy dynamics. A possible ex -
planation is that in the NPCE OS MOSE model, an -
chovy predators have not been represented explicitly 
(e.g. birds and other predators; Bertrand et al. 2012) 
but only as mortality parameters. We thus highly rec-
ommend improving the representation of anchovy in 
the NPCE, and one way to do so would be to repre-
sent the dynamics and the life cycle of their main 
predators explicitly. Likewise, the dynamics of hake, 
a demersal species, could be improved in the model 
by better representing the dynamics of their main 
prey (such as euphausiids and munida) (Orrego & 
Mendo 2012, Castillo 2019). Munida was modelled 
through a biomass immigration flux in the NPCE 
OSMOSE model, which probably oversimplifies the 
complex life history dynamics of this species for 
which small individuals have a pelagic behaviour 
and adults have a demersal one (Gutiérrez 2002). In 
addition, the explicit representation of sharks as top 
predators of squid, but also with predation rates on 
small pelagic fishes (such as anchovy and sardine) 
and hake could also improve the model (Gonzalez-
Pestana et al. 2017, Córdova-Zavaleta et al. 2018). 

To increase the realism of UA analyses like those in 
this study, it would be preferable to use data to con-
struct probability distributions for each model input 
parameter, designing the UA based on these distri-
butions (e.g. in Yegnan et al. 2002, Brown et al. 2015, 
Engström et al. 2016). Unfortunately, as was the case 
in this study, observations, experiments and avail-
able data are typically insufficient to construct prob-
ability distributions for each model parameter in 
complex models of natural ecosystems. The use of 
fixed ranges of variability for input parameters is an 
option that is often used in such cases of relatively 
poor data situations. However, a minimum level of 
information is needed to select appropriate parame-
ter ranges and avoid using arbitrary ones that could 
underestimate or overestimate the level of uncer-
tainty in model inputs (Saltelli et al. 2004, C. Lujan et 
al. unpubl. data). These practices can also lead to 
erroneous results and potentially misleading conclu-
sions about the uncertainty in model outputs. In addi-

tion, there is a strong need for the development of 
protocols and guidelines to address the uncertainty 
quantification in complex models with a large num-
ber of parameters. Here, we used arbitrary ranges as 
a first step in the UA of the NPCE OSMOSE model, 
with range values commonly adopted in other uncer-
tainty studies (Lehuta et al. 2010, Ciric et al. 2012, 
Zheng et al. 2012, Dantec-Nédélec et al. 2017); but 
in addition, we verified that the uncertainty ranges 
based on the available information were within the 
arbitrary uncertainty ranges used. 

Despite the mentioned limitations, by using 3 dif-
ferent ranges of parameter variability (i.e. uncer-
tainty scenarios of 10, 20 and 30%) which required 
nearly 1.5 million simulations, we were able to con-
firm that increasing levels of uncertainty in the 
NPCE OSMOSE model inputs resulted in increased 
levels of uncertainty in the model outputs. However, 
this relationship is not linear. Increasing uncertainty 
from 10 to 20 and 30% in species parameters did not 
double and triple the uncertainty in model outputs. 
This finding can be explained by the non-linear and 
complex relationships found in eco system models. 
Nevertheless, the behaviour of this pattern remains 
to be tested with wider uncertainty ranges. However, 
for now, it is too expensive given both the character-
istics of the NPCE OSMOSE model and the computa-
tional requirements of UA, unless the number of 
model input parameters, and hence the purpose of 
the study, is limited. Furthermore, for future imple-
mentations of OSMOSE in the NPCE, it would be 
interesting to follow standardised ap proaches that 
allow reliability and realism to be tested. Approaches 
like TRACE (Grimm et al. 2014) have emerged in the 
literature, allowing the evaluation of uncertainty in 
model input parameters but also encouraging the 
implementation of uncertainty and sensibility analy-
sis (Ayllón et al. 2021, Planque et al. 2022). 

The use of ecological indicators allows monitoring 
the state of ecosystems under fisheries impact and 
climate change, supporting decision-making for an 
EAF (Fulton et al. 2005). In this regard, several stud-
ies using the OSMOSE modelling platform have con-
ducted indicator analyses to test their performance 
and usefulness (Shin et al. 2018, Fu et al. 2019, 
Halouani et al. 2019) but have never considered the 
effect of parametric uncertainty. We found that some 
indicators were relatively insensitive to the uncer-
tainty associated with species’ parameters, with 3 
indicators especially emerging as having interesting 
properties: the slope of the size spectrum, the marine 
trophic index, and the mean trophic level. The CV of 
the slope of the size spectrum was homogeneous 

13



Mar Ecol Prog Ser · Advance View

across the 3 uncertainty scenarios; on average less 
than 4% (absolute value). In support of this be haviour, 
this indicator has also been reported as having the 
best signal-to-noise ratio in the output of a multi-
species size-structured model (Thorpe et al. 2015). 
The responses of the marine trophic index and the 
mean trophic level were more heterogeneous, de -
pending on which species’ uncertainty was consid-
ered, but their CVs were always very low, less than 
2.5 and 4%, respectively. However, further studies 
using more uncertainty scenarios are needed to 
explain these results and test their robustness. On 
the other hand, the large fish indices (LFI20, LFI30, 
LFI40) had relatively high levels of uncertainties in 
output of the NPCE OSMOSE model. Also, UA 
undertaken on a multispecies size-spectrum model 
indicated that the LFI is a highly uncertain indicator 
(Zhang et al. 2015). This result should be taken into 
account when using the LFI in model projections, 
especially as previous studies have shown that the 
LFI performed well in detecting changes in ecosys-
tem structure (Halouani et al. 2019, Moullec 2019). In 
addition, Spence et al. (2016) showed that the 
increase of complex interactions within a model can 
change the response of the indicators and thus their 
behaviour in the face of uncertainty. Further studies 
of UA in complex marine ecosystem models would be 
needed to better evaluate the response and the per-
formance of indicators. 

An additional challenge in analysing uncertainty in 
complex ecosystem models is that uncertainty can 
potentially propagate over time. This temporal dyna -
mic of uncertainty should be considered more often 
than is currently the case when using models for 
hindcast and forecast simulations. In our uncertainty 
experiments, the level of uncertainty rose strongly for 
most species after El Niño (especially for anchovy, 
mesopelagics, and euphausiids). This event had a 
massive impact on the NPCE, disrupting the ecosys-
tem’s structure (Chavez et al. 2002, Ñiquen & Bou-
chon 2004, Gutiérrez et al. 2011) and adding signifi-
cant variability to the system. This impact was also 
detected in our results, with significant changes in 
uncertainty in the model’s output before and after El 
Niño. We thus emphasise that uncertainty studies us-
ing time-averaged model outputs could mask impor-
tant features for characterising model uncertainty. 

This work involved some technical challenges that 
we report here. One major impediment was the com-
putational cost of running UA of complex models 
since these tools are characterised by many inputs 
(e.g. parameters, initial and forcing conditions) and 
outputs (multiple simulated variables). To deal with 

this, we decided to focus on parameter uncertainty, 
excluding uncertainty due to initial and forcing condi-
tions. Then, we decided to implement a UA on the pa-
rameters associated with focal species; however, even 
with these restrictions, we were al ready considering 
over 200 parameters. Furthermore, we limited the 
study to the analysis of only 18 ecological indicators 
among the long list of model outputs. UAs, especially 
of complex models, also have high computational re-
quirements in terms of simulation time and storage 
space. For example, each species scenario required 
about 264 h (11 d approximately); thus, the 27 UA ex-
periments (10, 20, and 30% uncertainty scenarios for 
each of the 9 species) required a total of 297 d of simu-
lation (about 9.9 mo). To shorten the simulation time, 
we could run the simulations in parallel on the Datar-
mor supercomputer. All of these technical difficulties 
are common during uncertainty quantification in 
complex models, including but not limited to marine 
ecosystem models. In this sense, our work represents 
an interesting methodological contribution, showing 
how we deal with these challenges. 

The use of the Morris method for the sampling pro-
cess in combination with the Monte Carlo approach is 
presented in this work as a proposal to reduce the 
computational cost of a UA. In this sense, a conver-
gence analysis should be implemented to test the ef-
fectiveness of this approach. In addition, complemen-
tary studies related to Morris parameters (e.g. number 
of trajectories and levels; see Morris et al. 2014 and 
Bracis et al. 2020) are needed. On the other hand, fu-
ture studies could explore alternative methods (Mari -
no et al. 2008). For example, we could use the quasi-
random sequence method (Jansen 1999, Sobol’ et al. 
2007), a Monte Carlo resampling procedure imple-
mented in the R ‘sensitivity’ package (Iooss et al. 
2021), with a computational cost of n(k + 2) simulations, 
where n is the sample size (i.e. the parameter distribu-
tion is divided into n intervals that are sampled) and 
k is the number of parameters included in the analysis. 
Another possible method is the Latin hypercube 
 sampling (McKay et al. 1979), which is also considered 
low cost (computational cost of n(k + 1) simulations). 

In this paper, we studied the effect of parameter un-
certainty on the outputs of the NPCE OSMOSE. Anal-
ysis of other sources of uncertainty, such as those due 
to model forcing and initial conditions, could also pro-
vide valuable insights (Cheung et al. 2016, Payne et 
al. 2016, Rounsevell et al. 2021). Uncertainty due to 
initial conditions is perhaps the least explored type of 
uncertainty in complex marine ecosystem models 
(Steenbeek et al. 2021). The study by McGregor et al. 
(2020) using an Atlantis model can be cited as one of 
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the few examples in which the initial conditions of un-
certainty were quantified. Model forcing is another 
important source of uncertainty in marine ecosystem 
end-to-end models. In the case of the NPCE OSMOSE 
model, 2 groups of variables force the model: the spa-
tial distribution of fish structured by species and age, 
and the biomass of 4 classes of plankton, both as spa-
tial time series. Species distribution models (SDMs) 
were used to produce the spatial distribution of fish 
forcing the model. Uncertainty propagation from 
SDMs within ecosystem models needs to be quantified, 
but this is a technical challenge due to computational 
costs that has yet to be resolved and was indeed dis-
cussed at the last ICES-PICES Symposium on ‘Small 
pelagic fish: new frontiers in science for sustainable 
management’ convened in Lisbon, Portugal, in 
November 2022 (https://meetings.pices.int/meetings/
international/2022/pelagic/scope). Structural uncer-
tainty is derived from the equations used to con-
struct a model and the assumptions they represent. 
In this respect, dealing with this type of uncertainty 
in complex models requires subjective choices in 
the processes to include, together with the multipli-
cation of nested models that will test the various 
model structures. Alternatively, multi-model and 
ensemble approaches are emerging to explore struc-
tural uncertainty (Lehuta et al. 2016, Spence et al. 
2018) with re cent notable international initiatives 
such as Fish-MIP (www.isimip.org/about/marine-
ecosystems-fisheries/), which seeks to produce en-
semble projections of global change impacts based 
on the major ecosystem models developed by the 
marine science community.  

Finally, we call for an increase in interdisciplinary 
work that could synergize the efforts and experi-
ences of other scientific fields in the study of uncer-
tainty in complex models. For example, modelling of 
climate (Murphy et al. 2004, Chandler 2013), envi-
ronment (Pianosi et al. 2016), land-use (Buisson et al. 
2010, Alexander et al. 2017), terrestrial (Ahlström et 
al. 2012) and socio-ecological systems (Rounsevell et 
al. 2021) provide good insights into the progress of 
this research field. 

 
Data availability. The code used for this work has been doc-
umented step by step in a public GitHub repository (www.
github.com/CriscelyLP/lujan_etal_2023_ua_osmose). This re -
pos itory allows reproducibility and transparency of our 
approach. 
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