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1.  INTRODUCTION 

Small pelagic fish (SPF) species are subject to 
heavy exploitation, and their transformation products 
are increasingly being incorporated into the global 
food chain (FAO 2016). Managing these species is 
challenging due to significant inter-annual popula-
tion variability in biomass, believed to be influenced 
by environmental changes impacting the survival of 

early life stages (Kaplan et al. 2016, Peck et al. 2021). 
The impact of environmental conditions in popula-
tion dynamics is extremely important for SPF, whose 
stocks can potentially recover with 1 year of good 
recruitment (number of fish surviving to enter the 
fishery) or collapse with a short series of low-recruit-
ment years (Katara 2014). 

The European anchovy Engraulis encrasicolus is a 
small pelagic coastal marine fish, 20 cm total length 
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with a 3 yr life span, distributed from the North Sea to 
southeast Africa, including the Mediterranean basin. 
This species supports significant fisheries and eco-
nomic activities in the countries bordering the Iberian 
Peninsula and Mediterranean Sea (Uriarte et al. 1996, 
Lleonart & Maynou 2003). Due to its market value, 
production, and widespread distribution across the 
East Atlantic and Mediterranean countries, anchovy 
is a major shared resource in the region. 

Historically, the European anchovy has had 2 main 
distribution areas off Iberia: the Bay of Biscay (BoB) in 
the north and the Gulf of Cadiz (GoC) in the south, 
with limited presence along the western Iberian coast 
(Fig. 1). For management purposes, the anchovy 
inhabiting the north coast (BoB and Cantabrian Sea) 
is considered a different stock than that of the south, 
while the populations inhabiting western and south-
ern Iberia are managed as a single stock. However, 
spatial distribution provided by acoustic surveys 
shows a persistent discontinuity between the western 
and southern anchovy for several life stages (eggs, 
juveniles, and adults), which is also reflected on land-
ings, and for that reason, although it is considered a 
single stock, advice is provided separately for the 
western and southern components (ICES 2022). 

Several studies conducted at, or in the vicinity of, 
Portuguese estuaries have shown a persistent pres-
ence of recruits in numerous estuaries, mainly in 
northwestern Iberia (Ribeiro et al. 1996, Pombo & 

Rebelo 2002, Marques et al. 2003, Chicharo et al. 
2006, Ramos et al. 2006, Cardoso et al. 2011, França et 
al. 2011, Chicharo et al. 2012, Nyitrai et al. 2012). 
However, before 2016, yearly spring acoustic surveys, 
validated by trawls, carried out in Atlantic Iberian 
waters showed a very low abundance off western Ibe-
ria, and for some years even absence, which agrees 
with the very low landings (ICES 2022). 

The abundance of anchovy registered in acoustic 
surveys was low (<5000 t) for the large majority of the 
years before 2016. Only in 2011, the abundance was 
significantly higher (28 550 t), but it was not reflected 
in the following years when it dropped to very low 
numbers. In 2016, a large boost of anchovy biomass 
was registered in the area (38 507 t), and there has 
been an increasing trend since then, with >50 000 t 
registered in 2020, 2021, and 2022 (ICES 2022). It is 
unknown if these eruptions are the result of good 
environmental conditions favoring the residual pop-
ulations inhabiting the estuaries or migration from 
nearby recruitment areas (GoC or BoB), where 
anchovy are ubiquitous. 

Several works have studied the connectivity of 
anchovy populations off Iberia. Morphometric studies 
found a differentiation between anchovy populations 
from northwestern Iberia and those from the BoB 
(Junquera & Pérez-Gándaras 1993), while a more 
recent study sampling fish in 2000 and 2001 found, by 
cluster analysis, a separation between anchovies from 
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Fig. 1. (a) Study area. (b) Shaded areas represent the 
anchovy spawning locations in the Bay of Biscay 
(BoB, pink) and Gulf of Cadiz (GoC, blue). The lines 
delineate geographical sub-divisions and areas 
within ICES Divisions 8c and 9a. Counterclockwise: 
ICES subdivisions 8c East (8c.E), 8c West (8c.W), 9a 
North (9a.N), 9a Central-North (9a.CN), 9a Cen-
tral-South (9a.CS), 9a South Portugal (9a.SP) and 9a  

South Spain (9a.SS)
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the BoB and those from western and southern Iberia 
(Caneco et al. 2004). However, genetic studies have 
not provided conclusive evidence regarding the pop-
ulation structure of anchovy due to its complex evo -
lutionary history. The species exhibits 2 ecotypes 
(oceanic and coastal), which display more differentia-
tion between them than between distant locations 
such as the Atlantic Ocean and Mediterranean Sea (Le 
Moan et al. 2016, Catanese et al. 2017). This complex 
evolutionary history hinders the inference of popula-
tion connectivity through molecular identification 
unless an intense sampling scheme at different lati-
tudes and distances to the coast is achieved. Modeling 
larval dispersal can help understand the degree of 
connectivity of Iberian populations at the early life 
stages, and in particular investigate the potential of 
recruitment areas in north and south Iberia to be 
responsible for the recent surge in anchovy abun-
dance in the western region. 

The objective of this study was to develop a model-
ing approach to study the dispersion of anchovy eggs 
from the main spawning grounds in the BoB and in 
the GoC for the years preceding the observed in -
crease in anchovy abundance along the west coast of 
Iberia, with the aim of identifying a potential source 
area. 

2.  MATERIALS AND METHODS 

An individual-based model (IBM) for anchovy eggs 
and larvae was developed and coupled to a Lagran-
gian model to simulate the transport of anchovy eggs 
and larvae by ocean currents, from the spawning 
grounds in the GoC and BoB (Fig. 1). Each particle 
represents a population of anchovy eggs and larvae 
that experience similar environmental conditions and 
follow similar trajectories. In our IBM, the survival 
and evolution of the early life stages of anchovy 
depend on (1) the temperature they experience along 
the trajectories and (2) on a food availability index 
estimated from satellite-derived chlorophyll a (chl a) 
values. The ocean current velocity and the tempera-
ture fields were obtained from a regional ocean model 
simulation of Iberia (Section 2.1), and the chl a data 
are from a satellite product (GLOBCOLOUR, http://
globcolour.info). 

2.1.  Regional ocean model 

The ocean currents and temperature fields used are 
outputs from IBv2.0, a regional ocean model simula-

tion for the Iberian region, performed with the Coas-
tal and Regional Ocean Community model (CROCO). 
CROCO is a primitive equation, hydrostatic, sigma-
coordinate, free-surface ocean model (Shchepetkin & 
McWilliams 2003, 2005). 

This simulation had a horizontal resolution of 
about 1.6 to 1.9 km and 60 vertical levels. It ran in a 
2-way nested grid configuration, where the smaller, 
higher-resolution grid extends from 35° N, 12° W to 
45° N, 1° W. The atmospheric variables are obtained 
from ERA5 (Hersbach et al. 2020), and the heat and 
freshwater fluxes are computed internally using a 
bulk flux parameterization. The model was initial-
ized with data from the global ocean reanalysis 
GLORYS12V1 (https://doi.org/10.48670/moi-00021) 
and continuously fed along the open boundaries 
with monthly fields of the same GLORYS12V1 re -
analysis. The re gional simulation used here is an 
updated version of the one described by Teles-Mac-
hado et al. (2016a). 

2.2.  Lagrangian model and IBM of anchovy eggs 
and larvae 

To study the advection of the particles, which repre-
sent anchovy eggs and larvae, we used the Lagran-
gian model Parcels (10.5281/zenodo.8427125) (De -
landmeter & van Sebille 2019, Kehl et al. 2023). 
Parcels is a group of Python functions and scripts that 
uses 3D outputs from ocean circulation models to 
perform particle tracking simulations. We chose Par-
cels due to its versatility, and because it is easily cus-
tomizable to attribute characteristics, sensitivities, 
and behaviors to the tracked particles. Particles were 
advected using the Runge-Kutta4 advection scheme, 
already implemented in Parcels, and we included 
Smagorinski diffusion. We programmed the IBM as 3 
different kernels inside Parcels, so that the Lagran-
gian model and the IBM are coupled and interact. 

We used as inputs 3D horizontal velocity and tem-
perature fields from CROCO, and 2D satellite chl a 
fields. The particles are advected by the ocean cur-
rents, and their evolution and survival are dependent 
on the average temperature and chl a values experi-
enced along the trajectories. The impact of tempera-
ture and chl a depends on the ontogeny phase and is 
detailed below. 

We developed an IBM for anchovy eggs and larvae 
that simulates 4 different stages of evolution as illus-
trated in Fig. 2: 

Stage 0 is the egg phase. For eggs, we considered 
the optimal thermal interval of survival to be between 
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14 and 22°C (Shannon 1998). Eggs that experienced 
temperatures above or below this interval were elimi-
nated. Each particle remained an egg for 48 h (Gar-
rido et al. 2012) 

Stage 1 represents the yolk-sac larva. The particle 
remains in this stage for 3.5 d post hatching (Alda-
nondo et al. 2008). After that, the larvae evolve to 
Stage 2, when they open their mouth and start feeding. 

Stage 2 represents a larva that already feeds itself 
but still has no swimming capacity. During this 
stage, we considered that a larva can die of starva-
tion if the chl a values it experiences along the way 
are too low (average value along the trajectory below 
0.2 mg m–3, which is just a statistical threshold). 
Growth of the larvae was simulated depending on 
the temperature values they experience along their 
trajectories, using the equations obtained by Alda-
nondo et al. (2008): L = 2.88 + 0.15age, at 17.6°C; 
L = 2.21 + 0.26age, at 19.3°C; L = 2.4 + 0.33age, at 
20.8°C, L = 2.69 + 0.29age, at 22.3°C (L is larval 
length, and age is in days); at each time step, we 
used the equation for the temperature closest to the 
mean temperature experienced by the larvae along 
their trajectories, which was recomputed at each 
time step. Larvae evolve to Stage 3 when they reach 
7 mm in length, the moment when the first schooling 
behavior begins, that coincides with the notochord 
flex and onset of vertical migrations (Somarakis & 
Nikolioudakis 2010). 

Stage 3 represents larvae that can already control 
their buoyancy and begin diurnal vertical migrations. 
We considered that they oscillate between the sur-
face and 25 m depth (Coombs et al. 2003). 

The particles were passively advected by the ocean 
currents and the only active movement included were 
the diurnal vertical migrations that moved them up 
and down every day, subjecting them to different 
horizontal velocities whenever there is vertical shear 
in the horizontal velocity fields. 

2.3.  Description of the experiments 

In our simulations, we deployed par-
ticles (eggs) at the 2 main spawning 
grounds of the region: the GoC and 
BoB (shaded areas in Fig. 1). The 
release was done during the period 
from March to August, which are the 
main months of the spawning season, 
for the years 2013, 2014, and 2015. We 
computed the trajectory of each par-
ticle for 40 d, i.e. the average duration 
of the larval phase. The number of par-
ticles deployed is proportional to the 

spawning area dimension; 930 and 1683 particles 
were deployed every day from the GoC and the BoB, 
respectively. 

3.  RESULTS 

3.1.  Dispersion patterns from GoC and BoB 
 spawning grounds 

The annual percentage of eggs that reaches each of 
the areas of Fig. 1 (equivalent to ICES sub-divisions 
8c East [8c.E], 8c West [8c.W], 9a North [9a.N], 9a 
Central-North [9a.CN], 9a Central-South [9a.CS], 9a 
South Portugal [9a.SP], and 9a South Spain [9a.SS]) is 
represented in Fig. 3. The number of particles that 
were released and that arrived in each of the areas 
were weighted by the average spawning curves of 
both BoB and GoC to take into consideration the fact 
that the average number of particles deployed in each 
month is different. For the BoB, we used the shape of 
the gonadosomatic index mean seasonal cycle calcu-
lated for the period 1987–2015 (Erauskin-Extramiana 
et al. 2019). For the GoC, we computed the average 
seasonal cycle of the gonadosomatic index from the 
seasonal cycles of the years 1989 to 1992 obtained 
from Millán (1999). 

Nearly half of the eggs/larvae deployed in the 
spawning area of the GoC ended up in area 9a.SS (49, 
44, and 58% in 2013, 2014, and 2015, respectively) 
(Fig. 3). Around 10% reached area 9a.SP (10, 11, and 
11%, in 2013, 2014, and 2015, respectively), while 1% 
reached the southwest coast, more specifically, area 
9a.CS, recurrently in the 3 years. The remaining eggs 
died, were lost offshore, or were transported into the 
Mediterranean Sea (Fig. 4). 

At least half of the eggs/larvae deployed in the BoB 
remained in area 8c.E (51, 65, and 52%, respectively, 
in 2013, 2014, and 2015). Some larvae followed west-
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Fig. 2. Schematics of the anchovy individual-based model (IBM) representing 
the different early life stages considered. DPH: days post hatch; DVM: diurnal  

vertical migration. See Section 2.2 for more details
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ward trajectories along the Iberian northern coast, 
reaching area 8c.W (2, 4, and 16%, respectively, in 
2013, 2014, and 2015) (Figs. 3 & 4). In 2015, 3% of the 
larvae reached the Iberian west coast: 2% area 9a.N 
and 1% area 9a.CN (Fig. 3). 

Transport between areas was estimated for each 
month of the spawning season (Fig. 5). Larvae arriv-
ing in area 9a.CS in 2014 (Fig. 5) were mainly those 
that evolved from eggs spawned in the GoC, mostly 

during March and May. In 2015, larvae resulted from 
eggs deployed in the GoC also in March and May. In 
2013, most larvae resulted from eggs deployed in the 
GoC in June, followed by March. 

In 2015, 5% of the eggs deployed in June and 3% of 
the eggs deployed in July arrived in area 9a.N as lar-
vae (Fig. 5). In June and July of the same year, 3 and 
1% of the eggs, respectively, reached area 9a.CN 
(Fig. 5). 
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Fig. 3. Percentage of eggs deployed from the Bay of Biscay (BoB; numbers in pink) and the Gulf of Cadiz (GoC; numbers in blue) 
in 2013, 2014, and 2015, that survived and arrived in each of the areas. The spawning areas are represented in pink (BoB)  

and blue (GoC), as in Fig. 1

Fig. 4. Trajectories of anchovy larvae deployed from the spawning grounds in the Bay of Biscay (BoB, pink) and Gulf of Cadiz  
(GoC, blue) in the main months of the spawning season (March to August) from 2013 to 2015
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3.2.  Interannual variability of the alongshore 
currents in northern Iberia 

In order to verify if this was an anomalous or recur-
rent event in terms of ocean circulation, we computed 
the average surface zonal (east–west) velocity along 
the northern Iberian Coast (Fig. 6). Each bar in Fig. 6 
represents the monthly average, and we represent the 
months of April to July, the main months of the 
anchovy spawning season. The years 2014, 2015, and 
2016 stand out as 3 consecutive years of strong west-

ward velocities, especially in July 2014, June and July 
2015, and July 2016. The year 2015 was particularly 
anomalous due to the consecutive months of west-
ward intense surface velocities. 

4.  DISCUSSION 

This study investigated the sudden increase in 
anchovy abundance off the western Iberian coast that 
occurred in 2016 after decades of very low abun-
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Fig. 5. Percentages of particles deployed from the Gulf of Cadiz (GoC, closed circles) and Bay of Biscay (BoB, open circles), in 
each month of the spawning season (x-axis), in 2013 (blue), 2014 (yellow), and 2015 (red), that arrived in the different ICES  

areas shown in Fig. 1. Each plot represents a different destination area

Fig. 6. (a) Time series of monthly averages of zonal (E–W) velocity, spatially averaged (avgU) in an area that covers the Iberian 
northern coast. The area is represented as a blue box in inset panel (b). Only the months corresponding to anchovy peak  

spawning season are represented (April to July)
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dance. Our approach involved the use of a Lagran-
gian model coupled to an IBM specifically developed 
for the European anchovy to study the dispersion and 
survival of anchovy eggs and larvae, deployed from 
the 2 main spawning grounds in Iberia, situated in the 
BoB and in the GoC, with the aim of identifying 
anomalous oceanographic events that might explain 
this surge on the Iberian west coast. We modeled the 
3 years that preceded the increase, i.e. 2013, 2014, and 
2015, to compare the oceanographic conditions dur-
ing consecutive years when anchovy abundance in 
the spawning areas off the Iberia was high but only 
one resulted in a proliferation off western Iberia. 

Our results show that during 2013 and 2014, no lar-
vae were transported from the spawning grounds in 
the BoB to the west coast, and few were transported to 
the Cantabrian Sea. In contrast, in 2015, 3% of the 
eggs deployed in the BoB survived the egg and larvae 
stages and reached the west coast (Fig. 3). The larger 
transport of potentially surviving larvae occurred 
during June and July 2015, when 8 and 4%, respec-
tively, of the eggs deployed in the BoB survived and 
reached the west Iberian coast (Fig. 5, area 9a.N + 
area 9a.CN). Analysis of the interannual variability of 
the zonal currents in northern Iberia showed that 
2014, 2015, and 2016 were characterized by the pres-
ence of anomalous intense and persistent westward 
surface currents (Fig. 6). The stronger currents oc -
curred during July 2014, June and July 2015, and July 
2016. These anomalous events were observed by 
coastal radar and acoustic Doppler current profiler 
moorings located in the BoB (von Schuckmann et al. 
2019) that identified anomalous intense summer west-
ward currents in 2014, 2015, and 2016. The 2015 event 
was observed by the coastal radar, and occurred in 
June and July 2015 (von Schuckmann et al. 2019, their 
Fig. 2.2.2). These events also have a clear signal in 
salinity, as they transport fresher waters from the BoB 
along the northern Iberian Coast (data not shown). 
These results suggest that the sudden increase in the 
anchovy abundance in 2016 could be explained by 
the increased transport of larvae from the spawning 
grounds in the BoB, more specifically in June and 
July 2015. 

Understanding the variability of alongshore cur-
rents in the Cantabrian Sea is crucial, as these cur-
rents serve as the mechanism facilitating the trans-
port of larvae between the BoB and the Iberian west 
coast. Seasonal variability is a well-documented as -
pect of this system, with winter exhibiting an east-
ward and more intense average circulation, while 
summer witnesses a predominantly westward and less 
intense flow (Charria et al. 2013). During winter, the 

eastward currents are an extension of the Iberian 
Poleward Current (IPC), which characterizes the 
winter circulation on the west coast; it flows along the 
Iberian west coast and then turns eastward along the 
northern coast, transporting warmer and saltier 
waters from the south (Pingree & Le Cann, 1990, Peliz 
et al. 2005, Teles-Machado et al. 2016a). The IPC’s 
intensity and progression along the northern coast 
are subject to interannual variability (e.g. Llope et al. 
2006, Le Cann & Serpette 2009), particularly on the 
west coast, where it is largely influenced by wind 
intensity (Teles-Machado et al. 2015). In spring and 
summer, the average circulation along the Iberian 
northern coast is predominantly eastward, peaking 
from July to September (Charria et al. 2013). This sea-
son coincides with an increased number of upwelling 
events, also with significant interannual variability 
(Alvarez et al. 2010) that impacts the strength of west-
ward currents. The pronounced interannual variabil-
ity is evident in Fig. 6 for the months of April to July, 
where, although average velocities are westward, 
numerous months exhibit eastward velocities, even 
during the summer. Along the Iberian northern coast, 
alongshore currents are known to destabilize, giving 
rise to eddies that enhance transport between the 
shelf and offshore regions (Pingree & Le Cann 1992, 
Teles-Machado et al. 2016b). This variability, coupled 
with the presence or absence and positioning of 
mesoscale eddies, significantly influences larval 
transport, with greater persistence of currents result-
ing in larger larval transport. The mechanisms re -
sponsible for the occurrence of anomalous intense 
westward currents between 2014 and 2016 are not 
explored in this paper, but require further investiga-
tion in future studies. Understanding the drivers 
behind these events would offer valuable insights into 
the connectivity of anchovy and other species. 

There were also larvae reaching the west coast that 
came from the south Iberia spawning grounds in the 
GoC. In this case, larvae were transported to the 
southernmost area of 9a.CS and the percentage was 
constant over the years, with 1% of the eggs deployed 
in GoC surviving and reaching the southwestern 
coast (9a.CS) in 2013, 2014, and 2015 (Fig. 3). 
Although the percentage was constant for the 3 years, 
the transport did not occur constantly in time, but in 
pulses occurring in March and May in 2014 and 2015, 
and in June in 2013 (Fig. 5, 9a.CS). These pulses are 
associated with events of the GoC counter-current 
that develops in the GoC under the influence of 
easterly winds, carrying warm waters westward in the 
GoC and northward along the western Iberian shelf 
(e.g. Relvas & Barton 2005, Teles-Machado et al. 

7



Mar Ecol Prog Ser · Advance View

2007). A strong counter-current event in 2016 trans-
ported early anchovy life stages to the western coast, 
increasing the connectivity between southern and 
western subdomains (Casaucao et al. 2021). As our 
results show, these events might be recurrent, as they 
occurred in all of the years that are part of this study 
(2013–2015), but the larvae never reached areas 9a.N 
nor 9a.CN. Acoustic surveys show that the large 
majority of anchovy off western Iberia concentrate on 
the northwestern Portuguese coast (mean 88%), fol-
lowed by Galician waters (10%), while the proportion 
of fish on the southwestern Portuguese coast is signif-
icantly lower (mean 2%) (ICES 2022). This further 
suggests that migration to western Iberia is more 
likely to come from the northern BoB than from the 
southern GoC. 

The year 2015 was also characterized by high abun-
dance of eggs in the BoB when compared to previous 
years, as shown by data collected during the BIOMass 
of ANchovy (BIOMAN) survey in May 2015 (M. San-
tos et al. 2018). This year clearly stands out both in the 
higher number of eggs, and also in the larger spatial 
extent of their distribution (ICES 2016), expanding 
until 5° W along the Iberian northern coast (probably 
already as a response to the strong westward flow). 
The westernmost section of the BIOMAN survey in 
May 2015 detected the presence of anchovy eggs, 
suggesting that their presence could extend even 
further west. Thus, if in the simulation, eggs were 
deployed not from the main spawning area in the time 
series but specifically according to egg surveys, eggs 
would be deployed further west in the Cantabrian Sea 
during 2015, and this would have resulted in a higher 
percentage of larvae reaching the west Iberian coast 
areas at even lower latitudes. We used the same 
number and distribution of eggs for the 3 years 
because the objective was to focus on the differences 
in the environmental conditions. The fact that the 
anomalous connectivity identified in our results coin-
cides with this maximum in the number and westward 
distribution of eggs in the BoB amplifies the impact of 
these results. 

This study highlights the importance of studying 
potential dispersal during the larval phase to under-
stand population dynamics. Although the larval 
phase is short compared to the average life spans of 
pelagic fish, its vulnerability to environmental con-
ditions and weak or absent swimming capacities 
makes it significantly more susceptible to environ-
mental changes and extremes, with larval survival 
and dispersion playing determinant roles in defining 
the spatial and temporal structure of the populations 
(e.g. Bonanno et al. 2013, A. M. P. Santos et al. 2018, 

Somarakis et al. 2019). With recent advances in the 
quality of ocean numerical models, such as the one 
used in this study, and of modern techniques of 
genetic analysis, we are slowly learning about the 
connectivity of the different species and the way it is 
changing in time and in the actual context of global 
warming. 

For several species, such as the European anchovy, 
different morphometric and genetic studies have 
been conducted regarding its population structure 
within the Atlantic Ocean. These studies reached 
inconclusive or contrasting results. Molecular analy-
sis studies report the existence of 2 ecotypes, oceanic 
and coastal (Montes et al. 2016), and apparently more 
differentiation between these ecotypes than between 
populations of the Atlantic Ocean and Mediterranean 
Sea within the same ecotype (Le Moan et al. 2016). 
Additional analyses based on mitochondrial DNA 
have found 2 lineages in each area that are not related 
to the oceanic and coastal ecotypes (Magoulas et al. 
2006, Silva et al. 2014). Some differentiation was also 
obtained between West Galicia and North of Portugal 
with the Gulf of Cadiz anchovies (Zarraonaindia et al. 
2012, Silva et al. 2014). However, currently the results 
of traditional stock structure analyses are not yet 
helpful to understand the connectivity between the 
different anchovy populations, and a large sampling 
scheme covering the different latitudes and, within 
each area, different ecotypes and lineages is recom-
mended to obtain useful results (ICES 2022). 

The advances in the realism of regional ocean 
models makes them powerful tools to study larval dis-
persion and its variability in time, and infer the impact 
it can have on the explanation of population oscilla-
tions and connectivity. Due to the nonexistent or lim-
ited swimming capacities of eggs and early larvae, 
they are primarily transported by ocean currents. 
Therefore, an accurate representation of ocean cur-
rents and their spatiotemporal variability is crucial for 
capturing the patterns of connectivity during early 
life stages, which can be achieved using Lagrangian 
numerical tools that compute particle trajectories in 
the ocean. 

The coastal ocean is characterized by the presence 
of intense alongshore currents, river plumes, fronts, 
eddies, and filaments (Peliz et al. 2005, Teles-Mac-
hado 2016b, Cordeiro 2015) that significantly in -
fluence larval dispersal. These phenomena can only 
be accurately reproduced through high-resolution 
ocean model simulations that incorporate the re -
gion’s most relevant oceanographic processes. The 
simulation employed in this study includes realistic 
atmospheric forcing, the discharge of the main rivers 
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in the region, realistic ocean conditions along the 
model open boundaries, and it solves the exchange of 
Atlantic and Mediterranean waters through the Strait 
of Gibraltar. This simulation has evolved over the 
years (e.g. Peliz et al. 2007, 2013, Teles-Machado et al. 
2016a). 

By coupling Lagrangian models with IBMs that sim-
ulate biological behaviors observed in laboratory 
experiments and field data, these numerical tools 
become more realistic and powerful for studying not 
only larval dispersion but also the growth and sur-
vival of early life stages (e.g. Peck et al. 2018). In the 
present study, the model incorporates temperature-
associated mortality during the egg phase, as well as 
temperature-dependent growth rates and durations 
in certain larval stages. The IBM also considers mor-
tality due to starvation, employing a simple condition 
where larvae in environments with low chl a values 
are eliminated. However, further research on the 
trophic ecology of anchovy larvae is necessary (Gar-
rido & van der Lingen 2014), particularly with regard 
to starvation and the influence of food availability on 
growth, development, and survival. 

Other factors not included in the individual model 
can impact larval survival and can therefore be con-
sidered in future modeling exercises. Food availabil-
ity for spawning females strongly influences the 
amount of fat accumulated by sardines prior to the 
spawning season (Garrido et al. 2007, 2008), with 
implications for changes in egg quality and con-
sequently larval survival (Garrido et al. 2015b). 
However, there is still no sufficient knowledge of the 
differential survival of larvae with respect to female 
condition, and for that reason, this information was 
not included in the model. Female age impacts batch 
fecundity and also the extent of the spawning season, 
and therefore, the variability in age composition can 
also be considered in future studies. 

In the past, there were single years when anchovy 
abundance increased, but this did not persist in time, 
and in following years, the abundance was again low. 
The increase in abundance off western Iberia occur-
ring in 2016 has persisted until present day. Several 
top-down and bottom-up mechanisms can explain 
this. Off western Iberia, the European sardine has 
been persistently the most abundant coastal pelagic 
fish species (ICES 2022). The fact that the increase in 
the anchovy populations coincided with the mini-
mum historical abundance of sardine may be related 
to the fact that both species have high trophic over-
lap and may compete for food (Garrido et al. 2015a, 
Fonseca et al. 2022), at least during the juvenile and 
adult stages, and because juvenile and adult sardines 

are important predators of anchovy eggs in the stud-
ied area, impacting egg survival. However, other fac-
tors to explain the dynamics of both species must be 
explored, particularly in light of recent literature 
showing that it is unlikely that the dynamics of sar-
dine and anchovy species around the world are com-
pensatory enough to cause relevant changes in their 
abundance (Siple et al. 2020). Other species can also 
impact anchovy abundance such as the Atlantic 
chub mackerel, which also has high trophic overlap 
with anchovy and also includes pelagic fish eggs in 
the diet (Garrido et al. 2015a, Fonseca et al. 2022). 
The opposite fluctuation observed for both species 
in recent years may also be the result of different 
physical or biological factors impacting their dyna -
mics. It is known that environmental variability sig-
nificantly impacts sardine recruitment, with high 
recruitments being generally associated with higher 
productivity and low temperature during the spawn-
ing season (Garrido et al. 2017, Ferreira et al. 2023). 
Further studies are needed to understand the inter-
annual variability in the connectivity patterns for 
anchovy to ascertain if the BoB can be a source area 
for western Iberia recurrently, and to understand the 
impacts of the local environmental and biological 
conditions on the survival of the larvae into juvenile 
and adult stages. 

5.  CONCLUSIONS 

In this study, we investigated the dispersion and 
survival of European anchovy eggs and larvae in Ibe-
rian waters, with a focus on understanding the poten-
tial factors contributing to the recent increase in 
anchovy abundance along the Iberian west coast. By 
utilizing a combination of oceanic and Lagrangian 
models coupled with an IBM of anchovy early life 
stages, we simulated the transport and evolution of 
anchovy eggs and larvae from the main spawning 
grounds in the BoB and the GoC for the years preced-
ing the observed increase in anchovy recruitment. 

Our findings revealed that anomalous upper-
ocean circulation patterns, characterized by strong 
and persistent eastward currents, played a crucial 
role in transporting a substantial number of eggs 
and larvae from the BoB eastward along the North-
ern Iberian margin. The peak of this transport 
occurred in June and July 2015, with approximately 
8 and 4 %, respectively, of the eggs reaching the 
Iberian west coast (as larvae). These findings sug-
gest that episodes of in tense ocean currents, coin-
ciding with high egg presence, can facilitate the col-
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onization of new areas and potentially contribute to 
the increase in anchovy abundance in the Western 
Iberian upwelling ecosystem. 

This study highlights the importance of consider-
ing oceanographic processes and larval dispersal 
dynamics in understanding the population dynamics 
of small pelagic fish species like the European 
anchovy. By integrating oceanic models, Lagrangian 
transport simulations, and an IBM, we were able to 
simulate the dispersion and survival of anchovy early 
life stages, shedding light on the mechanisms under-
lying the observed changes in anchovy abundance. 
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