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INTRODUCTION

Biological investigations in deep-sea chemosynthetic
systems generally focus on how species manage to
thrive and survive in these extreme environments.
Vesicomyid clams are one of the conspicuous compo-

nents of many chemosynthetic systems. They and other
bivalves at vents and seeps host chemoautotrophic en-
dosymbionts that constrain the bivalves to occupy envi-
ronments with suitable fluxes of reduced compounds
(e.g. sulfide, methane). Vent and seep bivalves typically
occupy discrete habitats with sharp boundaries that are
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ABSTRACT: Spatial distributions and patchiness of dominant megafaunal invertebrates in deep-sea
seep environments may indicate heterogeneities in the flux of reduced chemical compounds. At the
Blake Ridge seep off South Carolina, USA, the invertebrate assemblage includes dense populations of
live vesicomyid clams (an undescribed species) as well as extensive clam shell beds (i.e. dead clams). In
the present study, we characterized clam parameters (density, size-frequency distribution, reproductive
condition) in relation to sulfur chemistry (sulfide and sulfate concentrations and isotopic compositions,
pyrite and elemental sulfur concentrations) and other sedimentary metrics (grain size, organic content).
For clams >5 mm, clam density was highest where the total dissolved sulfide concentration at 10 cm
depth (ΣH2S10cm) was 0.4 to 1.1 mmol l–1; juvenile clams (<5 mm) were most dense where ΣH2S10cm was
lowest. Clams were reproductively capable across a broad range of ΣH2S10cm (0.1 to 6.4 mmol l–1), and fe-
males in the sampled populations displayed asynchronous gametogenesis. Sulfide concentrations in
porewaters at the shell–sediment interface of cores from shell beds were high, 3.3 to 12.1 mmol l–1, com-
pared to <1 mmol l–1 sulfide concentrations at the clam–sediment interface in live clam beds. Concen-
tration profiles for sulfide and sulfate in shell beds were typical of those expected where there is active
microbial sulfate reduction. In clam beds, profiles of sulfide and sulfate concentrations were also consis-
tent with rapid uptake of sulfide by the clams. Sulfate in shell beds was systematically enriched in 34S rel-
ative to that in clam beds due to microbial fractionation during sulfate reduction, but in clam beds, sul-
fate δ34S matched that of seawater (~20‰). Residual sulfide values in clam and shell beds were
correspondingly depleted in 34S. Based on porewater sulfide concentrations in shell beds at the time of
sampling, we suggest that clam mortality may have been due to an abrupt increase in sulfide concen-
tration and sulfide toxicity, but other alternatives cannot be eliminated.

KEY WORDS:  Cold seep · Gas hydrate · Sulfur isotope · Fractionation · Flux indicators ·
Chemosynthesis · Bivalve reproduction · Gametogenesis

Resale or republication not permitted without written consent of the publisher

OPENPEN
 ACCESSCCESS



Mar Ecol Prog Ser 339: 169–184, 2007

likely to be controlled more by physico-chemical condi-
tions than by biological interactions (Van Dover 2000).
Patchy distributions of vesicomyid clams within
chemosynthetic environments have been linked to
patchiness in the availability of reduced compounds for
endosymbiotic microbial oxidation (e.g. Barry et al.
1997, Sahling et al. 2002, Levin et al. 2003) and to varia-
tions in requirements and tolerances of clam species to
these compounds (Barry et al. 1997).

Little attention has been devoted to the causes of
massive mortalities of clams evident at vents and
seeps, although at vents common causes of mortality
must be waning of hydrothermal activity or overrun by
volcanic eruptions. As the flux of reduced compounds
in a system becomes naturally diminished below the
optimum concentration for growth, or is arrested alto-
gether, the condition of the bivalves deteriorates,
resulting in resorption of gonad, loss of symbionts
(Raulfs et al. 2004) and, ultimately, if flow is not
restored, death (Hessler et al. 1988). Extensive beds of
mussel shells and clam shells have been mapped along
mid-ocean ridges where hydrothermal venting has
ceased (e.g. Haymon et al. 1991), and the condition of
mussels transplanted from areas of high to low sulfide
flux have a lower tissue dry-weight to shell-length
ratio than the reciprocal transplants (Smith 1985). 

Massive bivalve mortality at seeps has also been
attributed to cessation of fluid flux (e.g. Jollivet et al.
1990, Van Dover et al. 2003). But at seep sites, where
the causes and timing of changes in fluid flux are not
well understood nor are as dramatic as the shutdown
of hydrothermal activity, alternative explanations for
mortality cannot be excluded without geochemical
assessment. For example, bivalve mortality might
occur in beds receiving excess flux of reduced chemi-
cals. Sulfide in particular is a potent toxin that inter-
feres with the cytochrome c oxidase enzyme system of
cellular respiration (National Research Council Com-
mittee on Medical and Biological Effects of Environ-
mental Pollutants 1979), and enhanced flux of sulfide
has been implicated in the mortality of at least some
vesicomyid clam species (Goffredi & Barry 2002). A
further cautionary note regarding inferences about
causes of mortality was highlighted in recent work by
Ward et al. (2004), who described a pathogenic, viral-
like inclusion in mussels Bathymodiolus heckerae from
the methane-hydrate seep on the Blake Ridge Diapir,
where extensive mussel shell beds were found adja-
cent to live mussel beds. 

In addition to live mussel beds and dead mussel shell
beds, the Blake Ridge Diapir site is characterized by
live clam beds (<1 m diameter) and extensive (up to
10 m long, <1 m wide) beds of clam shells. The clam,
referred to as Vesicomya cf. venusta by Van Dover et
al. (2003), is now considered likely to belong to an

undescribed genus and species (E. Krylova pers.
comm.). As in other vesicomyid clams, the digestive
tract and filter-feeding apparatus are reduced in the
Blake Ridge seep species. Microscopic and isotopic
evidence indicates that the gills of Blake Ridge clams
contain sulfide-oxidizing bacteria, from which the
clams are inferred to derive most of their nutrition (Van
Dover et al. 2003).

Clam shells in Blake Ridge shell beds were relatively
uniform in size (~1 to 2 cm length) and in the limited ex-
tent of erosion of the periostracum and shell, suggest-
ing that die-off was synchronous and pandemic (Van
Dover et al. 2003). Unlike in Blake Ridge mussels, para-
site burdens in Blake Ridge clams were light, and there
was no evidence of tissue pathology (Mills et al. 2005).
Predation is a common cause of clam mortality in shal-
low water, but clam shells collected from Blake Ridge
shell beds did not show evidence of mortality due to
crab, octopus, or fish predation (Van Dover et al. 2003). 

In this study, we explored the relationship between
sediment characteristics (sulfur chemistry, grain size,
organic carbon and total nitrogen content) and clam
characteristics (density, size, reproductive condition) in
clam beds, shell beds, and background habitats in the
Blake Ridge area to determine the optimal environ-
mental characteristics for the clams and to gather evi-
dence for the possibility that enhanced or diminished
sulfide flux might have contributed to clam mortality
or compromised tissue quality.

MATERIALS AND METHODS

Study site. The Blake Ridge cold seep (32° 29.623’ N,
76° 11.467’ W; 2155 m) is a soft-sediment, chemosyn-
thetically based ecosystem that lies at the summit of a
salt diapir ~300 km off the coast of South Carolina
(Fig. 1). The site lies within an area of the South
Atlantic Bight that represents a major gas hydrate
province within the US Exclusive Economic Zone
(Paull & Dillon 1981). Methane is the predominant gas
in the hydrates and is generated through bacterially
mediated reactions (Paull et al. 2000). The seep site
was drilled by the Ocean Drilling Program in 1996 (Leg
164; Shipboard Scientific Party 1996), and the first
submersible observations of the site were made in
2001. A description of the site, including attributes of
the associated community, is provided in Van Dover
et al. (2003).

Sampling and initial core processing. Fifty-three
push cores (6.35 cm inner diameter, 30 cm length;
penetration depths: 11 to 28 cm) were collected from 4
microhabitat types (clam beds: n = 20; shell beds: n =
19; clam/shell beds: n = 6; background: n = 8) at the
Blake Ridge Diapir in 2003 using the deep-sea sub-
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mersible ‘Alvin’. Microhabitat designations for push-
cores were based on submersible characterization of
the seabed and shipboard visual examination of intact
push-core samples, without reference to the porewater
chemistry. Clam beds contained large numbers of ma-
ture clams on the sediment surface and few or no clam
shells (Fig. 2A); shell beds contained a thick layer of
shells (Fig. 2B) and 0 to 1 live clams per push core; push
cores from clam/shell beds contained 5 to 10 live clams
plus shells. Five of the background samples were taken
at the erosional face of the Blake Ridge depression,
~2 km NE of the active seep site; 3 background cores
were taken within 200 m of active seeps at the Blake
Ridge Diapir, in areas devoid of vesicomyid shells and
megafaunal organisms. Clam densities (for clams visi-
ble without the aid of a dissecting microscope, i.e.
~5 mm length) were determined for all cores. 
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Fig. 1. Blake Ridge (light grey shaded area) and seep site (*). 
Isobaths (m) 

Fig. 2. Vesicomyid clams at the Blake Ridge seep site. (A) Clam and shell beds; scale bar ≈50 cm. (B) Push core sampling in a clam
shell bed; scale bar = 10 cm. (C) Relative location of push cores analyzed for porewater chemistry, grain size, organic C and total
N content, and reproductive condition of adult clams. j: background; s: clam beds; d: clam/shell beds; n: shell beds. Additional
background cores were collected ~2 km NE of the clam beds. Numbers indicate number of closely spaced cores; letters indicate
markers at the site; areas enclosed by dashed lines indicate approximate distribution of mussel beds in 2001 (from Van Dover 

et al. 2003). (D) Representative push cores from 4 microhabitats at Blake Ridge
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Cores were stored in a cold room (4°C) on recovery
and vertical redox potential (Eh in mV) profiles (1 cm in-
tervals) were obtained from undisturbed cores by insert-
ing a UNISENSE platinum Eh electrode (0.5 mm dia-
meter; 3 mm length) through the sediment surface.
Redox potential was read on a portable pH-millivolt
meter (Denver Instruments) connected to a saturated
calomel electrode suspended in the overlying water. Val-
ues were corrected to the hydrogen reference electrode
scale by adding +244 mV to each measurement (Bagan-
der & Niemisto 1978). Calibration of the electrodes was
verified by measuring the redox potential of quinhy-
drone dissolved in buffers (pH 4 and 7; Bohn 1971).

Geochemical and physical analyses. After the Eh
profiles were taken, representative push cores from
each microhabitat (9 from clam beds, 2 from clam/shell
beds, 10 from shell beds, and 6 from background sedi-
ments: 1 from within 120 m of the sampled clam beds;
4 from ~2 km to the NE; Fig. 2C), were sub-sampled for
chemical analyses (sulfide and sulfate concentration)
of the porewater, grain-size analyses, and organic car-
bon and total nitrogen (i.e. ammonia and organic nitro-
gen) content. Each core was sectioned into 2 cm inter-
vals under nitrogen. For push cores with layers of live
clams and/or clam shells at the sediment–water inter-
face, the ‘0’ index was the surface of the sediment layer
underlying the shells. Porewater was squeezed from
core sections using Reeburgh-style squeezers (Ree-
burgh 1967) and collected in 7 ml vacutainers purged
with nitrogen and pretreated with 0.3 ml of saturated
zinc acetate solution. 

Sediment samples (1 cm3) from the 1 cm and 8 cm
intervals of push cores after porewater extraction were
analyzed for mineral sulfide: acid volatile sulfide
(AVS: particulate FeS and residual dissolved H2S) and
chromium reduced sulfide (CRS: particulate FeS2 and
elemental sulfur). A 1 N HCl extraction was used for
acid volatile sulfide; a boiling chromium concentrated
acid extraction was used for chromium reduced sulfide
(Fossing & Jørgensen 1989). Both extractions were fol-
lowed by sulfide analysis (Cline 1969). To compare the
relative abundance of dissolved sulfide (ΣH2S) and
mineral sulfide in push cores, ΣH2S values were aver-
aged for all intervals within each core and concentra-
tions of mineral sulfides were averaged across the 2
sample intervals for each core. 

Sediment sub-samples for grain-size analyses were
taken from the 0 to 1 cm interval after extraction of
porewater. Sediments were dried and homogenized
and % sand, silt, and clay (± SD) were determined by
sieving and gravimetric techniques. Dried, homoge-
nized sediment from the 0 to 1 cm interval (~15 mg
acidified with 10% HCl) was analyzed for total organic
C and total N content using an EA 1108 Elemental
Analyzer. 

Porewater sulfide concentration was determined col-
orimetrically (Cline 1969) and sulfate concentration
was determined turbidimetrically (Gieskes et al. 1991).
Analytical precision was typically within ± 5% for
both methods. Where sulfate concentrations were high
(~30 mmol l–1), analytical precision dropped to ±15%.

To determine the sulfur isotopic profiles of porewater
H2S and SO4, sulfur isotope composition of dissolved
H2S and SO4 was measured using a high-temperature
combustion method consisting of an elemental ana-
lyzer (EA) coupled under continuous flow with an
Optima stable isotope ratio mass spectrometer (GV
Instruments, Manchester, UK). Sulfur isotope composi-
tions are reported in the standard delta notation (δ) as
per mil (‰) deviations from the international sulfur iso-
tope standard Canyon Diablo Troilite (CDT), according
to the equation:

(1)

A laboratory sulfur reference gas standard was cali-
brated against NBS-127. Analytical precision for inter-
nal sulfur combustion standards was better than ±0.5‰.

We also estimated the isotopic fractionation factor
between sulfate and sulfide. Microbial sulfate reduc-
tion preferentially breaks the weaker bonds formed by
32S over those formed by 34S. Consumption of sulfate
during the production of sulfide results in porewater
that is isotopically enriched in the residual sulfate and
depleted in the produced sulfide. If one assumes a
nearly closed system with respect to available sulfate,
the isotopic fractionation factor (ε) between the reac-
tant sulfate and product sulfide for down-core varia-
tions in porewater sulfate can be modeled according to
ε = δ34SO4

2–/lnf, where f is the fraction of sulfate
remaining in reaction and ε is the slope of the regres-
sion between δ34SO4

2– and lnf (Mariotti et al. 1981).
Sulfate reduction rates were calculated from sulfate

porewater profiles using a porewater diffusion model
(Jørgensen 1978). This model uses an exponential
equation with the parameters of diffusion and sedi-
mentation rate to evaluate changes in sulfate concen-
tration with depth, according to the equation, ƒ(x) =
ae–bx, where x is depth, and a and b are constants
determined by the best fit line to the down-core pore-
water sulfate profile. In the absence of evidence to the
contrary, we assume that fluid advection rates are neg-
ligible. The diffusion coefficient for sulfate given the
porosity and temperature for Blake Ridge surficial
sediments is estimated to be 93 cm2 yr–1 (Dickens 2001)
and the sedimentation rate is 0.48 mm yr–1 (Shipboard
Scientific Party 1996).

Biological analyses. The top sections of cores con-
taining clams and/or shells were washed through a
65 µm sieve. All large clams (>5 mm length; includ-

δ34 31 10S
S S

S S

34 32
sample

34 32
standard

= −⎛
⎝⎜

⎞
⎠⎟ ×
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ing shells) and shells were removed, measured (shell
length, ±0.1 mm), and live clams were counted. Mate-
rial retained on the sieve was preserved in 10%
buffered formalin, stored in 70% ethanol, and subse-
quently sorted under a dissecting microscope to collect
and count the smallest clams within a subset of push
cores (clam beds: n = 8; shell beds: n = 7; clam/shell
beds: n = 2; background: n = 8).

Subsets of 37 female and 24 male adult individuals
were selected for histology from among the largest
clams (11 to 25 mm shell length) within push cores
analyzed for chemical and physical parameters. Clam
tissues were fixed in Davidson’s solution for 24 h, and
then stored in 70% ethanol. Serial sections through
several entire clams of both sexes were examined to
determine an optimal standard section for analysis.
Tissue slices taken from the mid-body region, where
the gonad was found to be concentrated, were dehy-
drated through a graded ethanol series, and embedded
in paraffin. Transverse sections (6 µm) were stained
with Gill’s hematoxylin and eosin (H&E) for assess-
ment of reproductive condition. 

Gonadal tissues were analyzed under light micro-
scopy with a compound microscope (females) or a dis-
secting microscope (males). Oocyte feret diameter (the
theoretical diameter of an object if it were spherical in
shape) in females and areas of somatic and reproduc-
tive tissues in males were determined from digital pho-
tographs taken with a Diagnostic Instruments Spot
camera, using Sigma Scan Pro 2.0 software. Oocyte
characteristics were analyzed in 3 histological sections
from each female; within an individual, sections were
systematically selected from the mid-dorsal region (i.e.
the region of greatest gonadal development, based on
study of serial sections of this species; T. P. Heyl
unpubl.) and were separated by 200 µm. All pre-
vitellogenic (Stage 1), early vitellogenic (Stage 2), and
late vitellogenic (Stage 3) oocytes with the nucleus and
nucleolus evident on each section (i.e. 50 to 150
oocytes ind.–1) were staged, counted, and measured.
From these data, mean oocyte diameter and volume,
oocyte stage, and oocyte size-frequency distributions
were determined. A gonadal index (modified from
Kennedy 1977, Eversole 1980) was used to rank differ-
ent developmental stages of gametogenesis within an
individual according to whether they were inactive,
early developing, developing, ripe, or spent. Somatic
and reproductive areas in males were measured from
single histological sections from the mid-dorsal body
region and were used to calculate the relative
proportion of reproductive to somatic tissue (referred
to herein as % gonad).

Statistical analyses. Data collected from individual
push cores for percentage composition of sand, silt and
clay, and organic carbon and total nitrogen were

square-root transformed and analyzed using one-way
ANOVAs and Tukey’s post-hoc analysis (MINITAB)
to investigate differences among the 4 microhabitats
sampled. 

Differences in mean and maximum oocyte diameter,
oocyte volume, density of oocytes, oocyte stage, and
gonad size in males were analyzed statistically using a
stratified ANOVA (2 error terms were tested — ‘within’
clam and ‘among’ clam variance) as part of the R-soft-
ware system (Ihaka & Gentleman 1996). The ‘among’
clam strata tested for correlations between reproduc-
tive characteristics and sulfide concentration in all
push cores.

RESULTS

Sediment characterization by habitat

Eh, sulfide and sulfate concentration, and isotopic
profiles for all push cores are provided in on-line
appendices at www.int-res.com/articles/suppl/m339
p169_app.pdf.

Sediments in push cores from the 4 different micro-
habitats (background, clam beds, clam/shell beds and
shell beds) were visually (Fig. 2D) and chemically dif-
ferent. Layers of light brown or tan sediments in push
cores from background sites suggested oxidizing con-
ditions, which was confirmed by Eh values between 0
and +200 mV throughout the cores (Fig. 3A). Sulfide
concentration in porewater of background sediments
was low, ranging from 0.7 to 19.3 µmol l–1 (mean ± SD:
3.5 ± 4.28 µmol l–1); sulfide concentration >10 µmol l–1

was restricted to sediments below 7 cm. Porewater
sulfate profiles showed little variability with depth but
varied among cores. The 4 background cores collected
from the Blake Ridge Depression 125 km southeast of
the Blake Ridge Diapir had sulfate concentrations of 23
to 33 mmol l–1, near that of seawater (29 mmol l–1). Two
background cores were collected at the seep but distal
to any evidence of methane seepage (Alvin 3909-22
and 3909-24). These cores had sulfate concentrations
on the order of 14 mmol l–1, approximately half that
of seawater.

Push cores from live vesicomyid clam beds had 2 to
4 cm thick layers of clams (Fig. 2C). Clams were
stacked on one another, with no consistent orientation.
Posterior margins were not necessarily oriented verti-
cally into the water column and exposed clam surfaces
were free of any covering of sediment. Clam density
(clams >5 mm shell length) per push core ranged from
11 to 48 ind. Clam shells were present but rare in the
clam-bed push cores. Sediment immediately beneath
the clams (0 to ~2 cm interval) was light-brown, fol-
lowed by a steep color gradation to dark brown-black.

173

http://www.int-res.com/articles/suppl/m339p169_app.pdf
http://www.int-res.com/articles/suppl/m339p169_app.pdf


Mar Ecol Prog Ser 339: 169–184, 2007

A typical Eh profile for push cores from clam beds
included a 0 to 2 cm oxidizing layer, with reducing
conditions below 2 cm (Fig. 3B). Three of the 20 push
cores from clam beds were completely reducing
throughout the sediment profile. Sulfide concentra-
tions in porewater below 3 cm ranged from 0.01 to
3.6 mmol l–1 (1.4 ± 1.95 mmol l–1), except in core
3910-1, where porewater sulfide concentration was as
high as 8.8 mmol l–1 at 18 cm and 1.3 mmol l–1 at the

sediment–seawater interface. The depth at which sul-
fide was maximum in clam-bed push cores was always
at or below 10 cm. Sulfate concentration ranged from
10 to 33 mmol l–1 (16.0 ± 5.70 mmol l–1) and typically
varied by only a few mmol l–1 with depth within a
given core. Sulfide and sulfate concentrations in core
3910-1 did not match this pattern; instead, sulfate
concentration decreased as sulfide concentration in-
creased with depth into the core.
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Fig. 3. Redox potential profiles (h) (Eh [mV]) and sulfide (d) and sulfate (n) concentrations (mmol l–1) in representative push cores
from 4 microhabitats at the Blake Ridge seep. (A) Background, Alvin 3909-22. (B) Clam bed, Alvin 3910-7. (C) Clam/shell

bed, Alvin 3912-19. (D) Shell bed, Alvin 3909-5
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Push cores from mixed beds of shells and clams con-
tained mostly shells but included from 5 to 10 clams
(>5 mm length). The shells formed layers up to 4 cm
deep on the sediment surface. The sediment was light
brown to ~8 cm beneath the shells before turning dark
brown to black. Eh profiles indicated that the reducing
zone began within 1 cm below the shell layer (Fig. 3C).
Porewater sulfide concentration ranged from 0 to 1.1
mmol l–1 (0.3 ± 0.39 mmol l–1). Sulfate concentration
ranged from 14 to 23 mmol l–1 (18.7 ± 2.71 mmol l–1).

Of 19 push cores from shell beds, 16 contained only
shells, 3 contained 1 live clam (>5 mm) each; of 7 shell-
bed push cores examined for juvenile clams, 1 push
core (3909-20) contained 13 ind. and 2 push cores con-
tained 1 juvenile. Shell layers in push cores from shell-
beds were dusted with sediment at the surface and
were up to 8 cm thick, with broken shells mixed with
sediment at depth. The periostracal layer of the shells
were abraded in patches extending from the umbo
region to the edge of the shell, but the shells on the sur-
face of the sediment were not markedly dissolved, nor
did they show signs of predation. Shell-bed sediments
were characteristically dark, with the exception of one
anomalous core, 3909-10, discussed separately below.
Eh profiles indicated the sediments were reducing
throughout cores from shell beds (Fig. 3D). Sulfide
concentration was high (3.3 to 12.1 mmol l–1) in the sur-
face sediment layers (≤ 4 cm) in 7 of 10 cores from shell
beds. For these 7 cores, sulfide concentrations in pore-
water just below the shell layer were about 4 × greater
than concentrations observed at the same level in clam
beds. Sulfate concentrations in cores from shell beds
decreased from the surface to ~5 cm and sulfide con-
centrations increased from the surface to ~5 cm. Pore-
water sulfide concentration below the sulfate reduc-
tion zone in shell-bed sediments was an order of
magnitude higher than in any other push core sedi-
ments, up to 17.5 mmol l–1. Sulfate concentration below
the sulfate reduction zone in push-core sediments from
shell beds was typically <1 mmol l–1, i.e. an order of
magnitude lower than those observed from other sam-
ple sites. Push core 3909-10 did not contain live clams;
this anomalous core had sediment coloration and pore-
water chemistry profiles characteristic of cores from
background sediments. Push core 3909-20, with 13
juveniles, had Eh, sulfide, and sulfate profiles similar to
those in cores from clam beds. Push core 3910-12 had
an anomalously low sulfide concentration at the top of
the sediment.

Mineral sulfides (FeS and FeS2) were detected in
samples from all microhabitats where dissolved sulfide
was detectable (i.e. clam beds, clam/shell beds, shell
beds). There was no significant difference in mineral
sulfide concentration among these microhabitat types
(ANOVA, p > 0.05; Fig. 4A). 

With 1 mole of sulfide produced for every mole of
sulfate consumed during the process of dissimilatory
sulfate reduction, the stoichiometric relationship be-
tween sulfide and sulfate concentration for each push-
core interval provides an index of the degree to which
sediments retain dissolved sulfide. The slope of the
regression line between sulfate and sulfide concentra-
tion data below the clam beds was –0.061 with an R2

value of 0.019 (Fig. 4B). One core from a clam bed
(3910-1, containing 20 adult clams) falls along the
regression line for shell beds. A deficit of 94% of the
sulfide produced from sulfate reduction existed in the
dissolved sulfur species in sediments below clam beds.
Sulfide retention below shell beds is considerably
greater, with a slope of –0.45 and R2 of 0.45 (p <
0.0001). As a result, approximately 55% of dissolved
sulfide is thought to have been retained in the sedi-
ment porewater. 

Sulfate and sulfide isotopic profiles for sedimentary
porewater reveal different patterns of isotopic fraction-
ation below clam beds and shell beds (Fig. 5). At the
surface of clam-bed sediments, δ34SSO4 was ~20.2‰,
similar to that of seawater sulfate values (δ34SSO4 = 20.5
± 0.1‰, n = 4), and became slightly but systematically
enriched in 34S with depth, to a maximum of 21.3‰.
Sulfide isotopic values (δ34SH2S) in cores from clam
beds ranged from 4.3 to 8.0‰ and were thus depleted
in 34S relative to porewater sulfate in clam beds. In
shell-bed sediments, δ34SSO4 ranged from 4.3 to 8.0‰
and were depleted 34S relative to porewater sulfate in
clam beds. Sulfide isotopic values in shell-bed cores
(δ34SSO4 = –5.5 to –1.1) were markedly depleted in 34S
(Fig. 5A). 

Throughout all of the pushcores analyzed, the iso-
topic composition of sulfide in clam beds ranged from
–18.8 to 16.2‰ and was distributed around a mean
δ34Ssulfide value of –1.3 ± 1.4‰ (Fig. 5B) . δ34Ssulfide val-
ues from shell-bed cores ranged from –12.1 to 21.0‰
and was characterized by 2 modes: –6.6 ± 1.0‰ and
17.8 ± 0.6‰ (Fig. 5B). 

Isotopic enrichment factors observed in clam beds
were fairly uniform (average εclambed = 10.3 ± 0.9‰),
with the exception of one outlier (εclam = 6‰ ). Enrich-
ment factors below shell beds varied from 0.9 to
30.4‰, with an average εshellbed = 16.1 ± 4.6‰. Shell-
bed fractionation factors grouped according to the 2
modes of 34S-enriched sulfides (where εshellbed-enriched =
11.3 ± 5.0‰) and 34S-depleted sulfides (εshellbed-depleted =
25.8‰). 

Sulfate reduction rates in clam beds ranged from
0.016 to 0.24 µmol SO4

2– cm–2 d–1 and averaged 0.091 ±
0.038 µmol SO4

2– cm–2 d–1 (n = 6). Calculated sulfate
reduction rates for shell beds varied from 0.0029 to
0.92 µmol SO4

2– cm–2 d–1, with an average consump-
tion rate of 0.27 ± 0.14 µmol SO4

2– cm–2 d–1 (n = 6).
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Percent sand differed significantly among the 4
microhabitats (p < 0.05). Clam beds had a lower per-
centage of sand (12.9% ± 11.0) than shell beds (30.4%
± 10.7) but no other significant differences were found
between other microhabitats. Percent silt
did not differ significantly among habi-
tats (48.6% ± 12.6; p = 0.461), but there
were significant differences among sites
in percent clay (p < 0.001), with a greater
percentage of clay in clam beds (33.0% ±
2.0) than in shell beds (23.9% ± 3.3) or
background sediments (23.8% ± 5.5). 

Sediments from the 4 microhabitats at
the Blake Ridge seep had low organic
carbon (0.9% ± 0.22) and total nitrogen
(0.1% ± 0.03) content. There was a
greater percentage of C and N in clam
beds and shell beds (clam beds: 1.04%
organic C, 0.15% total N; shell beds:
0.95% organic C, 0.13% total N) than in
background sediments (0.6% organic C,
0.09% total N; p ≤ 0.003).

General clam characteristics

The size-frequency distribution for
clams from all push cores (n = 818 ind.)
was characterized by 2 modes: one cen-
tered on juveniles (1 to 2 mm shell length)
and one centered on adults (15 to 20 mm)
(Fig. 6A). Maximum shell length was
28.3 mm. There was no correlation be-
tween juvenile (clams <5 mm shell
length) and adult (>5 mm shell length)
clam density within push cores (ANOVA,
p > 0.05; Fig. 6B).

As reported above, sulfide concentra-
tions where the clams lived (the upper
3 cm of sediment through which the clam
foot extends) were typically too low (0.0
to 1.3 mmol l–1) and unvarying (average =
0.3 ± 0.51 mmol l–1) to be a useful index
of the underlying sulfide environment.
We chose to use the sulfide concentration
at 10 cm depth within each core (herein
referred to as ΣH2S10cm) as the reference
sulfide concentration for all subsequent
analyses. 

Adult clam density was low (10 ind.
core–1) in one push core where the
ΣH2S10cm was lowest (0.1 mmol l–1), and
clams were absent where ΣH2S10cm was
>13 mmol l–1 (Fig. 6C). Adult clam den-
sity was maximal (48 ind. core–1) at

~1 mmol l–1 ΣH2S10cm; density was variably low (8 ind.
core–1) to high (to 48 ind. core–1) between 0.6 and
1.1 mmol l–1 ΣH2S10cm (Fig. 6C). Juvenile densities were
maximal (47 ind. core–1) in the core where ΣH2S10cm
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Fig. 4. (A) Average concentrations (± SE) of porewater sulfide and mineral
sulfides (AVS + CRS) within push cores from 4 microhabitats at the Blake
Ridge seep. Black bars = dissolved sulfide from: background cores (n = 37 in-
tervals, 5 push cores); clam beds (n = 68 intervals, 9 push cores); shell beds
(n = 59 intervals, 2 push cores); clam/shell beds (n = 14 intervals, 10 push
cores). Grey bars = mineral sulfide concentrations averaged from 1 and 8 cm
intervals in 2 push cores from each microhabitat. (B) Sulfide retention (ΣH2S
vs. SO4

2–) in clam bed (s) and shell bed (d) push cores from Blake Ridge. Solid
regression line represents quantitative reduction of sulfate to sulfide (1:1).
Shell bed (– – – – – –) and clam bed (.......) regressions suggest approximately
55% of the sulfide produced during reduction is lost from the sediment below 

shell beds and a sulfide loss of up to 94% from clam bed sediments
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was lowest and were less than 13 ind. core–1 at other
ΣH2S10cm concentrations (Fig. 6C). The greatest num-
ber of juveniles collected (47) was from one of the push
cores designated a clam/shell bed. One push core from
shell beds had a large number of juveniles (13), but
the ΣH2S10cm concentration from this core was low
(2.5 mmol l–1) relative to the other shell beds. There
was no significant correlation between shell length
and ΣH2S10cm in the sub-sample of clams collected from
Blake Ridge (t[35] = –0.802, p = 0.428; Fig. 6D).

Clam reproductive characteristics

General reproductive anatomy and condition

The reproductive anatomy of Blake Ridge clams
matches that described for other species of vesi-
comyid clams, namely there was no evidence for her-
maphroditism and gonads occupied the bulk of the
visceral mass (Fig. 7A). The gonads extend from the
dorsal epithelium to the foot muscle and surround the

remnants of the digestive system, which
is reduced to a single tubule. Develop-
ing gametes were arranged peripherally
around a central lumen within repro-
ductive acini (Fig. 7 inset; Lisin et al.
1996). There was no evidence for folli-
cle cells associated with oocytes in
females at the level of light microscopy.
Female gametes were categorized into
3 stages: pre-vitellogenic (~15 to 30 µm;
dark-pink-staining with H&E), and 2
vitellogenic stages (early vitellogenic:
~30 to 60 µm, pink-staining, fine gran-
ules inferred to be yolk; late vitel-
logenic: ~60 to 200 µm with large, light-
pink-staining granules). Mature oocytes
were large (~200 µm) and presumably
develop into non-planktotrophic larvae,
as inferred in other vesicomyid species
(Lisin et al. 1996). The earliest gameto-
genic stages, the oogonia (<15 µm) were
too small to be distinguished reliably
from other cell types. Pre-vitellogenic
and vitellogenic gametogenic stages
were found within each female acinus
(Fig. 7B), although the relative pro-
portions of these stages varied within
individuals. Only mature sperm were
observed in acini of male specimens
examined (Fig. 7C).

Five stages of reproductive condition
were observed in female clams from
Blake Ridge seeps (Fig. 8): ‘Inactive’:
dominated by small (<25 µm) oogonia;
‘Early-developing’ dominated by pre-
vitellogenic oocytes; ‘Developing’: domi-
nated by pre-vitellogenic and early vitel-
logenic oocytes; ‘Ripe’: dominated by
late vitellogenic oocytes; ‘Spent’: central
lumens of acini are expansive, intera-
cinal tissue (epithelium surrounding
gonad) structure is disrupted, and vitel-
logenic oocytes are rare. In some Ripe
individuals (3 of 37), there was evidence
for partial release of gametes (i.e. a

177

δ34S (‰)
–10 0 10 20 30 40 50 60

D
ep

th
 (c

m
)

0

5

10

15

20

0

1

2

3

4

5

6

7

10 15 20 25–20 –15 –10 –5 0 5

N
um

be
r 

of
 c

or
es

δ34Ssulfide (‰)

A

B

Fig. 5. (A) Down-core δ34S profiles of sulfate (squares) and sulfide (circles)
dissolved in representative cores of clam-bed (3912-4; open symbols) and shell-
bed (3909-19; filled symbols). (B) Distribution of sulfide isotopic compositions
for porewater collected below clam beds (grey bars) and shell beds (black bars)
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Fig. 6. Vesicomyid clams from Blake Ridge. (A) Size-
frequency distribution of clam shell lengths (total n = 818)
from clam beds. (B) Relationship between juvenile (<5 mm)
clam density and adult (>5 mm) clam density per push core.
(C) Relationship between clam density per pushcore and
ΣH2S10cm; h: adult clams; d: juvenile clams. (D) Relationship
between clam shell length (mm) and ΣH2S10cm. Box-plots:
median, 5th, 10th, 25th, 75th, 90th, and 95th percentiles; for

ΣH2S10cm > 10 mmol l–1, values are plotted as scatter plots

Fig. 7. Internal anatomy of vesicomyid clams from Blake
Ridge. (A) Cross-section through the middle region of a
female clam. Inset: Acinus of female clam. Scale bar = 20 µm.
(B) Female gonad. pv: pre-vitellogenic oocytes; ev: early vitel-
logenic oocytes; lv: late vitellogenic oocytes. Scale bar = 
150 µm. (C) Male gonad. sp: mature sperm. Scale bar = 150 µm
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portion of the gonad appeared to be spent). Most
females examined were in the ‘Developing’ to ‘Ripe’
reproductive stages (see Fig. 9). There was no de-
tectable variation in reproductive condition in male
clams from Blake Ridge; all males were in a Ripe con-

dition, i.e. with only mature sperm (Fig. 7C). The ratio
of gonadal to somatic tissue (% gonad) ranged from
9 to 38% in males. There was a weak correlation
between % gonad and shell length for males (t[19] =
1.844, p = 0.08).
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Fig. 8. Stages of reproductive condition in female vesicomyid
clams from Blake Ridge. (A) Inactive. (B) Early-developing. (C)
Developing. (D) Ripe. (E) Spent. cl: central lumen; ev: early
vitellogenic oocytes; lv: late vitellogenic oocytes; pv: pre-
vitellogenic oocytes, disrupted tissues. Scale bar (A–E) = 150 µm
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Relationship between reproductive characteristics
and the environment

There was no significant correlation between mean
oocyte diameter and ΣH2S10cm (stratified ANOVA; F[1,

30] = 0.169, p = 0.684; Fig. 9A) or mean oocyte volume
and ΣH2S10cm (stratified ANOVA; F[1, 30] = 0.289, p =
0.622). There was no correlation between reproductive
stage of females and ΣH2S10cm within sediments (t[35] =
0.101, p = 0.92; Fig. 9A) or between % gonad in males
and ΣH2S10cm (t[19] = 1.087, p = 0.290).

DISCUSSION

The availability of sulfide to chemosynthetic mega-
fauna at methane-hydrate seeps is spatially discrete
(Sahling et al. 2002) and may be variable over spatial
and temporal scales (Levin 2005). Records of fluid flow
at seeps document transience on time scales of hours to
months, with variation coinciding with tidal, lunar, or
much longer cycles (Carson & Screaton 1998). Patchy
distributions of megafaunal species at seeps reflect the
patchy character of fluid expulsion and the availability
of reduced compounds that support chemoautotrophic
symbiont-invertebrate relationships, giving rise to the

designation of megafaunal species as ‘flux indicators’.
Exactly what kind of flux they indicate is not always
well known, and for a given species, an occupied habi-
tat may reflect sediment characteristics and biological
interactions (e.g. competition, predation). Our study
provides the first documentation of sediment charac-
teristics, including porewater sulfur chemistry, beneath
clam and shell beds at the Blake Ridge seep. 

Vertical profiles of sulfide and sulfate chemistry in
push cores from Blake Ridge environments reflect the
activities of clams and microbes. Sulfate concentra-
tions were lower below clams and shells relative to
background sediments, and the base of the sulfate
reduction zone was much deeper below the clam beds
than below the shell-bed habitats. Although sulfate
gradients were steeper below clam beds than below
shell beds (Fig. 3), a Student’s t-test comparison of
calculated sulfate reduction rates indicates no statisti-
cal difference between rates of sulfate consumption.
Upper sediment layers in push cores from clam beds
and mixed beds were characterized by steep gradients
in sulfate concentrations, from ~29 mmol l–1 in the
overlying seawater to half that value within 2 cm.
These gradients suggest high rates of sulfate reduc-
tion, but sulfide concentrations in the upper sediment
layers of cores from clam beds were generally low (0.1

to 1.0 mmol l–1). Porewater chemistry
profiles document lower sulfide reten-
tion (ΣH2S vs. SO4

2–) in clam-bed pore-
waters compared to porewaters of shell-
bed sediments. We estimate that >90%
of the sulfide produced from sulfate
reduction is missing from the sediment
below clam beds. Dissolved sulfide can
be removed from a sediment system
through diffusion and chemical oxida-
tion at the sediment–water interface,
uptake by chemosynthetic organisms
(including endosymbiotic bacteria in
the gills of the clams), or precipitation
as mineral sulfides. Mass balance
estimates of sulfide production and
retention in anoxic water columns
(Mandernack et al. 2003) and cold-seep
sediments (Aharon & Fu 2000, 2003)
suggest that physical, chemical, and
free-living microbial activity in these
systems only removes up to 35% of
dissolved sulfides. The extensile foot of
the clam, where sulfide uptake presum-
ably takes place (Scott & Fisher 1995),
reaches to the interface between oxi-
dized and reduced sediments, while cil-
iated gills pump overlying oxygenated
water into the mantle cavity though the
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Fig. 9. Oocyte characteristics of vesicomyid clams from all push cores. (A) Mean
oocyte diameter vs. ΣH2S10cm. (B) Maximum oocyte diameter vs. ΣH2S10cm.
Symbols represent different stages of reproductive condition: s: inactive and 

spent; n: early-developing; h: late developing; d: ripe
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siphons. We infer that the clams are extracting most of
the missing sulfide and that they are remarkable in
their capacity for sulfide uptake. 

We are intrigued by the negligible sulfide concentra-
tions in 2 cores from ‘background’ sites (Alvin 3909-22
and 3909-24), where sulfate concentrations in the top
2 cm of the cores dropped to half that of seawater val-
ues. Low sulfate concentrations in these cores, taken
adjacent to sites where seepage was evident, suggest
that sulfate reduction is taking place in these sedi-
ments, but the negligible sulfide concentrations and
oxidizing conditions of the cores are not consistent
with this hypothesis. The oxidizing condition of the
cores and lack of sulfide could be explained if the
sulfide was ‘fixed’ by iron oxides into pyrite, but we
should have seen higher pyrite levels in these cores if
this was true. At other seep sites, transformations
between dissolved sulfate and solid phases such as
barite (BaSO4) have been implicated as controlling fac-
tors in observed sulfate profiles (Orcutt et al. 2005). 

Dissolved sulfur isotopic compositions revealed dif-
ferent extents of fractionation of sulfur below clam and
shell beds. In both microhabitats, sulfate pools were
enriched in 34S and sulfide pools were depleted in 34S,
but the fractionation effect was much greater (and
more variable) in the shell-bed sulfur system than in
the clam-bed sulfur system. The process of clam-bed
bioirrigation apparently influenced the isotopic com-
position of dissolved sulfate and sulfide. In clam beds,
δ34Ssulfate matched those of seawater (~20‰, Böttcher et
al. 2000, this study) or increased only slightly with
depth (to a maximum of 30 to 35‰ in one instance).
Corresponding sulfide in clam beds was depleted in
34S by 15 to 30‰ relative to sulfate, which is consistent
with isotopic discrimination during dissimilatory sul-
fate reduction (Habicht & Canfield 2001). The modest
down-core isotopic enrichment observed in the δ34S of
porewater sulfate relative to seawater sulfate (20.5‰)
and the near parallel offset in the paired sulfide isotope
signal suggests sediments inhabited by clams are open
to solute exchange. Sediment mixing below clams
would deepen the aerobic zone and replenish the
sulfate supply, thus preventing the maximal sulfate
isotope enrichments expected of Rayleigh-type closed
system fractionations.

Sulfur fractionation observed within shell beds may
be explained by termination of sediment bioturbation
after clam mortality. In cores from shell beds, the
downward decrease in sulfate concentrations and
eventual disappearance of sulfate at depth below the
shell beds suggest a nearly complete microbial reduc-
tion of sulfate within the upper 15 cm. As bioturbation
ceased, the supply of ambient seawater into the sedi-
ments would be delivered primarily by diffusion. This
condition, together with the potential for upward flux

of fluids devoid of sulfate from the seabed (on the order
of 2 to 40 cm yr–1; Hornbach et al. 2005), could drive
the sediments toward anoxia and high sulfide con-
centrations. Under closed system conditions, maximal
fractionations were observed within shell bed cores
3909-8 (ε = 23.6‰), 3909-19 (ε = 30.4‰), and 3909-20
(ε = 21.1‰). The significantly lower fractionation fac-
tors (ε < 15‰) observed within shell bed cores 3909-4,
3909-5, and 3909-10 suggests that these sediments
were in transition from a partially open system to one
completely closed.

The proposed model of sulfur isotopic composition
determined by the presence or absence of bioturbation
may be influenced by other factors, such as rates of
sulfate reduction and/or the composition of the micro-
faunal population within clam- and shell-bed sedi-
ments. Determination of whether the degree of open-
ness of the sediment system is the principal mechanism
for establishing the isotopic separation between sulfate
and sulfide remains an important objective for future
studies.

Sulfide concentrations (ΣH2S10cm = ~1 mmol l–1) at
which Blake Ridge clams occur in highest density were
similar to sulfide concentrations (0.2 to 0.6 mmol l–1) in
fluids colonized by other vesicomyid species, including
Calyptogena magnifica at hydrothermal vents on the
Galapagos Spreading Center (Fisher et al. 1988) and
C. kilmeri and Vesicomya pacifica from Monterey
Canyon seeps (Barry et al. 1997). V. pacifica at north-
ern California methane seeps tend to avoid sulfide
concentrations >1 mmol l–1, although they can be
found in sediments with sub-surface sulfide concentra-
tions up to 2 mmol l–1 (Levin et al. 2003). Large (~12 to
15 cm length) vesicomyid clams (Calyptogena phaseo-
liformis) that live in dense aggregations at the Kodiak
seep (Gulf of Alaska) are reported to migrate meters,
presumably to adjust their position to favorable sulfide
conditions (Levin 2005). Blake Ridge clams are likely
to adjust their positions to optimal sulfide conditions
as well, although clam movement was not noted dur-
ing the brief intervals of observation available. The
broad sulfide tolerance of adult Blake Ridge clams
(ΣH2S10cm = 0.1 to 6.4 mmol l–1) may reflect the need
and the capacity of the clams to adjust to transient sul-
fide fluxes. Although adult clams survive in sediments
with ΣH2S10 cm > 6.4 mmol l–1, juvenile density was low
(0 to 3 clams per push core) at and above this concen-
tration, suggesting that high sulfide concentration
inhibits settlement and/or post-settlement survival.

A striking feature of the Blake ridge seep site is the
abundance of shell beds adjacent to clam beds. Preda-
tion and disease were deemed unlikely to be responsi-
ble for this mortality (Van Dover et al. 2003, Mills et al.
2005), leaving porewater chemistry (i.e. either too little
or too much sulfide) as a suspected factor. Methane
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is also present in Blake Ridge Diapir sediments, but
methane is not considered toxic to animals even at
high concentrations (70 to 90% methane in oxygen;
National Research Council Committee on Toxicology
2000). Too little sulfide seems an unlikely explanation,
since shell beds sampled in this study were typically in
areas where porewater sulfide concentrations at 10 cm
depth were >6.5 mmol l–1 (up to 14.2 mmol l–1). This is
higher than sulfide concentrations at 10 cm in clam
beds (this study), and similar to sulfide concentrations
in microbial mat environments on the Cascadia Con-
vergent Margin (Sahling et al. 2002) and in barren
zones in the center of vesicomyid clam beds in Mon-
terey Bay (Barry et al. 1997); i.e. they were high
enough to exceed the tolerance of vesicoymid clams. In
the absence of bioturbation and sulfide uptake by the
clams, sulfide concentrations in sediment with active
microbial sulfate reduction, especially under a cap of
shells, would likely be elevated compared to sulfide
concentrations in sediment supporting live clam beds,
if the delivery of sulfide was identical between the 2
habitat types. 

Without measurement of sulfide flux in shell beds at
the time of clam mortality, it is impossible for us to
point to sulfide toxicity as the definitive cause of
mortality at the Blake Ridge Diapir, but we consider it
plausible. Calyptogena species are known to survive
periods of reduced or halted fluid flow or variable
sulfide concentrations, however, by the cessation of
pumping or feeding (Sibuet & Olu 1998), and clam
trails in photographs (e.g. Fig. 2A) lead us to expect
that Blake Ridge clams could move away from or avoid
high concentrations of sulfide. Furthermore, vesi-
comyid clams have sulfide-binding proteins in their
blood that prevent sulfide from poisoning the cellular
cytochrome c oxidase system (Zal et al. 2000). These
observations all imply that mortality due to sulfide
toxicity (and concomitant hypoxia) might only occur if
an increase in sulfide flux was substantial, abrupt, and
extended in duration. Sulfide at high concentrations
can have a narcotizing effect (Dubilier et al. 1993),
which might prevent clams from relocating in response
to a sudden increase in the flux of sulfide. While it is
not known when the Blake Ridge clams died, the
excellent condition of the shells in the Blake Ridge
shell beds (no dissolution, intact periostraca, minimal
coverage by sediment) suggests that the mortality was
relatively recent. One recent disturbance at the seep
site was the drilling activity of the Ocean Drilling Pro-
gram: 5 boreholes, including 2 to depths of up to 10 m
at the center of the diapir; i.e. within meters of clam
beds (Shipboard Scientific Party 1996, Paull et al.
2000). There is no substantive evidence for burial of
some clam beds by fine sediments generated during
the drilling process followed by mortality. We consider

it possible that clam mortality was coincident with dis-
turbance and alteration of the subsurface hydraulic
regime associated with the drilling activity, but our
data and observations do not allow us to test this
hypothesis. High-resolution, 3D imaging of the fluid
migration pathways beneath the Blake Ridge Diapir
seep reveal significant complexity and, in some cases,
transport of fluids more than 1 km laterally away from
the main, deep fluid conduit centered on the diapir
(M. Hornbach, C. Ruppel pers. comm.). Even slight
displacements on some of the fine-scale faults on top of
the diapir could radically alter hydraulic regimes, lead-
ing to the activation or abandonment of some fluid
pathways in favor of others. Activation of a fluid path-
way would enhance the flux of reduced chemicals and
might lead to the kind of massive mortality docu-
mented at the Blake Ridge Diapir.

We anticipated that reproductive condition would be
a more sensitive indicator of optimal sulfide conditions
for clams than clam density, so we characterized the re-
productive attributes of adult clams from different push
cores (i.e. different ΣH2S10 cm). All male individuals ex-
amined were ripe, with mature sperm densely packed
in the gonadal acini, regardless of the sulfide concen-
trations in the porewater. Females were more variable
in condition, ranging from spent to ripe, but there was
no apparent relationship between female reproductive
status and sulfide concentration, nor did general tissue
quality appear to be poor in any specimen. Thus we
view the clams as reproductively capable over a broad
range of sulfide availability (i.e. ΣH2S10 cm = 0.1 to
6.4 mmol l–1), underscoring their ability to exploit
spatially and temporally variable sulfide delivery. 

Vesicomyid clams form large aggregations that are
interpreted as being reproductively advantageous
for broadcast spawners with external fertilization
(Momma et al. 1995). The timing of reproduction in
clams and other invertebrate populations living in
deep sea chemosynthetic ecosystems is of perennial
interest, given that environmental cues controlling
gametogenesis and spawning (e.g. light, temperature)
are relatively weak or absent in the deep sea. One
vesicomyid clam species, Calyptogena kilmeri, is
reported to undergo synchronous seasonal reproduc-
tion in Monterey Bay (Lisin et al. 1996). In contrast,
observations of spawning events in populations of
vesicomyid clams in Sagami Bay indicate that egg
release is asynchronous and that spawning by females
is induced by release of sperm from males (Fujiwara et
al. 1998). We were surprised by the record of uniformly
ripe vesicomyid males and females that were in differ-
ent stages of reproductive condition. A similar dis-
crepancy in reproductive condition between males
and females has been reported for several deep-sea
echinoderm species (Gage & Tyler 1991) that form
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pairs, and seems better suited for males that might
have chance encounters with females than for bivalves
that engage in spawning events involving large num-
bers of individuals. The bimodal size distribution of
clams at Blake Ridge features a large number of very
small, juvenile clams and suggests that some combina-
tion of factors may favor synchronous delivery of clam
larvae to the site. We find it difficult to reconcile the
condition of uniformly ripe males, the combination of
ripe and spent females, and the bimodal size distribu-
tion in clams from Blake Ridge. More details of game-
togenic processes, spawning events, recruitment, and
post-recruitment processes need to be elucidated if
we are to understand the population dynamics of this
species. 
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