Eating your competitor: functional triangle between turbulence, copepod escape behavior and predation from mussels

Anders Jonsson, Torkel Gissel Nielsen*, Ivan Hrubenja, Marie Maar, Jens Kjerulf Petersen

National Environmental Research Institute, Department of Marine Ecology, University of Aarhus, Frederiksborgvej 399, 4000 Roskilde, Denmark

ABSTRACT: Clearance on different stages of the calanoid copepod Acartia tonsa by blue mussels Mytilus edulis was measured at different turbulence intensities. Turbulence enhanced consumption of all stages of the calanoid copepod A. tonsa by the benthic suspension feeder M. edulis, although with significant ontogenetic differences. Clearance on eggs increased significantly with turbulence; without turbulence, eggs sank to the bottom of the experimental cylinder and became unavailable to the mussels. In general, adult copepods escaped a filtrating mussel better than nauplii and copepodites. Experiments showed that the presence of copepodites and adult copepods reduced mussel clearance rate. The present study documents the interaction between turbulence and mussel predation on copepods and illustrates the potential of benthic suspension feeders in shaping the pelagic food web.

KEY WORDS: Turbulence · Benthic–pelagic coupling · Copepod escape response · Copepod mortality

INTRODUCTION

Pelagic copepods and benthic suspension feeders, such as mussels, are considered the most important grazers on pelagic primary producers. In the deep open ocean, copepods often have the grazing capacity to control pelagic primary production (Verity & Smetacek 1996). However, in shallow coastal localities, populations of benthic suspension feeders have the potential to clear the water column above them several times a day and thereby control the primary producers (Cloern 1982). In shallow coastal waters without strong stratification, benthic suspension feeders and copepods compete for prey. Most research has focused on the grazing impact of copepods and bivalves on primary producers, but other studies have documented that blue mussels Mytilus edulis are capable of ingesting copepods up to 1.2 mm in length (Kimmerer et al. 1994, Davenport et al. 2000, Wong et al. 2003). If mussels are capable of ingesting zooplankton such as copepods, they will not only have a direct source of nutrition, but also remove their major competitors from the water column. Several studies have suggested this pathway, and it has been pointed out that copepods may act as a food source for mussels, especially in turbulent environments (Horsted et al. 1988, Kim Wong 1996, Nielsen & Maar 2007, Maar et al. 2007).

Copepods possess effective escape responses. If they detect a hydromechanical signal, they will escape with a few vigorous jumps away from the signal (Hwang & Strickler 2001, Green et al. 2003, Titelman & Kiørboe 2003). Experiments by
Kiørboe et al. (1999) show that adult copepods *Acartia tonsa* respond to smaller hydromechanical signals than their naupliar stages under still-water conditions, suggesting an ontogenetic refinement of the nervous system from nauplii to adult. Combined with the adult’s stronger swimming capacity, this will result in a higher mortality due to mussel predation in the early stages (Kiørboe et al. 1999). In a turbulent environment, mixing of the water counteracts the escape jumps directed away from the mussel’s inhalant opening. In addition, turbulence interferes with the siphonal current field, causing a decrease of the detection distance relative to the stimuli, which may result in a delayed or no escape response (Kiørboe et al. 1999, Gilbert & Buskey 2005, Waggett & Buskey 2007). Thus, copepods are more likely to be cleared by mussels under turbulent conditions.

The aim of the present study was to investigate how turbulence influences the escape success of different ontogenetic stages of the copepod *Acartia tonsa* when exposed to the benthic suspension-feeding mussel *Mytilus edulis* and turbulence intensities ranging from calm water up to a hurricane event. Because later stages of *A. tonsa* exhibit better escape responses than earlier stages, the clearance rate by *M. edulis* is predicted to decrease with copepod size. Additionally, increased turbulence should decrease escape success of *A. tonsa*

MATERIALS AND METHODS

Experiments were conducted at the National Environmental Research Institute in Roskilde, Denmark. *Mytilus edulis* were collected from the nearby Roskilde and Holbæk Fjords and kept at room temperature. They were continuously supplied with an algae culture of *Rhodomonas salina* of ~5000 cells ml⁻¹. The average shell length of the experimental mussels was 4.4 ± 1.0 cm. A laboratory culture of *Acartia tonsa* was established from eggs originating from cultures at the Danish Institute for Fisheries Research in Charlottenlund, Denmark (Støttrup et al. 1986). *R. salina* originated from the Marine Biological Laboratory in Helingør, Denmark, were cultured at 15°C and frequently diluted with B media (Hansen 1989).

Experimental design. The experimental setup was similar to the one used by Saiz & Kiørboe (1995). Experimental containers consisted of 8 semi-clear PVC cylinders (h = 30.4 cm, mean diameter [Ø] = 13.4 cm). Turbulence was generated by means of vertical oscillating stainless steel grids (Ø = 13.2, mesh size 1 cm, open area 67%). The amplitude of the stroke was 14.3 cm, ranging from 5.2 cm above the bottom to 1.8 cm below the water surface (Fig. 1). The speed of the grids was adjusted using an AC controller (Dinverter SE) connected to a motor unit (Leroy Somer 250W). The weighted-average turbulent energy dissipation rate, ε (cm² s⁻³), in the cylinders made by the grids was previously estimated at various stroke frequencies using particle tracking ([Kiørbe & Saiz 1995, Saiz & Kiørboe 1995], and we applied these estimations to the present study. The applied dissipation rates varied from 10^{-5} to 10^{-3} cm² s⁻³ (Table 1), falling within the range of reported dissipation rates in the upper mixed layer (Maar et al. 2003). Calm water was defined as having a dissipation rate of 10^{-5} cm² s⁻³.

Mixing time in the experimental cylinders is related to dissipation rate and was measured in order to estimate the turbulent diffusivity for use in the model (Eq. 4, see below). This was measured by monitoring the spread of a neutral buoyant glass sphere suspension (NorTek seeding material) at different turbulence intensities. Three ml of the suspension was slowly added to the bottom near the wall of the cylinder using...
shell length of 35 mm, was normalized to that of a standard mussel with a
each experiment. Prior to data analysis, clearance rate
mussels, all control cylinders. Shell lengths of the experimental
cylinder, respectively, and con1 and con2 represent the
start and end concentrations in each experimental
ments with nauplii, copepodites and adults were run in
ments contained 1 mussel each, and an additional 4
ower was adjusted to the initial concentration. The
10AU fluorometer. Every 20 min, the R. salina
was calculated for the 4 experimental cylinders.
next, we tested the impact of turbulence on Mytilus edulis
clearance rate of negatively buoyant particles using
Acartia tonsa eggs. Prior to experiments, eggs were
frozen to avoid hatching. Rhodomonas salina were added
to the experimental cylinders to achieve an algal
centration of 5000 cells ml –1. One mussel was then
ed until it was dependent on the mussels’ ori-
entation in the experimental cylinder and filtration
activity, and therefore impossible to reproduce. Mussel
biomixing in cylinders without grid movement was
measured by monitoring the Rhodomonas salina
centration above an active filtrating mussel at 0, 10 and
20 cm above the bottom.

Four experimental cylinders (1 to 4) during all experi-
ments contained 1 mussel each, and an additional 4
cylinders (5 to 8) served as controls. During experi-
ments, all cylinders were filled with 3 l of 0.2 µm fil-
tered seawater (FSW, salinity = 30 ± 1, 19.1 to 20.7°C)
giving a water column height of 21.3 cm. All experi-
ments with nauplii, copepodites and adults were run in
darkness to avoid any effects of light on swimming
behaviour. Clearance F (l h–1) was defined as the vol-
ume of water V (l) cleared of particles and/or prey per
unit of time t (h), and calculated using the modified
Frost formula according to Kiørboe et al. (1982):

\[
F = \frac{V}{N_m \times t} \ln \left(\frac{\exp_1 \times \text{con}_1}{\exp_2 \times \text{con}_2} \right)
\]

(1)

where \(N_m\) is the number of mussels, \(\exp_1\) and \(\exp_2\)
are start and end concentrations in each experimental
cylinder, respectively, and \(\text{con}_1\) and \(\text{con}_2\) represent the
average start and end concentration, respectively, of
all control cylinders. Shell lengths of the experimental
mussels, \(l_{\exp}\) (mm), were measured before starting
each experiment. Prior to data analysis, clearance rate
was normalized to that of a standard mussel with a
shell length of 35 mm, \(F_{35mm}\) (l h–1), as:

\[
F_{35mm} = \left(\frac{35}{l_{\exp}} \right)^b \times F_{\exp}
\]

(2)

where \(F_{\exp}\) (l h–1) represents the measured clearance
rate by the experimental mussel and the exponent \(b =
2.14\) (Kiørboe & Møhlenberg 1981).

Effects of turbulence on Mytilus edulis clearance
rate. First, we tested the effect of turbulence on M. edulis clearance rate of Rhodomonas salina. A cul-
ture of R. salina was added to the cylinders to achieve
a concentration of 5000 cells ml–1. One mussel was
introduced to each experimental cylinder and turbu-

lence was initiated. The mussels were observed to
ensure that they started to filter \(t_0\). Every 10 min, a
10 ml sample was taken from each of the cylinders and
raw fluorescence was measured on a Turner Designs
10AU fluorometer. Every 20 min, the R. salina
centration was adjusted to the initial concentration.

Clearance rate was calculated for the time intervals 0–20
min and 40–60 min using Eq. (1). Total mean clearance
was calculated for the 4 experimental cylinders.

Next, we tested the impact of turbulence on Mytilus edulis
clearance rate of negatively buoyant particles using
Acartia tonsa eggs. Prior to experiments, eggs were
frozen to avoid hatching. Rhodomonas salina were added
to the experimental cylinders to achieve an algal
concentration of 5000 cells ml–1. One mussel was then
introduced to each of the 4 experimental cylinders.

When the mussels started to filter, A. tonsa eggs were added
to each cylinder at the surface, giving an aver-
age concentration of ~70 eggs l–1, and the experiment
was initiated. The mussels were observed to
ensure that they started to filter \(t_0\). Every 10 min, a
10 ml sample was taken from each of the cylinders and
raw fluorescence was measured on a Turner Designs
10AU fluorometer. Every 20 min, the R. salina
centration was adjusted to the initial concentration.

Clearance rate was calculated for the time intervals 0–20
min and 40–60 min using Eq. (1). Total mean clearance
was calculated for the 4 experimental cylinders.

Table 1. Grid speeds used in the experiments and the calculat-
ted turbulent dissipation rates (ε). Values are presented with
the equivalent wind speeds required in nature to produce the
dissipation rates (Kiørboe & Saiz 1995), and their meteorolog-
ical classifications

<table>
<thead>
<tr>
<th>Turbulence level</th>
<th>Grid speed (cm s–1)</th>
<th>ε (cm² s–3)</th>
<th>Wind speed (m s –1)</th>
<th>Meteorological classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
<td>10–5</td>
<td>0.19</td>
<td>Calm</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0.32</td>
<td>10–4</td>
<td>2.5</td>
<td>Light breeze</td>
</tr>
<tr>
<td>High</td>
<td>1.90</td>
<td>10–2</td>
<td>16.2</td>
<td>Near gale</td>
</tr>
<tr>
<td></td>
<td>3.80</td>
<td>10–1</td>
<td>33.3</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Fig. 2. Mean (±SE) time of total mixing of neutral buoyant cel-
lulose particles versus turbulent dissipation rates. Mixing
time was described as a non-linear function \(f(x)\) of dissipation
rate, \(x\), given as: \(f(x) = y_0 + a \exp(-b x) + c \exp(-d x)\), where \(y_0 = 76.76\), \(a = 85.11\), \(b = 395\), \(c = 257\), \(d = 11.04\) (n = 19, \(R^2 = 0.78\), \(p < 0.05\)). Dashed vertical lines: borders of low, intermediate
and high turbulence
the experimental cylinders and concentrated using a 30 µm filter into a petri dish; the remaining eggs were counted using a dissection microscope (10 to 40× magnification). During counting, the petri dishes were checked for pseudofeces. M. edulis clearance on the eggs was calculated as described above using Eq. (1).

Finally, we tested the effects of turbulence on the clearance rate of Mytilus edulis offered different stages of Acartia tonsa. Early naupliar stages were obtained by suspending eggs in aerated FSW for 24 to 30 h. Late nauplii and early copepodites were obtained by suspending eggs in aerated FSW and subsequently observed to determine when the stages under consideration were reached. After 24 h, the copepods were fed Rhodomonas salina on a daily basis to optimize the development into late nauplii and early copepodites. Adult A. tonsa were obtained from continuous 100 l batch culture.

Copepods of the stage under consideration (Table 2) were transferred to a 500 ml bottle and split using a 5 ml Vogel pipette to achieve a concentration in the experimental cylinders of ~100 ind. l–1. An expected clearance rate of Rhodomonas salina of 0.8 ml h–1 ind.–1 (Berggreen et al. 1988) was used to correct the measured clearance rate and to ensure that no copepods entering the mussel’s inhalant siphon escaped. The higher the escape coefficient, the more copepods escaped.

Individual-based model. To further estimate the required speed for successful escapes of Acartia tonsa (e.g. escape coefficients >1) exposed to mussels at different turbulence levels, we used a 1D individual-based model (IBM) describing the plankton’s vertical motion in a turbulent environment and their removal by mussels. The IBM has previously been applied to explain observed distributions of plankton above a mussel bed in a Danish fjord (Maar et al. 2007) and we therefore modified the model according to the present experimental conditions. The modified model domain corresponded to the height of the water column in the experimental cylinders, and simulation time was 2 h. Turbulent diffusivity, K (cm^2 s^{-1}), in the containers was estimated from the measured mixing time t (s) and the diagonal length $L = 25.2$ cm of the container and assumed to be constant with depth in the model:

$$K = \frac{L^2}{t} \quad (4)$$

It was not possible to estimate K in experiments without grid movement. The behavioural components of the zooplankton motion in the model were: (1) swimming behaviour and (2) escape jumps triggered at a critical detection distance above the mussel. Zooplankton swimming behaviour was described as non-directional random zooplankton swimming, i.e. ‘biodiffusion’ D (m^2 s^{-1}), constant over the water column and given by this formula (Berg 1983):

$$D = \frac{u^2 \times \tau}{3} \quad (5)$$

where u (m s^{-1}) is typical swimming speed and τ (s) is average tumbling time between changes in random swimming directions as obtained from the literature (Table 3). At a critical detection distance above the mussel, Acartia tonsa performed escape jumps with maximum jump velocity, W_{max} (cm s^{-1}, Table 3), in the direction upwards and away from the inhalant flow. The critical detection distance was constant in the model because previous simulations showed that critical detection distance had little impact on mussel clearance rate (CR, 1 h^{-1}) under turbulent conditions (Maar et
al. 2007, their Fig. 10). Mussel filtration velocities in the model were calculated from the maximum mussel clearance rate, CR_{max}, and exhalant and inhalant siphon radius according to Maar et al. (2007). CR_{max} for a 4.4 cm mussel was 4.7 l h^{-1} obtained from the experiments on Rhodomonas salina, and the radius of exhalant and inhalant siphons was 0.25 and 0.50 cm, respectively (Newell et al. 2001), rescaled to the present shell length using an exponent of 2 (O’Riordan et al. 1995).

The IBM simulated the change in the vertical position for each individual from \(z_n \) to \(z_{n+1} \) over a finite time step, \(\delta t = 1 \) s, according to:

\[
z_{n+1} = z_n + v_{in} \delta t + R_z \left[2r^{-1} [K(z_n) + D] \delta t \right]^{1/2}
\]

The second term is the mussel filtration velocity, \(v_{in} \), assigned to be exhalant or inhalant by the ratio 1:8 (Maar et al. 2007). The third term is the turbulent diffusivity \(K \) (Eq. 4) and biodiffusivity \(D \) (Eq. 5), both multiplied by a random function \(R_z \), which generates a uniform distribution between –1 and 1, and divided by a constant \(r = \frac{1}{2} \) (Visser 1997). The upper boundary was reflective, while individuals crossing the lower flux boundary were transferred to a random depth in the water column, keeping the number of individuals constant in the model. The model calculated the number of encounters, \(E \) (no. h^{-1}), between mussels and zooplankton per unit time from the total encounters in the model (all individuals crossing the lower boundary), multiplied by the percent cover of mussels on the bottom in the experiments, \(\alpha \). The \(\alpha \)-value of 4% was estimated in simulations of Rhodomonas salina using \(D = 0.004 \) cm^{2} s^{-1} (Broglio et al. 2001) with no escape responses at the lowest turbulence level by fitting the modelled CR to the observed CR_{max}. CR of zooplankton was estimated from \(E, \alpha \) and the abundance \(N = 388 \) ind. 1^{-1} of zooplankton and water volume \(V = 3.1 \) in the cylinders:

\[
CR = MIN \left(CR_{max}, \frac{E \times V \times \alpha}{N} \right)
\]

where CR could not exceed CR_{max}. Modelled escape coefficients were estimated according to Eq. (3) and compared to those based on observations for different life stages of Acartia tonsa. The model was run in Matlab (version 7.3.0.267).

Statistical analyses. Differences between groups were calculated using 1-way ANOVA and Tukey’s post-hoc test. Pearson’s correlation tested independence of the variables, and dissipation rate was log-transformed on the x-axis. Both methods were used with 95% confidence limits.

RESULTS

Turbulence effect on Mytilus edulis clearance rate

The normalized clearance rate of Rhodomonas salina by Mytilus edulis was unaffected by turbulence (Fig. 3a) and was significantly uniform across all tested dissipation rates (1-way ANOVA, \(p > 0.05 \)), with an average value of 2.9 ± 0.1 l h^{-1}. In the experiments with adult copepods and early copepodites, the mussels’ clearance rates on R. salina were significantly lower (1-way ANOVA, \(p < 0.05 \)) compared with clearance in experiments with nauplii and R. salina alone (Table 5). Mussel clearance on Acartia tonsa eggs was dependent on turbulence (Fig. 3b), and showed a significantly lower normalized clearance rate at low turbulence (1-way ANOVA, \(p < 0.05 \)) compared with intermediate and high turbulence levels, where the clearance rate was more or less constant.

Effect of turbulence on the escape success of Acartia tonsa from Mytilus edulis

Turbulence and developmental stage had a significant effect on the ability of Acartia tonsa to escape an actively filtering mussel (Fig. 4). All tested stages showed a decline in escape coefficients as an inverse relation to dissipation rates, while adult copepods had

Table 3. Acartia tonsa. Sinking velocity and tumbling time of nauplii and copepodite stages CI–CVI used to calculate biodiffusion in Eq. (5), and the critical detection distance of A. tonsa exposed to mussel filtration (based on the literature)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sinking velocity (cm s^{-1})</th>
<th>Tumbling time (s)</th>
<th>Biodiffusion (cm^{2} s^{-1})</th>
<th>Detection distance (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nauplii</td>
<td>0.03^a</td>
<td>0.033^a</td>
<td>0.0001</td>
<td>0.56^c</td>
</tr>
<tr>
<td>Copepodes</td>
<td>0.58^b</td>
<td>0.1^b</td>
<td>0.0112</td>
<td>0.77^c</td>
</tr>
</tbody>
</table>

^aTitelmann & Kiørboe (2003); ^bJonsson & Tiselius (1990), ^cKiørboe et al. (1999)

Table 4. Measured mixing time in the cylinders and estimated turbulent diffusivity \(K \) (Eq. 4) used in the individual-based model (IBM) at the applied dissipation rates

<table>
<thead>
<tr>
<th>Dissipation rate (cm^{2} s^{-1})</th>
<th>Mixing time (s)</th>
<th>(K) (cm^{2} s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 \times 10^{-5}</td>
<td>420</td>
<td>1.51</td>
</tr>
<tr>
<td>6.7 \times 10^{-4}</td>
<td>357</td>
<td>1.77</td>
</tr>
<tr>
<td>6.6 \times 10^{-3}</td>
<td>340</td>
<td>1.86</td>
</tr>
<tr>
<td>5.4 \times 10^{-2}</td>
<td>226</td>
<td>2.80</td>
</tr>
<tr>
<td>1.8 \times 10^{-1}</td>
<td>120</td>
<td>5.28</td>
</tr>
<tr>
<td>4.3 \times 10^{-1}</td>
<td>100</td>
<td>6.33</td>
</tr>
</tbody>
</table>
a significantly higher escape coefficient than younger stages at all turbulence levels (1-way ANOVA, p < 0.05). No pseudofaeces were found in any of the cylinders, illustrating that all copepods removed from the water column were ingested by mussels. Escape coefficients for early and late nauplii were similar and reached a maximum of about 2 at low turbulence and decreased significantly to about 1 at intermediate and high turbulence levels (p < 0.05) (Table 6, Fig. 4a,b).

Table 5. Normalized clearance rates of *Mytilus edulis* feeding on *Rhodomonas salina* in experiments without copepods and with nauplii, copepodite and adult stages of *Acartia tonsa*

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Clearance rate (l h⁻¹)</th>
<th>SE</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>No copepods</td>
<td>2.9</td>
<td>0.1</td>
<td>237</td>
</tr>
<tr>
<td>Early nauplii</td>
<td>3.0</td>
<td>0.1</td>
<td>58</td>
</tr>
<tr>
<td>Late nauplii</td>
<td>3.1</td>
<td>0.1</td>
<td>64</td>
</tr>
<tr>
<td>Early copepodite</td>
<td>1.9</td>
<td>0.1</td>
<td>36</td>
</tr>
<tr>
<td>Adult</td>
<td>2.2</td>
<td>0.1</td>
<td>64</td>
</tr>
</tbody>
</table>

Escape coefficients of early copepodites were significantly higher than for nauplii at intermediate turbulence (p > 0.05), while there was no significant difference between these stages at high and low turbulence levels (p > 0.05) (Table 6, Fig. 4a–c). Adult *A. tonsa*
could escape mussel filtration at all tested dissipation rates, and the escape coefficient of 4.5 at low turbulence was significantly higher than for intermediate and high turbulence levels (p > 0.05), where the escape coefficients were ~2.4 (Table 6, Fig. 4d).

Biomixing

There was no significant depletion of algae with depth (0, 10 and 20 cm) above an actively filtering mussel over time (1-way ANOVA, p < 0.05), showing that the mussels’ filtration mixed the entire water column without grid-generated turbulence. Escape coefficients in calm water were thus not due to copepods being situated in an unmixed upper layer, but were either the result of an escape response or upwards swimming.

Modeling results

The IBM clearly showed that the escape coefficient increased with decreasing dissipation rates (Fig. 5). The escape coefficients were similar to those observed for early and late nauplii at escape speeds of 2 to 3 cm s⁻¹ (Fig. 5a) and for early copepodites at escape speeds of 3 cm s⁻¹ (Fig. 5b). Escape coefficients reached up to 4.8 at the highest escape speed of 5 cm s⁻¹ in the model (Fig. 5b), in accordance with observations for adults at the lowest turbulence level. However, observed escape coefficients stabilized around 2.5 for adults at low dissipation rates, while modelled escape coefficient decreased gradually towards 1 with increasing dissipation rates.

DISCUSSION

The present study demonstrated that turbulence significantly decreased the copepods’ ability to detect and escape an actively filtering mussel, and that there was an ontogenetic change in the copepods’ escape success in agreement with our hypothesis. In the experiments, adult copepods were the only stage that managed to escape even at the highest tested turbulence intensity, and the escape coefficients for adults were significantly higher than for nauplii and early copepodites at all tested turbulence intensities. We found no significant difference in escape coefficients between early and late nauplii, although previous studies found that late nauplii Acartia tonsa were slightly more sensitive in detecting a filtrating mussel than early nauplii in calm water (Kørboe et al. 1999, Green et al. 2003). The modelled escape speeds for nauplii and early copepodites were 2 to 3 cm s⁻¹, corresponding to about 100 body lengths s⁻¹ and thus in agreement with previous observations (Titelman & Kørboe 2003). For adults, the modelled escape speed was about 4 cm s⁻¹, corresponding to 50 body lengths s⁻¹, and it was therefore easier for adults than for earlier stages to escape, due to their more sensitive detection ability and larger size. However, at high turbulence levels, observed escape coefficients for adults never dropped to 1 as expected, but stabilized around 2.5. This could be
explained by a prosome length (856 μm) close to the upper end of the retention spectrum of *Mytilus edulis*. This would also explain the discrepancy between laboratory and model results, where the escape coefficients in the model gradually decreased to 1 for all stages. Previous laboratory experiments have also demonstrated that turbulence has a negative effect on copepods’ escape behaviour (Gilbert & Buskey 2005, Waggett & Buskey 2007), and that the depletion of copepods increased during high turbulence in the field (Maar et al. 2007). In conclusion, the present study documented for the first time turbulence-enhanced mortality of pelagic copepods solely caused by suspension-feeding bivalves. This interaction is of major importance for the dynamics of coastal copepod populations, as well as the nutrition of shallow water bivalve populations.

Copepods are of crucial importance for the transport of nutrients from lower to higher tropic levels (Azam et al. 1983). Field experiments estimating mussel stomach content or zooplankton depletion and laboratory grazing experiments have confirmed that mussels are capable of ingesting copepods (Horsted et al. 1988, Kimmerer et al. 1994, Wong et al. 2003, Lehane & Davenport 2002, Nielsen & Maar 2007). Mussels have both direct and indirect benefits from eating copepods. As shown in the present study, mussels remove the copepods from the water column and thereby directly benefit from their nutritional value. An indirect advantage is that the mussels eliminate their main food competitors from the water column. These interactions between zooplankton and mussels are very important to consider when, for example, establishing floating mussel rafts or bottom cultures, because mussel grazing may have significant impacts on the zooplankton community (Kimmerer et al. 1994, Lehane & Davenport 2002, Maar et al. in press).

No pseudofeces were found in the experiments, suggesting that all copepods removed from the water were ingested by the mussels. In contrast, up to 12% of the copepod *Tigriopus brevicornis* (1.2 mm long) cleared by *Mytilus edulis* were expelled in pseudofeces at concentrations of 330 copepods l⁻¹ (Davenport et al. 2000). They suggested a mussel can digest, over time, a threshold value of 12 copepods h⁻¹. This conflicts with the results from the present study, where adult *Acartia tonsa* were cleared at rates up to 85 ind. h⁻¹. The lower ingestion rate found by Davenport et al. (2000) may either be a result of their methods (mussels were fed copepods unnaturally using a pipette directed into the inhalant stream) or be related to size and nutritional differences between the 2 copepod species.

The mussels’ filtration rate on *Rhodomonas salina* was significantly lower in experiments with early copepodites and adults compared with experiments with nauplii and no copepods. Davenport et al. (2000) observed that when mussels inhaled adult *Tigriopus brevicornis*, because of their size and appendages, they often touched the mussels’ inhalant tentacles and thereby caused the mussels to immediately stop filtering and reduced their valve gape. Future research could utilize a video camera monitoring the mussels’ inhalant siphons, thereby making it possible to observe the copepod–mussel interaction and the associated influence of turbulence and developmental stage.

The Danish estuary Limfjorden is the most important area for *Mytilus edulis* production in Denmark. Phytoplankton biomass in Limfjorden was on average 162 μg C l⁻¹ from 2000 to 2005, and the zooplankton biomass was on average 85 μg C l⁻¹ during the same period (MADS 2007). A previous modelling study showed that the potential contribution of heterotrophic plankton to the diet of *Mytilus edulis* varied from 17 to 34% during summer depending on the turbulence levels near the bottom (Maar et al. 2007). Hence, heterotrophic plankton may be a major contributor to the diet of mussels at high turbulence levels, a conclusion in agreement with our results. The present study emphasizes that future investigations should consider the functional triangle between mussel clearance rates, turbulence and copepod escape behaviors, including potential differences between species when studying the efficiency of benthic–pelagic coupling in coastal marine ecosystems. Further, knowledge of the food value of this potential carbon source to the mussels needs further examination.

Acknowledgements. Thanks to B. Søborg and J. E. N. Larsen for invaluable assistance in the laboratory. T. Kærboe and H. U. Rissgård are thanked for constructive comments on an earlier version of this manuscript. These experiments were supported by Managing Benthic Ecosystems (MaBenE) (grant EKV3-2001-00144), Danish National Research Council (grant no. 21-04-0391) and Regimeskift i Limfjorden (grant no. 3304-FVFP-060671-01). We also thank 2 anonymous reviewers for their valuable comments on this manuscript.

LITERATURE CITED

shadows. Biol Bull 204:28–37

Editorial responsibility: Otto Kinne, Oldendorf/Luhe, Germany

Proofs received from author(s): February 3, 2009