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INTRODUCTION

Electronic data storage tags, also known as archival
tags, provide a powerful tool to study marine animals
continuously over time scales ranging from days to
years within their oceanographic environment (Arnold
& Dewar 2001, Greene et al. 2009). These tags give us
a new perspective on the daily activities of individuals,
complementary to discrete observations obtained by
more traditional modes of sampling during brief en-
counters with a target species at aggregation sites or

near fishing grounds (Sibert et al. 2006, Domeier &
Nasby-Lucas 2008). The power of an archival tag stems
from its ability to measure both the external (e.g.
depth, ambient water temperature, light level, salinity)
and internal conditions (e.g. visceral temperature) of a
tagged individual, and to relate these measurements to
a place-in-time on Earth, i.e. a longitude and latitude.
Although global positioning systems (GPS) and Argos
satellites are ideal for providing fairly accurate posi-
tions, these methods are simply insufficient for most
marine animals that remain submerged, out of the
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reach of satellite radio waves. Hence, it is necessary to
infer positions from the data streams recorded by the
tag sensors, particularly of light.

Light-based geolocation has been the primary means
of positioning archival tags (Smith & Goodman 1986,
Wilson et al. 1992, Hill 1994) and can be carried out
with the computation procedures provided by most tag
manufacturers (Hill & Braun 2001, Ekstrom 2004).
However, the use of light-based position estimation
methods suffers from a myriad of problems ranging
from the behavior of the animals (e.g. deep diving or
demersal lifestyle), over the poor ambient environmen-
tal conditions (e.g. turbid waters, cloud cover), to the
lack of differences in day length around the equinoxes
and bias introduced by the conversion between coordi-
nate systems (Sibert et al. 2009). Longitude is usually
more reliably estimated, with an error around 1°. In
contrast, latitude estimates typically have errors from
2° to 4° (Schaefer & Fuller 2006), and are capable of
deviating up to 40° from true positions (Musyl et al.
2001). These large errors could be mitigated through
the use of improved algorithms, such as the template-
fit method and the utilization of narrow-band blue
light (Ekstrom 2004, 2007), or through the use of a
holographic, cosine collector that increases the detec-
tion of diffused light during twilight (Qayum et al.
2007). Yet, as exciting as these new developments
might be, the problem of light-based geolocation could
benefit hugely by treatment in a robust statistical
framework, as has been demonstrated by Nielsen &
Sibert (2007) with the use of the state–space model
TrackIt. This model is unique in that it starts the esti-
mation from the very outset of processing and uses the
light data that has been recorded by the tag. It assumes
an underlying movement model and estimates the
track that best matches both the assumed model and
the light time series. TrackIt does not reduce the light
data to a time at which a solar altitude is assumed to be
known (threshold limit; Hill & Braun 2001), nor does it
assume a specific relationship between solar altitude
and light measurements (template-fit; Ekstrom 2007).
This relationship is estimated empirically by the
TrackIt model. Uncertainties are fully accounted for
and propagated throughout, and the information gath-
ered elsewhere in the track is available for estimating
a current position.

Prior to TrackIt, most geolocation algorithms fol-
lowed a disconnected, 1-way workflow, which used
raw position estimates obtained from the manufac-
turer’s processing software as inputs. Sea-surface tem-
perature (SST)-matching is then conducted to con-
strain the search for latitude estimates within the areas
of an appropriate SST field (Teo et al. 2004, Domeier et
al. 2005). Previous model precursors of TrackIt also had
to rely on the raw estimates as a starting point, despite

their remarkable ability to improve position accuracy
(Sibert et al. 2003), particularly when SST is used in
combination with the state–space model (Nielsen et al.
2006, Lam et al. 2008). Instead of using SST as a patch
to raw geolocation estimates, TrackIt incorporates SST
into a single coherent model to estimate positions,
founded on a set of much more reliable light-based
geolocation estimates.

The current paper presents how SST is incorporated
into TrackIt, and demonstrates how new observations
can easily be added to the model. This flexibility of
TrackIt is highly desirable given the emergence of
novel sensor technologies, allowing the measurements
of magnetic field properties, oxygen, and other chemi-
cal tracers. The present paper also addresses how
satellite SST can affect the performance of TrackIt.
Satellite SST products are growing in availability,
usage, and sophistication, both in terms of the ability to
resolve structures at very fine spatio-temporal scales
and the developments in advanced assimilation and
modeling. Although finer resolution SST products
have the potential to further improve geolocation accu-
racy, it is extremely easy for researchers to get lost in a
sea of product choices or the quest for the most
detailed dataset. By comparing the most probable
tracks from TrackIt to GPS and Argos tracks, our paper
offers a handful of reference examples and practical
guidelines for utilizing this model1.

MATERIALS AND METHODS

Model description. The purely light-based TrackIt
model has been fully described in Nielsen & Sibert
(2007), so only a brief summary is presented here for
completeness. Our focus is on the extension of this
model with SST.

Solar event scanning procedure: A tag records light
at a regular time interval (e.g. every minute), but for
the purpose of geolocation, it is only the measurements
taken during the time intervals around solar events
(sunrise or sunset) that are useful (Nielsen & Sibert
2007). For pop-up satellite archival tags (as in the fol-
lowing examples), these intervals are processed on-
board within the tag, and only the processed informa-
tion is returned. For archival tags, the entire record is
available for retrieval, and the intervals must be iden-
tified by the user before the TrackIt model can be
applied. Such a scanning algorithm has been sug-
gested by Nielsen & Sibert (2007) and has been imple-
mented as part of the software.
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After the solar events have been identified, the light
data consist of a vector of light readings around each
solar event l (i ) = (l1

(i ),…,lni
(i )) at times τ(i ) = (τ1

(i ),…,τni
(i )). The

mean time of each interval is denoted .
Light-based model: TrackIt is a state–space model

with an underlying movement model. The movement
model assumed is a simple 2-dimensional random
walk with semi-daily time steps . Here, N is
the number of days an animal is tagged.

For a given position in the underlying random walk,
each observed light-vector l(i ) is assumed to follow a
multivariate normal distribution. The mean vector is
calculated from (1) the solar altitude angles at that
position and at the corresponding times τ(i ) (Meeus
1998) and (2) from an estimated relationship between
the solar altitude angle and the light intensity (Fig. S1,
available in the supplement at www.int-res.com/
articles/suppl/m419p071_supp.pdf). The covariance
structure is designed to allow light measurements
around the same solar event to be correlated, and this
correlation is allowed to decrease as the time between
measurements increases.

Including SST: Temperature is recorded in the tag
with the same sampling frequency as the light read-
ings, but only some temperature readings are near the
surface. How frequent an animal visits the surface
depends on the species. Assume that within the inter-
val of the tag deployment it is possible to get estimates
of sea-surface temperature sst1,…,sstns

from the tag at
times . To include these additional measure-
ments at the correct times, the number of steps in the
random walk is first increased to include both the
observation times for the light data and the
observation times for the SST data sst1,…,sstns

. This
new set of times is denoted . The random
walk is otherwise defined as described by Nielsen &
Sibert (2007):

(1)

Here, (x,y) is the position in nautical miles (1 nautical
mile = 1.852 km) from a fixed point. The random part ηi

is assumed to be uncorrelated and follow a
2-dimensional normal distribution with a
mean vector 0 and a covariance matrix
2D ΔTiI2×2. D is a model parameter quanti-
fying the diffusive movement component,
and (u,v)’ is a velocity vector describing the
deterministic (advective) part of the move-
ment pattern.

At each of the times Ti in the random
walk in Eq. (1), an observation is available
(Fig. 1). In 2N of the cases it is a vector of
light measurements l (i ) and a correspond-

ing vector of measurement times τ(i ) around Ti, and the
detailed likelihood formulation for these cases is
described by Nielsen & Sibert (2007). In the remaining
cases ns, the observation is a single SST measurement
recorded by the tag. The equation for these observa-
tions is:

SST(i ) = S(xTi
, yTi

, Ti, r) + bsst + ξ(i ) (2)

The function S gives the prediction of the SST at the
position (xTi

, yTi
) at time Ti. The prediction is generated

from satellite imagery by a weighted average of the
satellite SST points within a radius r from the position
(xTi

, yTi
). The weights are computed by wj = [1 –

(dj/r)3]3, where dj is the distance along the sphere of the
j’th satellite SST point (within r) from target position
(xTi

, yTi
). The model parameter bsst allows a systematic

bias between the satellite SST and the tag SST. The
measurement error ξ(i ) is assumed to be normal and
independent, ξ(i ) ~ N(0, σ2

sst). SST-field observations on
land are treated as missing observations, so no land
temperatures are used. This means when a position
approaches land, the gradient of SST, as returned by
the S function, will gradually become zero, and the
SST itself will become constant. This allows a smooth
transition from water to land and means that land
avoidance is not enforced by the model.

Double-tagging data. Four double-tagging datasets
were used in the analysis. Three mako sharks Isurus
oxyrinchus (1901, 1902, 39322) were tagged with
Wildlife Computers’ pop-up satellite archival tags
(PSAT) and smart position or temperature transmitting
tags (SPOT), as part of Southwest Fisheries Science
Center’s shark survey program (D. Holts & S. Kohin
unpubl. data). The SPOT tag is a radio-telemetry tag
that obtains positional fixes from the Argos satellite
system. An accuracy flag, referred to as the location
class (LC), is associated with each position. Only posi-
tions with known errors (i.e. LC 1, 2, and 3) were used.
Errors for LC 1, 2, and 3 are 1000, 350 and 150 m,
respectively (see Royer & Lutcavage 2008 for a more
complete description of Argos error values). Despite
the limitations on accuracy, it is assumed that
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Fig. 1. Adding sea-surface temperature. The light-only model is extended by
adding sea-surface temperature (SST) as additional observations. Light (××)
and SST (s) observations are shown on the y-axis with time along the x-axis
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SPOT–Argos positions can provide informative track
positions, which were used as a reference here. Addi-
tionally, a drifter buoy near Hawaii was fitted with a
PSAT in September 2002 and set to pop-off after 9 mo
(M. Musyl unpubl. data). The on-board GPS of the
buoy provided the reference positions. Multiple posi-
tions available for a given day were averaged to give a
single daily position. As a measure of accuracy, mean
great-circle error (MGCE) and root-mean-square error
(RMSE) were then calculated with the paired daily
positions between the reference and estimated tracks.

Basic processing. None of the tags were recovered;
therefore, all collected data were satellite-transmitted
data summaries after tag pop-off. Transmitted data were
processed with the manufacturer’s software, which typ-
ically provided 9 to 12 light measurements (taken ~8 min
apart) around a solar event (sunrise or sunset). Since the
full time series of light data was not available, no solar
event scanning procedure was carried out, and the trans-
mitted light data were used as is. Depth correction of the
light data was programmed by the manufacturer to be
carried out on-board, and, consequently, users had no
control over how it was done. Tag-recorded SSTs were
obtained from the Wildlife Computers’ AMP software
output (‘locations’ worksheet). Since the 3 mako sharks
and the drifter buoy were often found at or near the sur-
face, all the daily SST values were recorded at 0 m, elim-
inating the need to define arbitrarily a depth for the sur-
face layer in deriving SSTs.

Satellite SST imagery. Four satellite SST products
covering a range of spatio-temporal resolutions were
used in the comparative analysis. The coarsest resolu-
tion product is the NCEP Reynolds optimally interpo-
lated (OI) SST, which is derived from the Pathfinder
satellite’s advanced very high resolution radiometer
(AVHRR) and in situ measurements of SST (Reynolds &
Smith 1994). Interpolation eliminates data gaps due to
cloud cover and provides a continuous 1° by 1° globally
gridded dataset. The 8 day composite was used as the
default SST imagery for running the model.

The 3 higher resolution products were:
1. MODIS Aqua SST: the moderate resolution imaging

spectroradiometer (MODIS) is flown on NASA’s Aqua
satellite, and its data are processed by the Ocean Biology
Processing Group (http://oceancolor.gsfc.nasa.gov/).
The Level 3 global coverage 8 d composite was used,
covering a spatial grid of 0.05° by 0.05° (~4 km).

2. CoastWatch blended: the NOAA CoastWatch
experimental blended SST is derived from both micro-
wave and infrared sensors carried on multiple plat-
forms (NOAA 2007). The advantage of including
microwave sensors is that they can acquire measure-
ments in the presence of clouds, although their coarser
spatial resolution may be considered inadequate for
coastal applications. This shortcoming is addressed by

supplementing measurements from multiple infrared
platforms. Data from multiple sources were remapped
to an equal angle grid of 0.1° by 0.1° (~11 km), and
simple arithmetic means were calculated for each
grid square. The running 5 day composites were
available daily through the NOAA BloomWatch 360
website (http://coastwatch.pfeg.noaa.gov/coastwatch/
CWBrowserWW360.jsp).

3. NOAA OI SST: the NOAA OI 0.25° daily SST
analysis (Reynolds et al. 2007; www.ncdc.noaa.gov/oa/
climate/research/sst/oi-daily.php) is one of the opera-
tional Level 4 products of the group for high resolution
sea surface temperature (GHRSST; www.ghrsst-pp.
org/). GHRSST is an effort to provide uniformly pro-
cessed, global, high-resolution satellite SST products,
and to bring data providers and users together in
advancing the field of remotely sensed SST. While a
microwave-blended version is available, the AVHRR-
only (Version 1) dataset was used in the analysis be-
cause of its extended temporal coverage from 1985 to
the present. This product explicitly follows the SST
definitions of GHRSST (www.ghrsst-pp.org/SST-
Definitions.html) and provides a foundation SST (at the
base of the upper ocean, ~10 m) free of diurnal influ-
ences. It also provides the bias and standard deviation
errors through the single sensor error statistics (SSES)
for every grid square. This product is offered daily at a
spatial grid of 0.25° by 0.25° (~25 km).

To reduce the computational demand for running
TrackIt, high-resolution SST images were downloaded
once every 8 d, even if a product was available daily. A
single downloaded image would be re-used as the
satellite SST field for the subsequent days within an
8 d window. No interpolation or other manipulation
was performed prior to running the model.

RESULTS

General features of incorporating SST

Incorporating SST into TrackIt improves the overall
accuracy of position estimates (Table 1; MGCE) and
reduces the confidence regions. Figs. 2 to 5 show com-
parisons of tracks from the different models, for 3
sharks and a drifter buoy. Errors in latitude estimates
from the light-only model can sometimes exceed 5°
(Fig. 2, October; Fig. 3, August), and are not confined
to coastal regions (Fig. 5, April). This is reflected by the
widening of the confidence regions during those peri-
ods of the light-only model. Moreover, a consistent pat-
tern is evident from the latitude standard deviation
(Fig. 6), where the standard deviation for the light-only
models is much higher around the equinoxes. During
such periods, adding SST can reduce the latitude stan-
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dard deviation drastically. It appears that even with
infrequent sampling of once per day, SST observations
can improve geolocation estimates and shrink confi-
dence regions.

Longitude estimates (RMSE ~ 0.3 to 1°) are generally
more reliable than those of latitude (RMSE ~ 1 to 3°),
which is common to all light-based geolocation meth-
ods. At present, TrackIt does not implement a land or
bathymetric mask and may sometimes place position
estimates on land when applied near the coast. Land
thus provides an additional means for evaluating the
model results. Light-only models can be affected by
degraded light measurements in high-turbidity, pro-
ductive coastal waters, placing track estimates on land
(Fig. 4A). By adding SST to the model, the low-resolu-
tion Reynolds SST model eliminates the land displace-
ment, corrects the longitude estimates (Fig. 4B), and
provides latitude estimates very similar to those of the
light-only model.

Satellite SST imagery resolution

Resolution of SST imagery does not have marked im-
pacts on model performance (Fig. 7). The lowest resolu-

tion Reynolds 1° product produces track estimates sim-
ilar to those of higher resolution products that are at
least 4 times better resolved (e.g. Figs. 2 & 3). Results
here show that low-resolution satellite SST data are ad-
equate for the purpose of geolocation, at least when us-
ing the TrackIt model. This is consistent with a similar
finding in another state–space Kalman filter model em-
ploying SST-matching (Lam et al. 2008).

Besides the resolution of the SST imagery, the
smoothing radius (r) is an important indicator of how
the model utilizes the satellite imagery. The smoothing
radius was estimated whenever possible (i.e. model
converged; Table 1). A small radius uses a more con-
fined neighborhood in calculating the average SST
value for a given longitude–latitude position. The
tracks are very similar when all 3 SST-inclusive models
were estimated using a small radius (<100 nautical
miles; Fig. 2). It is often expected that the use of higher
resolution imagery should lower the smoothing radius,
but this is not necessarily the case. A very low smooth-
ing radius can retain observation noise in the SST field
and lead to unstable estimates. Trade-offs were made
in fitting various model parameters, including the
radius, in order to obtain numerical minimization of the
likelihood function.
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Model parameters Accuracy estimates
logL D Radius bsst σ2

sst MGCE RMSElon RMSElat NArgos or 
± SD NGPSpos

Mako 1901 124
Light only 7851 505.02 NA NA NA 140 ± 108 0.49 2.93
Light + Reynolds SST 8085 383.48 88.37 –1.14 0.51 102 ± 72 0.50 2.05
Light + NOAA OI SST 8111 320.33 74.79 –1.01 0.78 93 ± 62 0.47 1.82
Light + CoastWatch blended 8100 309.86 92.84 –1.27 0.57 94 ± 73 0.59 1.91
Mako 1902 78
Light only 7105 726.02 NA NA NA 153 ± 109 0.53 3.11
Light + Reynolds SST 7346 952.07 370.77 –2.95 0.64 109 ± 60 0.62 2.01
Light + NOAA OI SST 7359 835.88 860.81 –2.94 1.42 91 ± 56 0.51 1.74
Light + CoastWatch blended 7352 967.95 240.09 –2.80 0.67 116 ± 64 0.68 2.14
Mako 39322 91
Light only 5839 519.84 NA NA NA 76 ± 46 1.05 1.19
Light + Reynolds SST 6052 326.78 162.12 –0.80 0.41 71 ± 32 0.90 1.05
Light + NOAA OI SST 6076 630.66 649.31 –0.98 1.41 105 ± 79 1.02 2.02
Light + CoastWatch blended 6075 289.53 200* 0* 0.70 80 ± 52 0.87 1.42
Drifter 165
Light only 9964 472.90 NA NA NA 158 ± 81 0.36 2.95
Light + Reynolds SST 10191 276.57 1200 1.90 0.50 71 ± 52 0.32 1.44
Light + MODIS Aqua 10326 200* 80* 0.6* 0.38* 71 ± 58 0.30 1.51
Light + CoastWatch blended 10187 202.84 80* 0.61 0.38 51 ± 32 0.31 0.97

Table 1. Selected parameter and accuracy estimates for the models; logL is the negative log-likelihood value of a model (the
smaller the value, the better is a model fit), radius is in nautical miles; D is in square nautical miles per day, bsst and σ2

sst in degrees
Celsius. The models are: light only, light with Reynolds 1° OI SST, light with NOAA 0.25° OI SST Version 1 AVHRR-only or NASA
MODIS Aqua 0.05° 8 d composite SST, and light with CoastWatch blended 0.1° experimental SST. For the complete list of para-
meter estimates, refer to Table S1 (available in the supplement at www.int-res.com/articles/suppl/419p071_supp.pdf). Accuracy
estimates were calculated as the mean great-circle error (MGCE) ± standard deviation (SD) in nautical miles, and the root-mean-
square error (RMSE) was determined for longitude (lon) and latitude (lat) in degrees. The number of Argos or GPS positions avail-
able for matchup are shown by NArgos or GPSpos. AVHRR: advanced very high resolution radiometer; MODIS: moderate resolution
imaging spectroradiometer; NASA: National Aeronautics and Space Administration; NOAA: National Oceanic and 

Atmospheric Administration; OI: optimum interpolation; SST: sea-surface temperature; *: not estimated; NA: not applicable

http://www.int-res.com/articles/suppl/m419p071_supp.pdf
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A larger radius may allow more room for latitude mis-
placement. This is most clearly seen in the maps of Mako
39322, where the October track segment ventured more
inland when the low-resolution Reynolds SST (Fig. 4B, r
= 162 nautical miles) was replaced with the higher reso-
lution NOAA OI SST (Fig. 4C, r = 649 nautical miles).
This potential downside of having to smooth satellite im-
agery is also evident by comparing the October track
segments between the light-only model (Fig. 4A) and the
light with the Reynolds SST model (Fig. 4B). It is also
complicated by the lack of any useful trends in the Octo-
ber temperatures for SST-matching, a feature that is ex-
plored in the following subsection.

Trends in the tag-recorded SST

The addition of SST to TrackIt improves geolocation
accuracy the most when there are marked trends in
the tag-recorded SST data (Fig. 5). Conversely,
adding SST degrades the accuracy when tag-
recorded SSTs remain uniform for an extended period
of time (Fig. 4, October), during which time the light-
only model performs far better than any other model.
Even when there is a wide spread in the tag-recorded
SSTs, SST-matching can improve geolocation esti-
mates if there is a noteable trend over time (Fig. 2,
late-September).
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Fig. 6. Estimated standard deviation of latitude from TrackIt models. The models are: (A) light only, (B) light with Reynolds 1° OI
SST, (C) light with NOAA 0.25° OI SST Version 1 AVHRR-only or NASA MODIS Aqua 0.05° 8 d composite SST, and (D) light
with CoastWatch blended 0.1° experimental SST. Broken vertical lines indicate the times of equinox. Note: the y-axis range is 

different between plots
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The SST recorded by a tag is a function of both
regional oceanography and movement activity.
SST-matching is most effective when the tempera-
ture signal in an area is spatially stratified and
allows, for instance, the tracking of an animal that
moves along a SST isotherm. On the other hand, a
trend in tag SST can be available for matching,
either through the presence of strong temperature
gradients in an area (particularly along the latitu-
dinal axis) or the transversing of water bodies
with different temperature signatures when an
animal moves from one place to another. For the
latter case, the light-only position estimates alone

should reveal whether an animal remains local-
ized within a region. It is not important to identify
the exact cause for an observed SST trend, as this
differs from case to case. For example, a down-
ward and, then, an upward trend were observed
with the buoy passively drifting in a rather
homogenous SST environment (~22 to 28°C) near
Hawaiian waters (Fig. 5), while for the mako
sharks that remained near the California coast
(Fig. 2, mid-November; Fig. 4, mid-October), a
trend in tag SST was established when colder
water moved in or out of the Southern California
Bight.
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Fig. 7. Great-circle distance (in nautical miles) between a TrackIt position and an Argos or GPS position. Paired positions are
available daily. The models are: light only, light with Reynolds 1° OI SST, light with NOAA 0.25° OI SST Version 1 AVHRR-only
or NASA MODIS Aqua 0.05° 8 d composite SST, and light with CoastWatch blended 0.1° experimental SST. Note: the y-axis 

range is different between plots
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DISCUSSION

The incorporation of SST in TrackIt presents a uni-
fied and generalized framework for assimilating new
types of observations to the light-based geolocation
model. Double-tagging examples in the present paper
have demonstrated that TrackIt with SST provides
improved movement estimation to within 100 nautical
miles, on average, from satellite radio telemetry meth-
ods in both the coastal environment and the open
ocean. Furthermore, the current paper has identified
scenarios in which the model could under-perform and
has indicated the possible causes of errors.

Despite the utility of TrackIt, it has a few limita-
tions at present, such as keeping the model simple
by assuming Gaussian error distributions, not avoid-
ing land explicitly, and using a random walk with the
Kalman filter (see Thygesen & Nielsen [2009] for an
insightful exploration of the implications of this filter
choice). Future application of other filtering tech-
niques, such as hidden Markov models (Thygesen et
al. 2009), would allow the combination of the data
and model treatment of TrackIt with land masks, but
that is beyond the scope of the present paper. Sev-
eral hardware and sampling-related artifacts are not
handled by TrackIt either, but can often be
addressed with careful exploration analyses and pre-
processing prior to running the model; this includes
the correction of clock or depth drift, a definition of
the surface layer depth for deriving tag-measured
SST values, and the appropriate compensation of
light measurements made at depths (TrackIt comes
with a R function2, two.layer.depth.corr following
Ekstrom 2002).

The statistical state–space nature of TrackIt provides
a transparent means to evaluate the model perfor-
mance. Error structure, such as the standard deviation
of latitude estimates (Fig. 6), allows the visual inspec-
tion of how the model behaves during various times of
the year and with different sources of inputs. The con-
fidence regions also give an impression of the uncer-
tainty of track estimates and are accessible through a
simple command in the TrackIt R-package, e.g.
plot(track,ci = TRUE). The SST versus date–time plot is
another diagnostic method for examining whether
trends in tag-measured SSTs exist for satellite SSTs to
be useful in improving the position estimates. Since
TrackIt is primarily designed for open ocean applica-
tions and does not utilize land masks, a model yielding
solutions with a higher proportion of points on land
may be deemed less reliable.

The ability to run models with different satellite SST
products is an excellent way to evaluate performance.
Similar to the information presented in this paper, one
can compare a light-only model with several light plus
SST models. It is reassuring when the various SST
models arrive at very similar solutions (e.g. Fig. 5,
December and later). Conversely, one becomes more
cautious when tracks for different models are diver-
gent (e.g. Fig. 5, September to November). At other
times, a systematic pattern can be seen as the re-
solution of satellite SST products increases (Fig. 4,
October), which may indicate the smoothing of high-
resolution SST products can be problematic.

A careful evaluation of such signatures can be
beneficial for understanding model performance.
While one may be inclined to bypass or limit the time-
demanding task of running multiple models, positional
estimates are fundamental to the utility of electronic
tagging data in ecological applications. Improved con-
fidence in tracks via such comparative, optimal model
selection is appropriate given the high cost of tagging
operations and the perceived utility of tag data for fish-
eries management.

Understanding and making trade-offs

In selecting the ‘best’ estimated track, it is essential
to consider the regional oceanography (e.g. coastal
upwelling) and possible animal movement behavior
(e.g. localized feeding) and to compare multiple mod-
els. Trade-offs are often required in the modeling pro-
cess. For example, SST-matching helps to keep the
light-only estimates off land in the case of mako shark
39322 (Fig. 4A,B), but artifacts from having a larger
smoothing radius begin to show up when higher
resolution SST products are used. This suggests that
selecting the low-resolution Reynolds SST model is a
good compromise. A model’s negative log-likelihood
(Table 1; logL) provides a means to compare different
models. Indeed, in this example, the Reynolds SST
model also has the lowest logL value among all SST
models and further supports its final selection.

Another trade-off is that model convergence is re-
quired for using TrackIt, and sometimes it is necessary
to simplify the model for that to occur. This involves
keeping some parameters fixed (see TrackIt R-package
documentation; e.g. rad.ph = –1) and providing better
initial parameter estimates. It is an iterative process of
first running a simplified model that converges and
then feeding the resulting parameter estimates back as
initial values for a more complex model. Again, the
negative log-likelihood (logL) value can be used to
evaluate whether the complex model is justified. Under
normal circumstances, model convergence is not hard
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to obtain, so this strategy only applies to the trickier
cases in which model convergence cannot be obtained
with the default initiation values of TrackIt.

Choosing a satellite SST product

SST is one of the best-characterized variables in sa-
tellite remote sensing. Many SST products and ocean-
circulation model outputs are available from numerous
sources. Faced with this broad selection of SST prod-
ucts available for geolocating tags, researchers are
very much challenged by having to select the appro-
priate SST product. As new, ultra-high-resolution SST
products (1 to 4 km) become available, this challenge
will only become more prominent.

Understanding of the SST product being used is
crucial, especially when moving towards utilizing
higher and higher resolution products. Selecting a suit-
able product depends on the specific geographic set-
tings and oceanographic applications. For example,
infrared products are more resolved than microwave
products in coastal regions during cloud-free days, and
can better capture gradients in the SST field. Another
example is the issue of diurnal variability of SST,
where light winds and strong sunlight conditions cre-
ate a stable warm surface layer that can differ diur-
nally by as much as 5 Kelvin (= 5°C) in the extreme
cases (Gentemann et al. 2008). Both satellite and tag
observations of SST can be sensitive to this variability.
Since the handling of SST in TrackIt is rather basic
(e.g. 1 daily SST; smoothing), users may want to exer-
cise more control by preparing a customized set of SST
data prior to running the model.

The present paper shows that low-resolution SST
products are adequate for the purpose of geolocation.
Standard deviation in latitude estimates is often among
the lowest for models using Reynolds SST (Fig. 6).
Moreover, computation time is much shorter for low-
resolution SST models, and convergence is often easier
to obtain. As a recommendation, one can run TrackIt
with low-resolution SST and evaluate the model out-
puts and error structure before utilizing high-resolu-
tion products. Being able to use coarser resolution SST
may also spare finer scale products for investigating
the interactions of oceanographic features and move-
ments.

Benefits of a holistic approach

Given how well TrackIt is able to estimate positions
using only light, it is very tempting to perform SST-
matching outside of this model, i.e. reverting to a
2-step approach. The first obvious drawback is that the

uncertainties can no longer be described coherently. A
unique aspect of the TrackIt model is that uncertainties
in measurements and estimates are propagated all the
way through the model, from the raw light and SST
observations to track reconstruction. In fact, informa-
tion throughout the whole track can help in estimating
any individual waypoint, something extremely difficult
to implement in a 2-step manner. This is especially true
when SST-matching fails, perhaps due to some mea-
surement errors in a tag or a satellite image. When this
happens, the heuristic matching of SST values within a
given area around a light-only estimated waypoint will
not yield any viable positions. Yet, when SST is incor-
porated within a coherent model as in the case of
TrackIt, the information elsewhere in the track can
contribute to estimating a position (Fig. S2 in the 
supplement at www.int-res.com/articles/suppl/m419
p071_supp.pdf). The same advantage can be extended
to any new type of observation, such as geomagnetic
signals as they become available in the future genera-
tions of tags.

A call for standardized double-tagging datasets

A holistic approach for incorporating SST into
TrackIt is presented here. Although it is desirable to
provide more validation examples, particularly for the
Atlantic Ocean, double-tag datasets are not easy to
come by. It would be useful if in the near future, dou-
ble-tag deployments occurred as part of a compre-
hensive tagging experiment or during product devel-
opment by tag manufacturers, to allow validation of
TrackIt and other geolocation methods. More impor-
tantly, double-tag datasets should be more easily
accessible, perhaps offered through manufacturers as
part of a diagnostic and open source tool development
kit. Satellite radiotelemetry tags could also provide
other relevant parameter estimates for the model.
Nonetheless, the improvements of adding SST to
TrackIt are already evident from the examples pre-
sented here, and demonstrate the potential of this
model for assimilating new observation types.
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