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INTRODUCTION

Following the principle of precautionary approach,
increased uncertainty should lead to more conserva-
tive exploitation rates (Fenichel et al. 2008). Con-
versely, improved information can be expected to
lead to higher gains from the exploitation of
resources (McDonald & Smith 1997, Mäntyniemi et
al. 2009). Thus, it is desirable to reduce uncertainty
about life history parameters in population modeling.
The need to give advice for by-catch species provides

new challenges for scientists when they interpret
available data sets.

Uncertainty can be reduced either by collecting
new data or by interpreting existing data more effec-
tively by utilizing biological knowledge to a higher
extent. Unfortunately, the resources for data collec-
tion for a specific fish stock are often limited or
nonexistent. Yet, it might be possible to improve the
precision of the estimates by learning from related
fish stocks and from species for which larger amounts
of data are available. The efficient treatment of the
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vast supplies of publicly available fisheries data is
potentially cost-effective, but it also presents a scien-
tific challenge.

Bayesian hierarchical meta-analysis has become
popular in many scientific fields, fisheries in particu-
lar, because it allows both synthesis and accumula-
tion of knowledge (Myers & Mertz 1998, Prevost et al.
2003, McCarthy & Masters 2005). In Bayesian hierar-
chical meta-analysis, studies are assumed to be (par-
tially) exchangeable implying that there are no
known factors that could be used to predict the dif-
ferences between the studies other than the potential
covariates that have been accounted for (Gelman et
al. 2004). This perspective allows information from
multiple sources to be combined so that we can learn
from the past and build on that knowledge (Hilborn
& Liermann 1998). Combining information from dif-
ferent studies within a hierarchical meta-analysis can
be more efficient when known correlations among
parameters of interest are taken into account instead
of treating them as conditionally independent.

Existence of correlations among life history para-
meters is well known, and there are studies which
discuss how this correlation may have arisen from
differences in life history strategies (e.g. Rochet 2000,
Gislason et al. 2010). To our knowledge, few studies
have investigated these correlations with Bayesian
methods in order to produce priors for subsequent
studies. Helser & Lai (2004) studied correlations be -
tween von Bertalanffy growth parameters and lati-
tude for North American largemouth bass by using
Bayesian meta-analytical methods. We have not,
however, found any studies that considered correla-
tions between parameters from different life history
processes or functions (such as growth and fecundity)
with Bayesian methodology.

Relationships between morphology and life his-
tory strategies arise as a result of evolutionary pro-
cesses. Due to physical and environmental con-
straints, organisms cannot produce large numbers
of offspring at an early age. However, species have
different life history strategies: some species mature
ra pidly at smaller body size; others mature slowly at
larger body size. Correlated attributes may convey
competitive advantages for the different life history
strategies found among species (Jennings & Bever-
ton 1991). Strategies can also vary tremendously
within species; for example, in some populations of
salmonids, males mature and reproduce either as
large adults after years of feeding at sea or as small
parrs, which have not migrated from the river and
spawn surreptitiously in the middle of conspecifics
thousands times their size (Bohlin et al. 1990). The

existence of different reproduction strategies,
among and within species, indicates that not all
combinations of values of life history parameters are
equally likely, and life history trade-offs imply that
para meters are correlated. He et al. (2006) utilized
similar reasoning in their derivation of a prior distri-
bution for the steepness of a stock-recruitment func-
tion.

In this paper, we use Bayesian hierarchical models
to synthesize information from multiple studies. By
considering correlations among parameters we
make use of the additional information contained in
the biological connections of these parameters. We
use this analysis to produce informative distributions
for key parameters of an unspecified stock, which
could be then used as a prior distribution in subse-
quent studies. Parameters of length-weight and
length-fecundity relationships are used to demon-
strate the methodology, with data extracted from
the global information system FishBase (Froese &
Pauly 2011).

METHODS

Example: Correlation between 2 parameters

To illustrate the potential value of studying these
correlations, consider the following graph made with
the data taken from FishBase. Fig. 1 shows scatter-
plot for parameters log(a) and b in the length-weight
relationship of multiple fish species (Froese 2006
 discusses and illustrates the relationship between
these parameters in greater detail). The different col-
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Fig. 1. Scatterplot of length-weight parameters log(a) and b
for multiple fish species. The blue dots represent stocks of
Atlantic herring, the green dots represent stocks of different
species in the family of Clupeidae, and the grey dots repre-

sent stocks of miscellaneous species
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ors in the graph represent different groups of fish
species: the blue dots represent stocks of Atlantic
herring, the green dots represent stocks of different
species in the family of Clupeidae, and the grey dots
represent stocks of miscellaneous species.

The parameters log(a) and b are negatively corre-
lated. We can use the correlation to predict a range of
log(a) values given some information about parame-
ter b for a new fish stock. If the value of b was 3.0, we
could say that we believe log(a) would likely be
somewhere on the interval [−3.3,−1]. Furthermore, if
we knew the new fish stock belongs to the family of
Clupeidae, we might consider the possible range of
log(a) values slightly less uncertain, say, [−2.8, −1.2].

General model structure

Consider n parameters θ = (θ1,…,θn) for which there
is information about m species and whose correla-
tions are of interest. Let us denote the expected val-
ues by μ = (μj1,…,μjn) as the expected values for the n
parameters of species j, and Σ as a symmetric, posi-
tive definite covariance matrix. We assume that θ
 follows a multivariate normal distribution (MVN)
with ex pected values μ and the covariance matrix Σ:

θ ~ MVN (μ,Σ) (1)

It is computationally convenient to make the choice
that Σ–1 follows the Wishart distribution, since
Wishart is the conjugate prior distribution for the
inverse of the covariance matrix of multivariate nor-
mal distribution (Gelman et al. 2004):

Σ–1 ~ Wishart (Ω,k) (2)

where Ω is the positive definite scale matrix and k is
the degrees of freedom parameter.

For the elements in the matrix of expected values,
μ, any suitable prior distributions can be chosen.

Updating knowledge about fecundity

Next, 2 Bayesian hierarchical models are con-
structed in which the information about the parame-
ters of length-weight and length-fecundity relation-
ships is analyzed. Both models produce predictive
prior distributions for length-fecundity parameters of
a new, unspecified stock of round sardinella species.
The first model utilises correlations in the analysis
and the second does not, which makes it possible to
demonstrate the role of the correlations in the infer-
ence and to compare the precision of the predictive

prior distributions between the models. Thus, the dif-
ferences in the outputs of these 2 models demon-
strate the advantage of taking the correlations into
account instead of modeling each parameter sepa-
rately.

Model with correlation

Let us formulate the length-weight relationship as:

W = aw × Lbw (3)

where W is the weight of a fish, L is the length of a
fish, and aw and bw are the parameters of this rela-
tionship (Gulland 1983). Data from aw − bw pairs is
available in FishBase for almost 3400 species (see
Froese & Pauly 2011).

Similar formulation is given for the length-fecun-
dity relationship as

F =  af × Lbf (4)

where L is again the length of a fish, F is the fecun-
dity of a fish, and af and bf are the parameters of this
relationship. Data about the length-fecundity para-
meters in FishBase are quite sparse (Froese & Pauly
2011), so we hope that learning from the correlations
between the length-weight and length-fecundity
parameters help to reduce uncertainty about length-
fecundity parameters.

Data from 3 different species are taken into
account in the modeling: Atlantic herring Clupea
harengus, European pilchard Sardina pilchardus,
and round sardinella Sardinella aurita. These species
were chosen since they belong to the same family of
species (Clupeidae) and because both length-weight
and length-fecundity data were available for these
species in FishBase (Froese & Pauly 2011). Data from
69 stocks in total are taken into account in the model-
ing, from which either length-weight data, length-
fecundity data, or both, are available (Table 1).
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Species No. of stocks with available data Total
aw, bw af, bf Both

Clupea harengus 21 7 1 29
Sardina pilchardus 21 0 1 22
Sardinella aurita 17 1 0 18
Total 59 8 2 69

Table 1. Clupea harengus, Sardina pilchardus, and Sardi -
nella aurita. Number of stocks of each species for which
 different type of data are available. aw and bw are the para-
meters of length-weight relationship, af and bf are the 

parameters of length-fecundity relationship



Mar Ecol Prog Ser 443: 29–37, 201132

We assume the conditional joint probability distrib-
ution of the 4 parameters of interest follows a multi-
variate normal distribution:

aijw,bijw,aij f,bij f⏐μj,Σ ~ MVN (μj,Σ) (5)

where vector μj = (μjaw,μjbw,μja f,μjb f) contains species-
specific expected values for all 4 parameters, j ranges
over species, and i ranges over stocks of each spe-
cies. Variance-covariance matrix Σ contains the co -
variances cov(aw,bw),…,cov(af,bf), and the variances
σ2

aw,σ2
bw,σ2

af,σ
2
bf as the diagonal elements. A vague

Wishart prior distribution is given for the inverse co -
variance matrix Σ–1. We make a simplifying assump-
tion that the variances are the same for all species.
This assumption is reasonable since species are
related, but the main reason for this arises because of
computational convenience. The Wishart distribution
is the common choice for the prior of the inverse
covariance matrix, but it does not allow specification
of unequal variances. Overcoming this problem
would require more complicated methods (Barnard
et al. 2000).

The expected values μjaw,μjbw,μj af,μjbf are consid-
ered to be exchangeable among different species j =
1,2,3. This means the expected values are treated as
a random sample from a common distribution
defined by mean γ and precision τ parameters:

μjaw ~ N(γaw,τaw)

μjbw ~ N(γbw,τbw)

μjaf ~ N(γaf,τaf)
(6)

μjbf ~ N(γbf,τbf)

Informative hyperprior distributions are given for
γ’s and τ’s. These distributions have been obtained by
examining the available information from FishBase
for all the species within the clupeid family, but
excluding the information that is used as data in the
modeling. Gamma distributions are given for preci-
sion parameters τ to ensure that the values are posi-
tive. The model structure and choices for prior dis -
tributions can be found in ‘(A) BUGS code for
correlation model’ in the supplement at www.int-
res.com/articles/ suppl/m443p029_supp/.

Model without correlation

In order to evaluate the impact that utilizing corre-
lations has on reducing uncertainty we reproduce the
previous model without the correlation structure.

Code for the comparative model is presented in
‘(B) BUGS code for model without correlation struc-

ture’ in the supplement. The same prior distributions
were given for mean parameters γ as in the correla-
tion model. Similarly, the prior distributions for the
variances are the same as in the variance-covariance
matrix of the correlation model, but the correlations
are fixed at zero.

Modeling measurement error

If information is available on the variances and
covariances of the observed point estimates (data),
the following procedure could be used for taking into
account the measurement error of the parameter esti-
mation.

We define 2 covariance matrices for observed para-
meters. Covariance matrix

(7)

contains variances of observed parameters Oaijw and
Obijw for individuals i = 1,…,Nj of species j as dia -
gonal elements, and the corresponding covariances
cov(Oaijw,Obijw) = cov(Obijw,Oaijw). Respectively, we
can build covariance matrix Σjf for the observed para-
meters of length-fecundity relationship.

The observed parameter pairs (Oaijw,Obijw) and
(Oaij f,Obij f) follow 2-dimensional multinormal distrib-
utions with the true values vijw = (aijw,bijw) and vij f =
(aij f,bij f) as expected values and with the specified
covariance matrices Σjw and Σjf:

Oaijw,Obijw⏐vijw,Σjw ~ MVN(vijw,Σjw)

Oaij f,Obij f⏐vij f,Σj f ~ MVN(vij f,Σj f)
(8)

Furthermore, parameters aijw, bijw, aij f and bij f fol-
low the multinormal distribution (6).

RESULTS

Round sardinella is the chosen species for the com-
parison of the models, since the information for this
species is most limited and hence greater gains are
anticipated from understanding parameter correla-
tions of the other 2 species. In both model runs (with
and without correlations), the posterior predictive
distributions of length-fecundity parameters af and bf

are estimated for a new, unspecified stock of round
sardinella.

The impact of model choice is evident when the
joint posterior of parameters af and bf is examined.
Strong negative correlation is estimated for these
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parameters (Fig. 2) in the correlation
model, and the predicted distribution
of the length-fecundity curve is more
precise in this model compared to the
model without correlation (Fig. 3). The
higher the correlation, the smaller the
range of parameter combinations sup-
ported by the observations.

The posterior distributions of mean
parameters μaw, μbw, μaf and μbf (Fig. 4)
show the impact that differently sized
datasets have on the uncertainty of
the stock specific parameters in the
correlation model. The length-weight
mean parameters μaw and μbw are esti-
mated with similar precision for all
species with both models, whereas the
length-fe cundity mean para meters μaf

and μbf are more uncertain for round
sardinella than those for Atlantic her-
ring and European pilchard. The cen-
tral tendencies vary in such a way that
the posterior distributions of length-
weight relationship parameters tend
to overlap more between species,
whereas posteriors of length-fecun-
dity parameters are more distinct.

For each of the European pilchard
and round sardinella species, there is
only one stock for which length-
 fecundity parameters are available.
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Fig. 2. Sardinella aurita. Scatterplot of a sample of  length-
fecundity parameters af and bf for an unspecified round sar-
dinella stock. Black dots represent random draws from the
correlation model, and grey dots represent random draws 

from the model without correlation
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Fig. 3. Sardinella aurita. Samples of randomly drawn length-
fecundity relationship curves for an unspecified round sar-
dinella stock representing the reduction of uncertainty. Black
curves represent random draws from the correlation model;
grey curves represent random draws from the model without 

correlation

−5.5 −5.0 −4.5
µaw

µbw

µaf
µbf

1.05 1.10 1.15 1.20

0

5

10

15

20

25

30

353.0

2.5

2.0

1.5

1.0

0.5

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

−8 −6 −4 −2 0 2

P
ro

b
ab

ili
ty

 d
en

si
ty

1.4 1.5 1.6 1.7 1.8

0

5

10

15

Fig. 4. Clupea harengus, Sardina pilchardus, and Sardinella aurita. Posterior
distributions of expected values of length-weight and length-fecundity rela-
tionship aw, bw, af and bf of different fish species in the correlation model run.
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For round sardinella, length-weight data is missing
for the stock for which length-fecundity parameters
are avail able, which results in more uncertain poste-
rior estimates compared to other species. However,
since both the length-weight and length-fecundity
data are available for a particular stock of European
pilchard, knowledge of species specific correlations
is relatively high. For the correlation model, this
results in posterior distributions for European

pilchard that are nearly as precise as for Atlantic her-
ring, although the available data set is not as large
(Table 1). Furthermore, in the model without correla-
tion, the uncertainty of parameters μaf and μbf for
European pilchard is much greater (Fig. 5). Thus,
only a few observations can give significant informa-
tion about fecundity when the correlations of stock-
specific parameters are taken into account, so a large
dataset is not necessarily needed.

34

−5.6 −5.2 −4.8 −4.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Clupea harengus

1.05 1.10 1.15 1.20

5

0

10

15

20

25

30

35

−8 −6 −4 −2 0 2

0.0

0.5

1.0

1.5

1.0 1.2 1.4 1.6 1.8 2.0

0

5

10

15

−5.6 −5.2 −4.8 −4.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sardina pilchardus

1.05 1.10 1.15 1.20

0

5

10

15

20

25

30

35

−8 −6 −4 −2 0 2

0.0

0.5

1.0

1.5

1.0 1.2 1.4 1.6 1.8 2.0

0

5

10

15

P
ro

b
ab

ili
ty

 d
en

si
ty

−5.6 −5.2 −4.8 −4.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sardinella aurita

µaw µafµbw µbf

1.05 1.10 1.15 1.20

0

5

10

15

20

25

30

35

−8 −6 −4 −2 0 2

0.0

0.5

1.0

1.5

1.0 1.2 1.4 1.6 1.8 2.0

5

0

10

15

Fig. 5. Clupea harengus, Sardina pilchardus, and Sardinella aurita. Posterior distributions of mean parameters of length-
weight relationship μaw, μbw, and length-fecundity relationship μaf, μbf for 3 species and 2 different models. Bold lines repre-
sent the posterior distributions of correlation model and thin lines of model without correlation structure. Prior distributions are 

shown as dotted lines



Pulkkinen et al: More knowledge, same data

Information from length-weight
relationship is transmitted to length-
fecundity relationships through the
correlation structure on a stock level
but it does not lead to more precise
knowledge about fecundity on a spe-
cies level. In case where only infor-
mation about parameters aw and bw

are available for a certain species,
and nothing is known about parame-
ters af and bf, the posterior distribu-
tions for af and bf are not much
updated from the prior distributions.
This situation was studied by adding
additional stock into data for which
only parameters aw and bw were
observed and which belong to differ-
ent species than the ones studied
here.

Correlations between the parame-
ters are rather strong, and the influ-
ence of the prior distributions is negli-
gible (Fig. 6). The 95% probability
intervals for all 6 correlations is > 0.5
or smaller than < −0.5, indicating a
high degree of connection between
the variables.

Stock specific mean parameters are
presented in Fig. 5, showing the prior
distributions and the posterior distri-
butions from both model runs. Poste-
rior distributions for length-weight
parameters are rather similar based
on both models, although for Atlantic
herring the length-fecundity data
seems to be strong enough to also
update the knowledge about the length-weight
parameters. For all 3 species, the difference in
results is clearly in favor of the correlation model
when inferences are made about length-fecundity
pa ra meters. Standard deviation for μaf decreases
from 0.56 to 0.45 for Atlantic herring, from 1.38 to
0.3 for European pilchard, and from 1.47 to 1.15 for
round sardinella.

The posterior distribution of parameter μbf is also
more informative when taken from the model using
the correlation structure for all 3 species.

Measurement error

To illustrate the approach of including the mea-
surement error, we simulated data from functions (3)

and (4) and estimated the covariance matrices Σw and
Σf of the observed parameters. We assume that
observed parameter pairs (Oaijw,Obijw) and (Oaijf,Obijf)
follow the 2-dimensional normal distributions (8)
with the same covariance matrices Σw and Σf for all
the species j = 1,2,3.

The estimated covariance matrices are

(9)

In this specific case, the differences in the posterior
results between model runs with and without mea-
surement error turned out to be minor. The only
parameter whose values differ is parameter af of
round sardinella, where the coefficient of variation
increased 7% compared to the model without mea-
surement error.
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DISCUSSION

We have provided an illustration of how biologically
justified model assumptions can effectively decrease
the uncertainties about population model parameters.
The model introduced herein provides a starting
point for future applications that can take into
account and utilize po tential correlations among life
history parameters of fish populations. Because these
correlations arise through life history strategies in dif-
ferent species, additional information is likely to be
found when any set of fish species is modeled. Also,
the model structure can be applied for many available
sets of life history parameters.

Not all of the sources of correlations spring from
life history evolution. For example, part of the cor -
relation between the life history parameters can
arise from the choice of parameters. For example,
parameters of length-weight and length-fecundity
functions can be expected to have some correla-
tion because length-fecundity relationship can be
thought to be composed of a length-weight rela-
tionship and a weight-fecundity relationship. Cor-
relation that arises from the fact that both functions
include length-weight parameters could be avoided
by studying the correlation between length-weight
and weight-fecundity curves instead. Other sources
of correlations between length-weight and length-
fecundity are due to physics of growth: as a fish
grows its organs such as gonads increase propor-
tionally if the shape of the fish is not changing
much with age, and bigger volume can accommo-
date greater number of eggs (Froese 2006). Fecun-
dity is not, however, the only measurement of the
reproductive investment: resources can be chan-
neled to wards producing larger eggs, rather than a
greater number of eggs, and it is known that egg
size correlates with better offspring survival
(Thorpe et al. 1984). Thus, larger individuals tend
to have greater reproductive value even if fecundity
does not increase with the size.

If the original length-weight and length-fecundity
information were available for all the species, all
parameters could be estimated simultaneously in the
model with the corresponding covariance matrices.
For example, when fitting the regression line be -
tween the observed logarithms of weights and
lengths, the intercept and slope of the line will be
strongly negatively correlated. These types of raw
data are unfortunately unlikely to be available for
many species, but it would be sufficient if the stan-
dard deviations and correlations between estimated
parameters were reported in the original publica-

tions. This would make it possible to store these val-
ues also into databases such as FishBase (Froese &
Pauly 2011), and the information would be available
also for the subsequent studies. We have given an
example how to treat this kind of information, and
although it did not result in any significant difference
in this case, we recommend using this approach in
case covariance matrices of point estimates are
known.

Further, deriving the strength of the correlations
among parameters from a small subset of the stocks
is not ideal, especially in cases where the biological
theory is less supportive of the existence of correla-
tions than in our case. The greater the number of
stocks for which information on the correlated para-
meters is available simultaneously, the stronger the
conclusions that can be drawn from the analysis.

When expanding the multivariate normal distribu-
tion into highly dimensional spaces, computational
problems may become a hindrance. The problems
are likely to arise when prior distributions for covari-
ance matrices are specified, as well as during the
search for suitable samplers for the estimation of the
posterior distributions. Since the Wishart distribution
is used as the prior distribution for the inverse of the
covariance matrix, utilizing any prior assumptions
about the form of standard deviations and the covari-
ances are difficult to implement. There are alterna-
tives for the choice of the prior distribution, as pre-
sented in Barnard et al. (2000), which could make the
choice of prior easier to justify. Also, the assumption
that parameter variances are the same for different
species should be critically examined.

In order to utilize historical studies, databases are
needed to gather information. In our illustration,
FishBase was used as an example of such a data-
base. The advantages of FishBase are that it is eas-
ily accessible and can be accessed by anyone
through the Internet. Different scientists can con-
tribute to FishBase and obtain greater visibility for
their studies, while also adding their share of infor-
mation to the common pool of knowledge. Finding
ways to share information about new studies effec-
tively and efficiently is important so that a wide
range of scientists and stakeholders can learn and
benefit from them.

The usage of databases brings up many chal-
lenges. In the case of FishBase, the length-weight
parameters are given as one table for all the
species and stocks, but the length-fecundity para-
meters are presented only in the spawning sum-
mary section, separately for each stock, which
resulted in a considerable amount of extra work
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when the information was being gathered. Sec-
ondly, ensuring that 2 pieces of data are from the
same stock can be difficult. This depends on the
quality of documentation of a database, which
should be as detailed as possible. Quality of the
databases should be controlled to ensure reliability
of the information as it is used in further scientific
studies. Thirdly, although the same biolo gical phe-
nomenon, for example the connection be-tween
body length and fecundity, may be examined in 2
different studies, the parameterization of the rela-
tionship may differ and so the published parameters
may not be comparable. In such situations, the
original data should be available in order to pro-
duce comparable parameter estimates, which could
then be used in the hierarchical modeling. Lastly,
databases suffer from publication bias: only those
studies containing ‘’statistically significant’’ results
are generally published and so the full range of
variations in the parameters of interest are not
detected. Statistical significance does not always
guarantee biological significance, and vice versa.

By adding more species, more stocks, and different
parameters to the model, interesting aspects of the
behavior of correlated parameters may be revealed.
Studying available data sets more carefully and
transferring that knowledge (not only of the parame-
ters from related species but also of correlations
between those parameters) might prove advanta-
geous and resource efficient, especially in cases
where the amount of available information has been
found to be insufficient, and there are inadequate
resources to gather more data.

Posterior estimates from hierarchical meta-analysis
can be used further as informative prior distributions
in various demands of the population modeling. A
systematic use of this methodology and available
databases offers a way for fisheries science to learn
more effectively from all available knowledge. This
will benefit the understanding of all species, espe-
cially those about which little is known.
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