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ABSTRACT: We measured insulin-like growth factor 1 (IGF1) concentrations (a proxy for growth)
from juvenile coho Oncorhynchus kisutch, sockeye O. nerka, chum O. keta, and Chinook salmon
O. tshawytscha collected in 8 regions of British Columbian coastal waters, in June of 2009, 2010,
and 2011. We found annual differences in IGF1 for all 4 species, as well as species-specific
regional differences in IGF1 concentrations in coho, chum, and sockeye salmon. Sockeye and
chum salmon had consistently higher levels in the northern regions of the Dixon Entrance, Haida
Gwaii, Hecate Strait, and lower levels in Queen Charlotte Strait. Regional differences in coho,
chum, and sockeye salmon were highly correlated (R? = 0.61-0.75). These results demonstrate
that salmon growth responds to local environmental variability on a scale of several hundred kilo-
meters. Thus, IGF1 measures should generate insight into fish production on relatively local
regional and temporal scales, and these same measures may allow the assessment of how habitats

vary on these same scales.
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INTRODUCTION

The role of bottom-up processes in regulating the
productivity and abundance of marine pelagic popu-
lations is currently under debate (Hunt & McKinnell
2006, Frank et al. 2007). This paradigm of food re-
source limitation driving population dynamics in
marine systems suggests that abundant food re-
sources lead to rapid growth, increased survival, and
relatively higher abundance of any given population
(Steele 1974, Cushing 1975). Evaluating the regula-
tory influence of bottom-up forcing on fish produc-
tion requires determining the linkages between dif-
ferent trophic levels and may depend on correlative
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analyses between indices of abundance such as
chlorophyll a (chl a) concentration (phytoplankton
abundance) and fish abundance (Ware & Thomson
2005). These kinds of correlations may not reveal
mechanisms regulating fish populations, as abun-
dance may not directly reflect variation in the pro-
cesses of food consumption and growth.

It is not easy to measure growth (change in size) of
populations of free-living fish. The most straight-
forward approach, i.e. measuring size of individual
fish at a geographic location through time and deter-
mining differences in mean size, requires meeting
assumptions of limited immigration and emigration,
and in addition, limited size-selective mortality.
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These assumptions may be difficult to meet in large,
open marine systems. Methods that utilize size at age
increments recorded in hard body parts, such as
scales or otoliths, require similar assumptions. An
instantaneous measure of growth would allow one to
directly test inferences about population-level rela-
tionships between prey abundance, consumption,
growth, and mortality of fish in a given area at a
given time. The ability to simultaneously measure
fish growth rate and environmental characteristics
can provide an ecosystem-scale snapshot of growth
rate that is not complicated by size-selective mortal-
ity and other factors affecting growth estimates
through time.

Herein we report on levels of the hormone insulin-
like growth factor 1 (IGF1), an index of fish growth
(Beckman 2011), from juvenile salmon caught off the
coast of British Columbia (BC), Canada. Juvenile sal-
mon are widely spread throughout the coastal re-
gions of BC (Fisher et al. 2007), and their physiologi-
cal status might provide a broad-scale perspective on
ecosystem processes in these regions. IGF1 is a pro-
tein that circulates in the blood and is a primary com-
ponent of the endocrine growth axis in all verte-
brates, directly stimulating cells to divide and grow
(Kostyo & Goodman 1999). Plasma levels of IGF1 are
linearly related to specific growth rates of individual
juvenile salmon (Beckman et al. 2004a,b) over a time
period of 1 to 2 wk within a specific seasonal period.
However, the slope of IGF1 versus growth relations
may vary between seasons (summer versus autumn,
Beckman et al. 2004b). Thus, IGF1 can provide an
instantaneous snapshot of relative fish growth during
a specific seasonal period, but IGF1 levels do not pro-
vide a direct estimate of growth rate. Nevertheless,
IGF1 measures provide the ability to both directly
compare growth of fish caught in different locations
and to relate growth of fish caught in a given location
to in situ environmental conditions.

BC coastal waters are within a transition zone be-
tween the California Current ecosystem to the south
and the Gulf of Alaska ecosystem to the north,
formed by the actions of the North Pacific Current
splitting as it moves eastward to the margins of North
America. The region is characterized by the weak
influence of major ocean currents (California and
Alaska Currents), allowing local environmental driv-
ers such as coastal topography and freshwater inputs
to contribute to variation in productivity (Crawford &
Thomson 1991). This small-scale variability in ocean
and food web dynamics translates into regional dif-
ferences in zooplankton abundance (Mackas et al.
2001) and juvenile salmon diet (Brodeur et al. 2007)

and could result in differences in juvenile salmon
prey consumption and growth. Indeed, Perry et al.
(1996) found spatial differences in diet and body con-
dition of pink and chum salmon off the west coast of
Vancouver Island.

We have generated a 3 yr data set (2009 to 2011) of
IGF1 levels in juvenile coho Oncorhynchus kisutch,
chum O. keta, sockeye O. nerka, and Chinook sal-
mon O. tshawytscha from BC coastal waters. Using
these data, we determined whether salmon growth
varies annually and spatially along the BC coast, and
whether there are inter-specific differences in these
trends. This analysis is unique in its ability to directly
relate growth of juvenile salmon to the specific
region in which they were captured. This data set
allows us to take the initial steps in validating IGF1
as a tool with which to investigate ecosystem pro-
cesses in the marine pelagic environment.

MATERIALS AND METHODS
Data collection

We collected data during 3 research cruises (1
cruise yr~! for 3 consecutive years) in 2009 (17 June to
2 July), 2010 (16 June to 2 July), and 2011 (15 June to
4 July) in the coastal and shelf waters of BC (Fig. 1).
Our sample regions included the outer coastal and
shelf waters off Vancouver Island and Haida Gwaii,
the inner coastal waters of Queen Charlotte Strait and
Hecate Strait, and the 2 main connections between
the Pacific and inner waters: Dixon Entrance and
Queen Charlotte Sound. These regions vary oceano-
graphically with regard to the influence of Pacific
Ocean currents versus freshwater runoff. We sepa-
rated the outer Vancouver Island waters into north,
mid-, and south Vancouver Island regions at 48.9°
and 49.5°N (Fig. 1). These divisions allowed us to
observe potential differences in salmon growth due
to spatial variability in oceanography (Crawford &
Thomson 1991) and diet (Perry et al. 1996). The sam-
ple stations (trawl locations within sample regions)
were not geographically identical or numerically
equivalent across the 3 years (Fig. 1; 2009: 79 sta-
tions, 2010: 80 stations, 2011: 89 stations), but similar
regional coverage was accomplished in each year.

Four different species of juvenile salmon, viz. coho,
sockeye, chum, and Chinook, were sampled. Pink
salmon Oncorhynchus gorbuscha were also caught
in the trawls but were not analyzed in this study.
Juveniles from each of these species exhibit differing
life histories; specifically, they enter marine waters at
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stored at —20°C while at sea (up to
20 d) and at —80°C in the laboratory.

IGF1 was measured using a time-
resolved fluorescence immunoassay
(Small & Peterson 2005) based on a
dissociation enhanced lanthanide flu-
orescence immunoassay (DELFIA®,

48°

Perkin Elmer) methodology. Recom-
binant salmon IGF1 was used as a
standard, and polyclonal rabbit anti-
recombinant barramundi IGF1 serum
(GroPep) was used as a primary anti-
body. Tracer was produced by custom
labeling of the recombinant salmon
IGF1 (GroPep) with europium (Perkin
Elmer BioSignal). Reactions were car-
ried out in DELFIA® Assay Buffer in
goat anti-rabbit IGG-coated yellow
96-well plates (Perkin Elmer) incu-
bated at 4°C with constant shaking.
Sample or standard and anti-IGF
were incubated prior to the addition
of tracer, then incubated overnight
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Fig. 1. Oncorhynchus spp. Trawl locations (O: 2009; O: 2010; A: 2011) and re-

gions (large open ellipses) for coho, Chinook, sockeye, and chum salmon ana-

lyzed in this study. Symbols for 2009 and 2010 are offset from true sample
location by 0.1° east and west, respectively

different ages and sizes with differing seasonal tim-
ing (Groot & Margolis 1991). The following size crite-
ria were generated from coded-wire tags and non-
overlapping frequency distributions and were used
to ensure that we only sampled juvenile fish that
were in their first few weeks to months of ocean resi-
dence: coho salmon <350 mm, Chinook salmon
<275 mm, sockeye salmon <300 mm, chum salmon
<300 mm (Trudel et al. 2007a).

We conducted a surface tow (0-20 m) at each sta-
tion using a modified mid-water trawl. A hexagonal
mesh mid-water rope trawl (~90 m long x 30 m wide
x 18 m deep, cod-end mesh 0.6 cm; Cantrawl
Pacific) was trawled for 15 to 30 min at 5 knots
between 07:00 and 19:00 h. Up to 20 juveniles of
each species were sampled for blood from each
trawl (catch of a given species in any one trawl
ranged from 0 to >500). From these juvenile salmon,
we collected 0.1 to 0.3 ml blood from the ventral
side of the caudal peduncle using a heparinized
syringe. The blood sample was immediately chilled
on ice and centrifuged (micro-centrifuge at 3000 x g,
5 min) within 8 h. The plasma was removed and

again before the final fluorescence
reaction and reading. Reactions in-
cluded an empirically determined
volume of plasma extract (Shimizu et
al. 2000), anti-IGF diluted to a final
dilution 1:62 000, and Eu-IGF1 tracer
at a final concentration of 0.571 ng
ml~! in a total reaction volume of 175 pl. On the third
day, plates were washed 5 times and shaken vigor-
ously for 10 min at room temperature with 100 pl of
DELFIA® Enhancement solution to cause dissociation
of the europium label, which forms a fluorescent lan-
thanide-chelate. Fluorescence levels were measured
using a Victor3 1420 Multilabel Counter (Perkin
Elmer Life and Analytical Sciences, Wallac Oy). Data
were processed with WorkOut2 software (Dazdaq)
using a 4-parameter logistic equation to fit the stan-
dard curve.

IGF1 levels are reported as the mean of duplicate
measurements. Samples were re-measured or ex-
cluded from analysis if the coefficient of variation ex-
ceeded 10% and there was >10 ng ml™! difference
between duplicates. To account for inter-assay varia-
tion in standard curves, an inter-assay pool (IP) of
plasma was measured in every assay at 3 concentra-
tions within the linear portion of the standard curve
that translate to 20, 50, and 80% of maximal tracer
binding. A linear regression of the IP concentrations
versus their percent binding was created for every
subsequent assay and compared to the original slope
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of this regression. Sample values for a given run of
the assay were standardized by the slope and inter-
cept of the IPginal assay VEISUS IPpey assay TEGTESSION
equation. This method was used to standardize be-
tween assay runs within a collection year and be-
tween years. To avoid bias in the data generated by
technical differences between assay runs, all sam-
ples collected within a given year were randomly dis-
tributed among assay runs.

In addition, it was necessary to determine whether
any maturing male (jack) salmon were part of the
sample, as androgens produced in the maturation
process strongly stimulate plasma IGF-I levels and
disrupt IGFl-growth relations (Beckman et al.
2004b, Larsen et al. 2004). Thus, each sample was
assessed for 11-ketotestosterone (11-KT), the pri-
mary androgen stimulating male maturation in
salmonids (Cuisset et al. 1994). Fish with 11-KT val-
ues >1.5 ng ml~! were removed from further analysis.

Statistical analysis
IGF1 size adjustment

We addressed 2 potential issues with the IGF1
data. It is easier to obtain blood from large fish
(>200 mm) than small fish (<120 mm); thus sampling
error might occur due to inadvertent selection of
larger fish for bleeding. Therefore, we tested for size
differences between bled and non-bled fish by calcu-
lating the difference between average fork length of
bled fish and that of all juveniles caught in each haul,
and conducted an ANOVA to determine whether the
differences in mean lengths varied by region, for
each species. Length was included as a fixed effect in
the subsequent analysis of regional differences for a
species (see below) if significant differences in length
were found.

In addition, we addressed potential size effects in
the IGF1 values due to differing fish sizes. Shimizu et
al. (2009) found a small, yet significant and positive
relationship between IGF1 levels and length in
fasted coho salmon, suggesting that basal IGF1 levels
differ with size. In order to isolate the growth-related
IGF1 signal, we adjusted the measured IGF1 value of
all species for differences in size-based basal IGF1
values (Shimizu et al. 2009):

IGFsag; = IGFqp, — 4 + 0.07(Length) (1)

where IGF1g,q4; (ng ml!) represents IGF1 values cor-
rected for size-related basal IGF1, IGF1,,, (ng ml™)
represents the IGF1 values measured in this study,

and length (mm) is fork length. We used these ad-
justed data for all further analyses (see Table 4).

Body condition index

We assessed whether IGF1g,4; was related to either
length or body condition index for each species using
linear regression. Body condition indices were calcu-
lated by applying a linear regression to the natural
log transformed length and body mass of individual
fish, combined across all years and regions for each
species (Jakob et al. 1996, Brodeur et al. 2004). The
residuals of the observed mass relative to predicted
mass (based on the length to weight regression)
formed each species-specific index. Individual body
condition index values were regressed against corre-
sponding mean IGF1g,q; values to determine the rela-
tionship between IGF1g,4; and body condition.

Regional differences

We used mixed-effects multiple regression models
(fixed and random effects) in the R programming
environment to test for yearly, species-specific differ-
ences in IGF1g,q concentrations at a regional scale
(as defined in Fig. 1) as follows:

].n(IGFSadj (jyrs]) = BO + B1Leﬂgth1‘ + Bz Yea.ry +
BsRegion, + b Station, + &gy

We first combined 2009, 2010, and 2011 IGF1g,g;
data, for each species, to determine whether IGF1g,q;
values varied by year (i) and region (j). We natural
log transformed the IGFlg,y data to satisfy the
assumption of homogeneity of variance and normal-
ity. In the above equation, In(IGFs,qj iyrs) T€pPresents
the natural log transformed IGF1g,q4 values of indi-
vidual (7) at station (s), in region (r) and year (y). Fork
length (Length) was included as a fixed effect in the
sockeye and chum models only (see ‘Results’). In
each species-specific model, we included sample sta-
tion (s) as a random effect (with coefficient b),
accounting for the covariation shared by fish caught
in the same haul.  represents fixed-effect coeffi-
cients. The term g, is a normally distributed error.
We compared the fit of the models with multiple
combinations of year and region as fixed effects
using Akaike's information criterion corrected for
small sample size (AIC., Burnham & Anderson 2002)
to determine which model best explained the varia-
tion in IGF1g,q; values.
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RESULTS
IGF1-size standardization

The lengths of sampled fish ranged from 103 to
350 mm (coho), 118 to 275 mm (Chinook), 98 to
217 mm (sockeye), and 112 to 188 mm (chum) (re-
gional averages shown in Table 1). We compared
pre- and post-standardized IGF1 values to length
values to show how the data changed with the re-
moval of the basal IGF1 level. Unstandardized IGF1
values were significantly and positively related to
length for each species, with a relatively low propor-
tion of the variance in individual IGF1 values
explained by differences in length (R?* = 0.10-0.22,
Fig. 2). After standardizing for basal IGF1 levels,
IGF1g, values were still significantly related to
length measurements of coho, Chinook, sockeye,
and chum salmon, but the proportion of the variance
in individual IGF1g,; values explained by differ-
ences in length was small (p < 0.001, R? = 0.04-0.14,
Fig. 2).

There were significant differences in mean body
length between juvenile salmon caught in the trawl
and those sub-sampled for IGF1 for sockeye (2009)
and chum salmon (2009-2011), but no significant dif-
ferences were found for either coho or Chinook
salmon (Table 2). Most of the average length differ-
ences (bled versus captured) were less than 10 mm,
resulting in a predicted 2 to 3 ng ml™! difference in
IGF1g,q4; (Table 3). We took a conservative approach
in analyzing for regional differences in sockeye
(2009) and chum salmon (2009-2011) IGF1g,q; con-
centrations by accounting for sampling error for size
in mixed-effect models.

Body condition index

IGF1g4q; was significantly correlated to the body
condition index for coho, Chinook, and sockeye
salmon; however the correlation coefficients were
very low (p < 0.001, R? = 0.04-0.1, Fig. 3). No signifi-
cant relation between body condition index and
IGF1g44j was found for chum salmon (p = 0.11, Fig. 3).

Table 1. Oncorhynchus spp. Regional summary of mean (SD) length (mm) and sample size (n) of coho, Chinook, sockeye, and
chum salmon collected from 2009 through 2011; na: not available

Region Year Coho Chinook Sockeye Chum
Length n Length n Length n Length n
Dixon Entrance 2009 210(24) 51 250(19) 5 164(22) 25 na na
2010 201(26) 65 204(28) 4 159(18) 19 148(ma) 1
2011 200(25) 13 221(32) 7 177(13) 13 176(ma) 1
Hecate Strait 2009 208(30) 66 191(17) 65 159(15) 54 150(10) 14
2010 204(21) 24 177(12) 8 na 29 159(18) 6
2011 177(26) 52 190(16) 26 148(13) 53 148(17) 38
Haida Gwaii 2009 218(29) 37 238(21) 33 164(18) 44 160(8) 4
2010 220(33) 2 227(19) 26 158(4) 3 na na
2011 242(19) 10 230(24) 12 153(na) 1 na na
Queen Charlotte Sound 2009 186(11) 3 184(13) 120(6) 35 136(7) 23
2010 177(17) 7 184(8) 2 134(13) 47 146(12) 36
2011 187(24) 14 194(26) 9 132(10) 52 146(14) 35
Queen Charlotte Strait 2009 195(18) 33 na na 124(8) 31 141(10) 31
2010 187(22) 45 166(na) 1 128(9) 27 142(12) 25
2011 184(13) 33 187(17) 3 130(6) 19 141(9) 31
North Vancouver Island 2009 184(24) 59 177(23) 45 136(14) 27 131(8) 23
2010 210(15) 59 181(22) 102 128(16) 43 139(13) 23
2011 205(22) 46 190(24) 68 137(18) 28 141(15) 22
Mid-Vancouver Island 2009 181(19) 99 170(20) 45 140(10) 36 129(8) 28
2010 206(21) 15 175(18) 76 124(7) 17 137(12) 4
2011 188(17) 24 192(28) 14 135(20) 8 130(11) 12
South Vancouver Island 2009 165(21) 34 172(26) 9 131(8) 4 125(ma) 1
2010 179(27) 50 204(44) 5 118(11) 4 149(2) 2
2011 148(17) 9 217(35) 20 100(2) 3 127(13) 2
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Fig. 2. Oncorhynchus spp. Insulin-like growth factor 1 (IGF1, ng ml™; gray) and size-adjusted IGF1 (IGF1g.q; black) versus
length (mm) for (a) coho salmon, (b) Chinook salmon, (c) sockeye salmon, and (d) chum salmon from 2009 to 2011. Note the dif-
ferent scales between the upper and lower plots. Correlation coefficients and p values correspond to original (gray font) and

IGF1 variation

The best-fit models for sockeye,
chum, and coho salmon (year and re-
gion as fixed effects) explained a rela-
tively large amount of variation in
IGF1g,q4; values (coho salmon: R? =
0.33, sockeye salmon: R? = 0.59, chum
salmon: R? = 0.55; see Table 5). The
highest IGF1g,4; values occurred in
2011 for all 4 salmon species (with
some regional exceptions for coho
salmon), relative to 2009 and 2010.

size-adjusted (black) IGF1 levels

Table 2. Oncorhynchus spp. Results of the ANOVA tests determining whether

sampling bias occurred. Specifically, differences in mean lengths between

total juvenile salmon caught were compared to the mean lengths of those sub-

sampled, for each species, and it was determined whether these differences

varied significantly by region. The F statistic, p value, and df (between groups,
within groups) are given

2009 2010 2011

F df p F df p F df p

Coho 0.3 7,48 0.9 23 6,35 006 03 7,33 0.9
Chum 26 626 004 3.1 519 003 9,5 518 <0.001
Sockeye 2.5 6,26 <0.001 0.8 7,39 0.6 1 7,26 05
Chinook 1.5 5,33 0.2 0.8 7,33 0.6 117 7,32 04
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Table 3. Oncorhynchus nerka and O. keta. Differences in mean length (mm) between salmon subsampled for insulin-like

growth factor 1 (IGF1) analysis and all juveniles caught per station for sockeye and chum salmon from 2009 to 2011. Length

bins are defined as greater than the lower value and equal to or less than the upper value. Predicted differences in IGF1 are

based on the species-specific IGF-length relationship calculated in Fig. 2. As an example, a difference in length of 20-25 mm

between sockeye salmon subsampled and analyzed for IGF and the mean length of all sockeye salmon caught in the trawl

would result in a predicted IGF1 difference of 6.8 ng 1-!. This particular difference in length (20-25 mm) was found in 4 %
(2009), 0% (2010), and 3 % (2011) of all stations for sockeye salmon

Length bin Sockeye Predicted Chum Predicted
(mm) % stations within length bin difference % stations within length bin difference
2009 2010 2011  IGF1 (ng ml™Y) 2009 2010 2011 IGF1 (ng ml™Y)
<=5 0 0 0 -14 0 0 3 -1.1
-5-0 52 74 62 0 28 43 55 0
0-5 14 9 24 1.4 17 17 10 1.1
5-10 14 13 9 2.7 14 20 10 2.2
10-15 9 2 0 4.1 17 7 7 3.4
15-20 5 0 0 54 14 10 3 4.5
20-25 4 0 3 6.8 6 3 7 5.6
25-30 2 0 0 8.2 3 0 0 6.7
30-35 0 2 3 9.5 3 0 3 7.8
R? = 0.1 a R? = 0.1 b
120 4 p <0.001 p < 0.001 .
100 —

— 120 - -
& R? = 0.04 ) C R2 = 0.01 d
100 —
80 |

-0.2 -041 0.0 0.1 0‘.2 0‘.3 —d.2 —d.1 O‘.O 0‘.1 0‘.2

Body Condition Index

Fig. 3. Oncorhynchus spp. Size-adjusted insulin-like growth factor 1 (IGF1g,q) levels (ng ml') versus body condition index for
(a) coho salmon, (b) Chinook salmon, (c) sockeye salmon, and (d) chum salmon from 2009 to 2011



Table 4. Oncorhynchus spp. Mean (SD) insulin-like growth factor 1 (IGF1) and size-adjusted IGF1 (IGF1g,q) values (in ng ml™!) of juvenile coho, Chinook, sockeye, and

chum salmon collected in June and July of 2009, 2010 and 2011; na: not available
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quality are the most likely explanation
for our observed differences
IGF1g,4;. Regional- and annual-scale
variation in the abundance, species
composition, and trophic status of zoo-
plankton has been found off the BC
Coast (Mackas et al. 2001, Batten &
Walne 2011, El-Sabaawi et al. 2012).
Similarly, salmon diets have been
found to vary regionally off Vancouver
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Island (Perry et al. 1996) and BC (Brodeur et al. 2007).
In addition, food consumption of birds that have a
prey field similar to juvenile salmon and nest on Tri-
angle Island (northwest coast of Vancouver Island)
and Frederick Island (northwest Haida Gwaii), varies
inter-annually and regionally (Hedd et al. 2002,
Hipfner 2009). Together, these data suggest that sal-
mon may experience regional and inter-annual differ-

and that this variation may drive differences in juve-
nile salmon growth.

The significant correlation of IGF1g,4; levels among
coho, sockeye, and chum salmon across regions is
probably not due to the absolute abundance of spe-
cific prey items in different areas across years. This
inference is based on studies showing that the diets of
juvenile salmon vary temporally, spatially, and among

ences in their prey field composition and abundance, species (Healey 1991, Perry et al. 1996, Brodeur et al.

Table 5. Oncorhynchus spp. Summary of degrees of freedom (df), AICc values, AAICc values, and adjusted R? (adj.R?) values comparing

the fit of models to coho, Chinook, sockeye, and chum salmon insulin-like growth factor 1 (IGF1) data (2009, 2010, and 2011 data are com-

bined in each model). The null model includes length as a fixed effect for sockeye salmon and chum salmon and the intercept only for coho
and Chinook salmon

Coho Chinook Sockeye Chum
Model df AICc AAICc adj.R? df AICc AAICc adjR? df AICc AAICc adj.R? df AICc AAICc adj.R?
Null 3 136.22 94.29 0.32 3 6596 64.74 0.11 4 -247.75 128.75 0.54 4 -166.09 62.66 0.55
+Year 5 9895 57.02 0.36 5 122 0.00 0.12 6 -351.70 24.80 0.59 6 -198.06 30.69 0.58
+Region 10 82.69 40.76 0.29 10 74.21 7299 0.06 11 -269.06 107.44 0.53 11 -196.78 31.97 0.52
+Year+Region 12 41.93 0.00 0.33 12 715 592 0.13 13 -376.50 0.00 0.59 13 -228.75 0.00 0.55
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2007). In particular, diets of juvenile coho salmon
tend to be comprised of greater portions of juvenile
fish than those of juvenile chum and sockeye salmon
(Brodeur & Pearcy 1990, Brodeur et al. 2007). Land-
ingham et al. (1998) compared food habits of juvenile
coho, sockeye, and chum salmon across southeast
Alaska and northwest BC and found significant over-
lap in prey composition between chum and sockeye
salmon with a lesser overall overlap of prey species
consumed between coho and either chum or sockeye
salmon. Thus, correlations in IGF1g,q;, levels among
juvenile coho, sockeye, and chum salmon are broadly
consistent with known dietary overlap among these
species and are likely due to differences in the overall
regional productivity and the related abundance of
prey items within the planktonic food web.

Juvenile salmon are positioned at the apex of plank-
tonic food webs, eating larger crustaceans (e.g. amphi-
pods and euphausiids) and small larval/juvenile
fishes (Brodeur et al. 2007). Simulation studies (Fulton
et al. 2005, Samhouri et al. 2009) conclude that species
that feed at this trophic level might be especially use-
ful as marine ecosystem indicators, lending insight
into ecosystem productivity, structure, function, or
change. Thus differences in IGF1 levels between geo-
graphic areas or temporal periods might indicate
differing ecosystem properties. The correlations we
found in IGF1g,4; among 3 different species of juvenile
salmon, feeding on disparate prey items, suggests
that variation in growth of juvenile salmon provides
the ability to discriminate among and between marine
pelagic ecosystems. Furthermore, based on our re-
sults, regional-scale variation in pelagic ecosystem
properties exists along the BC coast.

We found higher growth of juvenile sockeye and
chum salmon in offshore northern BC waters (Dixon
Entrance, Haida Gwaii) than in southern offshore
waters (outer Vancouver Island). Freeland (2006)
showed that these offshore regions of the continental
shelf are subject to variation in large-scale ocean cur-
rents, and during our sample years of 2009 through
2011, the division between the Alaska and California
Current systems occurred roughly off northern Van-
couver Island (Pacific Fisheries Environmental Lab,
www.pfeg.noaa.gov/index.html). Previous work has
shown higher salmon growth in the northern Alas-
kan gyre system and lower salmon growth in the Cal-
ifornia Current system (Hare et al. 1999, Trudel et al.
2007, Wells et al. 2008). Higher growth rates in the
Alaskan system have been attributed to the availabil-
ity of zooplankton (and possibly fish) with higher
energetic content, potentially reflected in the higher
growth rates of juvenile salmon (Mackas et al. 2007,

Trudel et al. 2007b). Temperature also varies be-
tween these 2 current systems and can directly
impact salmon growth rate; however, the range of
temperatures observed during our sampling period
(9-15°C, unpublished data) are not expected to have
large effects on the growth of juvenile salmon
(Beauchamp et al. 2007). The IGF1 levels we report
thus appear to reflect differences between these
large marine ecosystems (California Current and
Gulf of Alaska) and suggest that IGF1 measures
could be used to demarcate the boundaries between
these large oceanographic and biological regions.

Growth of juveniles in Queen Charlotte Strait was
consistently the lowest found in a given year for coho,
sockeye, or chum salmon across the BC marine
waters we surveyed. Queen Charlotte Strait is a geo-
graphically constrained area lying between the BC
mainland and the northern end of Vancouver Island
and is major migratory pathway for juvenile salmon
leaving the Strait of Georgia (Groot & Cooke 1997,
Tucker et al. 2009). Our data suggest that food
resources for juvenile salmon are limited in this area,
as IGFg,q; levels were significantly lower than those
found in other regions. The Johnstone Strait/Queen
Charlotte Strait region may represent a foraging
challenge for juvenile salmon as they leave the Strait
of Georgia and migrate towards Queen Charlotte
Sound and the Gulf of Alaska (McKinnell et al. in
press). A tremendous amount of tidal mixing occurs
as water moves back and forth through Seymour
Narrows into and out of the Strait of Georgia, homog-
enizing the water column. This intense tidal mixing
minimizes local primary productivity and presum-
ably disperses any concentrations of juvenile salmon
prey. Our results, demonstrating low IGF1 levels in
the Queen Charlotte Strait, lend support to these
hypotheses.

Given the ecological insights IGF1 levels may pro-
vide, sampling has continued in Queen Charlotte
Strait (2012-2013, B. Beckman & M. Trudel unpub-
lished), an area that has generated considerable re-
cent interest in juvenile salmon marine ecology. Sev-
eral investigators have suggested that oceanographic
and biological variation in this and nearby areas was
responsible for poor growth and survival of juvenile
sockeye salmon in 2007 and resulted in historically
poor returns of adult sockeye salmon to the Fraser
River in 2009 (Beamish et al. 2012, Thomson et al.
2012, S. McKinnell et al. unpubl.). In addition, sev-
eral studies have suggested transfer of parasites from
net-pen farmed Atlantic salmon to juvenile Pacific
salmon that migrate through this region, potentially
affecting subsequent growth and survival (Krkosek &
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Hilborn 2011, Price et al. 2011, but see Marty et al.
2010). The development of a longer-term time series
of IGF1 levels in this region will allow us to further
examine growth differences in and among these
local areas and assess cause and effect relationships
between growth and survival of juvenile salmon.

Significant correlations in IGFlg,4 level among
juvenile coho, chum, and sockeye salmon between
regions with varying IGF1g,4; levels suggest a ten-
dency for all 3 species to stay within distinct regions
for a period of at least 1 wk, the time-scale within
which a biologically significant difference in IGF1
signal is generated (Beckman 2011). Summertime
residency has been documented for coho, chum,
and sockeye salmon in local BC, Washington, and
Oregon coastal waters (Brodeur et al. 2003, Morris
et al. 2007, Tucker et al. 2009, Melnychuk et al.
2010). Furthermore, Tucker et al. (2009) found that
the population composition of juvenile sockeye sal-
mon varies among BC regions in June/July catches
and reflects local origin of a significant proportion of
the fish caught. Fish originating from the west coast
of Vancouver Island dominated samples from the
west coasts of Vancouver Island and Haida Gwaii
(~60%). Sockeye salmon from the Fraser River were
most abundant (~80%) in samples from Queen
Charlotte Sound, and Fraser and Nass/Skeena River
sockeye salmon were caught in similar abundances
in Hecate Strait and Dixon Entrance. Catches of
sockeye salmon in all regions comprised a mixture
of different populations, and the majority of sockeye
salmon caught were locally distributed, related to
their rivers of origin. This pattern of variation in
catch of different sockeye salmon stocks lends sup-
port to the inference that IGF1 levels reflect growth
of sockeye salmon in the region in which they were
caught.

Juvenile Chinook salmon IGFg,q; levels were not
significantly correlated with that of other species,
suggesting a significant difference in the marine
ecology of the juvenile Chinook salmon assessed.
The vast majority of Chinook salmon collected dur-
ing June/July surveys of BC waters are yearling fish
from the Columbia River (Tucker et al. 2011, 2012),
entering coastal marine waters ~300 km to the south
of the US-Canada border. Columbia River fish al-
most always comprised more than 50% of the Chi-
nook salmon catch in every region and in many years
comprised almost 100 % of the catch in each region.
Thus the majority of Chinook salmon we caught and
sampled were probably migrating rapidly northward
from the Columbia River through BC to the Gulf of
Alaska. The migration rates of yearling Columbia

River Chinook salmon have been calculated at
greater than 20 km d! (Trudel et al. 2009, Tucker et
al. 2011, 2012). Thus, Chinook salmon could easily
traverse multiple study regions within a week, hav-
ing the effect of smearing regional differences in pro-
ductivity over the growth periods reflected in our
data and eliminating the possibility of discriminating
discrete regional growth signals.

Inter-annual variations in early marine growth
rates of juvenile salmon in the Northeast Pacific are
correlated to subsequent marine survival rates,
including those of sockeye (Farley et al. 2011), chum
(Healey 1982), Chinook (Tovey 1999, Tomaro et al.
2012), and coho salmon (Holtby et al. 1990). Further-
more, marine survival rates have been shown to vary
spatially on a scale of several hundred kilometers
generally in the northeastern Pacific Ocean and
specifically, at a similar scale along the BC coast
(Mueter et al. 2005, Pyper et al. 2005). The concor-
dance in regional scale of variation in salmon sur-
vival and the data presented here suggest that IGF1
measures of juvenile salmon at sea may provide
insights into understanding the sources and scale of
variation in salmon survival during the early marine
period and could enhance our ability to understand
mechanisms regulating salmon abundance. More-
over, IGF1 levels themselves may provide an index of
marine survival, as it relates to marine growth. Rela-
tions between IGF1 and marine survival will be exa-
mined as time series are developed for populations
for which survival estimates may be generated
(requiring enumeration of both freshwater recruits
and adult abundance).

Levels of plasma IGF1 have been validated as a
growth index in a number of laboratory studies
(Beckman 2011) and have been used to document
small-scale spatial, seasonal, and inter-annual differ-
ences in growth of free-living fish (Beckman et al.
2000, 2004b, Andrews et al. 2011, Beaudreau et al.
2011). Given the novelty of using IGF1 as an ecologi-
cally relevant measure of fish growth in a large-scale
setting, we compared IGF1 to 2 other commonly used
metrics of fish status, viz. size and condition factor, to
assess similarities and differences between them.
The size of an individual at any one time is the sum of
total growth over the lifespan of that individual. As
such, size may be an excellent indicator for differ-
ences in growth, but at a much greater temporal
scale than represented by IGF1 measures. For exam-
ple, coho and sockeye salmon sampled in Queen
Charlotte Strait were among the largest sampled in
BC waters in each year of sampling, yet the IGF1 and
IGF1g,qj levels of these fish were among the lowest
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measured in our surveys. Recent growth of coho and
sockeye salmon captured in Queen Charlotte Strait
(~1 wk), as indexed by IGF1g.,4 levels, is not corre-
lated with longer-term growth (weeks to months), as
indexed by size. The IGF1g,q levels show that the
fish in Queen Charlotte Strait are growing at a rela-
tively slow rate as compared to fish sampled else-
where. The disjunct relation between IGF1 and size
for coho and sockeye salmon caught in Queen Char-
lotte Strait suggests that these fish either had abnor-
mally high freshwater growth or high early marine
growth (prior to entering Queen Charlotte Strait), or
that fish captured in Queen Charlotte Strait had
migrated into marine waters relatively earlier than
fish captured in other regions (a longer period of
marine growth). Growth rate and size are intrinsi-
cally related over longer time intervals; yet, growth
and size can be treated as discretely different attri-
butes over shorter periods, with IGF1 levels reflect-
ing growth during these shorter periods.

We found a significant positive relation between
IGF1 and size across individuals for all 4 species.
While the degree of variation in IGF1 explained by
length was relatively low (r2 = 0.10 to 0.22), we de-
cided to standardize IGF1 levels to size to conserva-
tively assess differences in IGF1 between regions
(to minimize Type I errors). The size standardization
of IGF1, based on a laboratory assessment of basal
IGF1 levels, reduced the relations between IGF1g,g;
and length (r* = 0.04 to 0.14). We understand that
we have assumed that size-IGF1 relations demon-
strated in coho salmon (Shimizu et al. 2009) do not
differ from those found in sockeye, chum, or Chi-
nook salmon. However, in the absence of data from
these other species, we considered it most consistent
to make a size correction based on existing biologi-
cal data rather than to make no size-based correc-
tion. Using this precautionary approach, we can
state with increased certainty that any observed
regional differences in IGF1g,; reflect differences in
growth and that differences were not due to differ-
ences in size-related basal IGF1 levels. Whether
size adjustment of IGF1 levels is required in future
studies depends on the goals of the work, the range
in size and age of the fish studied, and the degree of
caution desired with regard to discerning differ-
ences in length and IGF1. We note that minimizing
Type I error increases the risk of Type II error, and
in some cases standardizing IGF1 for length might
result in underestimating differences in short-term
growth rate. We do not consider the IGF1-size stan-
dardization used herein necessary for all future use
of IGF1 as a growth index.

Condition index, a relative measure of body weight
in relation to body length, is commonly used as an
index of energy reserves (Jakob et al. 1996, but see
Trudel et al. 2005). For all 4 species of salmon, we
found at best a weak relationship between IGF1g,q;
and condition factor, demonstrating that IGF1 repre-
sents a different aspect of fish performance than con-
dition factor. Similarly, Andrews et al. (2011) found
little relation between IGF1 and condition factor of ju-
venile lingcod Ophiodon elongatus. Beckman (2011)
suggested that IGF1 is best considered an index of
growth in length and that IGF1 may not provide a
good index of either growth in weight or energy stor-
age. Specifically, changes in length are directly de-
pendent on the actions of IGF1, whereas changes in
weight can represent changes in growth of organs
(gut, liver) or tissue (adipose) that can vary in their
dependence on IGF1. Indices of condition reflect
measures of weight relative to length; as such, we
might expect little relation of IGF1 to condition factor.

This study introduces a novel tool for assessing sal-
mon growth and ecosystem processes: measures of
the hormone IGF1. Sampling juvenile salmon from
the coastal marine waters of BC revealed spatial and
inter-annual variation in growth at discrete regional
scales. In turn, our data suggest that differences in
ecosystem processes existed at these same regional
scales. These results have significance for both un-
derstanding the marine ecology of juvenile salmon in
the Northeast Pacific and for validating a novel eco-
system indicator. Similarly to mapping characters of
the ocean environment such as salinity, temperature,
or chl a, we can now map fish growth. This allows one
to directly relate fish growth to other environmental
characters within spatial and temporal contexts. Fu-
ture endeavors include both exploring mechanistic
linkages between prey abundance, salmon consump-
tion, and IGF1, and using IGF1 as an index of marine
ecosystems, establishing both spatial and inter-
annual variation in tertiary (fish) productivity.
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