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INTRODUCTION

The global loss of biodiversity (Sala & Knowlton
2006, Worm et al. 2006, Staples & Hermes 2012) and
declining or overexploited fish stocks (Pauly et al.
2005, Worm et al. 2009) are 2 driving factors for the
increasing number of marine protected areas (MPAs)
worldwide (Roberts et al. 2003). Often, MPAs are
implemented to serve these, or other, objectives si -
multaneously (Roberts et al. 2003, Green et al. 2014).
The development and management of such multi-
objective MPAs is especially challenging (Rice et al.

2012, Green et al. 2014). If successfully implemented
and managed, abundances, biomass and diversity of
marine organisms can increase inside MPAs (e.g.
Friedlander et al. 2003, García-Charton et al. 2004,
McCook et al. 2010).

Although debated, biodiversity can be used as a
measure of stability of an ecosystem and the goods
and services it provides (Chapin et al. 2000, Sala &
Knowlton 2006). For example, diverse systems with
the number of individuals evenly distributed among
the species are believed to be more stable because of
the manifold nature of species interactions (Chapin
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et al. 2000, Worm et al. 2006, Stachowicz et al. 2007).
Preserving marine biodiversity is of overall benefit
for the ocean’s resilience and ecosystem services,
including fisheries, recreation and water quality
(Worm et al. 2006, Palumbi et al. 2009). This is clearly
recognised by the general public that is willing to
pay for the protection of marine biodiversity (Ressur-
reição et al. 2012).

Biodiversity can be measured at the species level,
but also as functional, trophic or genetic diversity.
Classic diversity indices merely estimate the number
of species, such as species richness, or consider the
evenness and abundances of species, like the Shan-
non index (Shannon & Weaver 1949) or Simpson
diversity (Simpson 1949). In the 1990s, Warwick &
Clarke (1995) and Clarke & Warwick (1998) pro-
posed a set of indices that also consider the phyloge-
netic structure of assemblages. These indices are
believed to be unbiased and independent of sample
size (Warwick & Clarke 1995). The taxonomic diver-
sity (Δ) and taxonomic distinctness (Δ*) are exten-
sions of the Simpson diversity and also consider the
average path length connecting 2 organisms through
a phylogenetic or Linnean classification (Clarke &
Warwick 1998). Δ integrates the distribution of abun-
dances amongst species as well as the taxonomic
relatedness, and Δ* can be seen as a pure measure of
taxonomic relatedness (Clarke & Warwick 1998). All
of these biodiversity indices have been used in mar-
ine science to study the ecological patterns of fish
assemblages and to assess (candidate sites of) MPAs
(e.g. Roberts et al. 2003, Gladstone 2007, Campbell et
al. 2011).

Many marine organisms are threatened by direct
and indirect effects of fishing (e.g. Dulvy et al. 2003,
Worm et al. 2009, Madin et al. 2010). One possible
attempt to assess the response of fishes to exploita-
tion considers, for example, life history traits (Dulvy
et al. 2003, Reynolds et al. 2005). Cheung et al. (2005)
used a fuzzy expert system to estimate an index of
the intrinsic vulnerability of marine fishes to fishing
(IVUL) . This index is based on life history and eco-
logical characteristics of fishes. In general, long-
lived, large-bodied and slow-growing species with
late maturity are the most vulnerable to fishing and
show slow recovery from exploitation (Reynolds et al.
2005, Cheung et al. 2007). To assess the total vulner-
ability or extinction risk of a species, the intrinsic vul-
nerability could be combined with external factors,
such as fishing intensity, habitat degradation or by-
catch risk (Cheung et al. 2005).

Spatial management requires spatially explicit
information on the distribution of species, assem-

blages, habitats and other ecological features (Cos -
tello et al. 2010, Sundblad et al. 2011). Yet, such infor-
mation is often limited to a few sampled locations. To
overcome that data scarcity, statistical modelling
techniques can be applied and predictive distribu-
tion maps can be produced. These can then be used
to identify most suitable sites of priority for conserva-
tion in a straightforward manner and to assess MPAs
(e.g. Cañadas et al. 2005, Sundblad et al. 2011,
Schmiing et al. 2013).

Here we propose a simple and efficient approach
to identify candidate sites for networks of multi-
objective MPAs that serve both conservation of bio-
diversity and fisheries management objectives.
 Spatially explicit models are used to characterise pat-
terns of different biodiversity indices and an intrinsic
vulnerability index of coastal fishes to fishing in rela-
tion to bathymetry, substrate and oceanographic
forces. Predictive distribution maps of these indices
are evaluated, individually and combined. The pre-
sented approach is believed to support MPA assess-
ment and, for example, adaptive management pro-
cesses, especially in data-limited situations.

MATERIALS AND METHODS

Study area

Coastal habitats were studied, from the surface
down to 40 m depth, of Faial and western Pico Islands
in the Azores archipelago, northeast Atlantic Ocean
(Fig. 1). Island shelves are limited and quickly drop
to several hundred metres depth, except in the chan-
nel that separates the 2 islands that has a minimum
width of 6 km and a maximum depth of 190 m
(Fig. 1). In addition, coastal fish assemblages experi-
ence a high degree of isolation from other popula-
tions, making them particularly sensitive to distur-
bances (Santos et al. 1995). Coastal habitats are
diverse and include bedrock reefs, boulder fields,
cliffs, submerged cones and enclosed sandy bays,
that are subject to a variety of hydrodynamic condi-
tions (Santos et al. 1995). More than half of the study
area (59%, 34 km2) is composed of rocky substrate
(Tempera et al. 2012). Each island has a designated
‘Island Natural Park’ (INP) under national legislation,
including terrestrial and marine sites that are classi-
fied as categories Ia or VI under the International
Union for Conservation of Nature (IUCN) Protected
Areas system (Dudley 2008). Six marine sites of the
Faial-INP and Pico-INP are partly inside the study
area (Fig. 1 — note that not all sites are visible at this
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scale) and encompass about 60% of the area down to
the 40 m isobath. The 2 main fisheries are commer-
cial artisanal, using gillnets, traps and various forms
of hooks and lines (Morato et al. 2001), and recre-
ational fisheries, including spear fishing, shore
angling and boat fishing (Diogo & Pereira 2014).
Depending on the fishing type, certain regulations
may apply inside INPs. Recent studies suggest that
recreational fishing activities have a considerable
impact on coastal fish assemblages, as they were
estimated to land about half of the commercial arti-
sanal landings (Diogo & Pereira 2014).

Fish counts

Shallow coastal fish assemblages (down to 40 m)
were investigated by SCUBA divers with underwater
visual censuses (UVCs) using a standard transect belt
method (Brock 1954) and a stratified random sam-
pling design. Fish species were identified to the low-
est possible taxon and counted along 50 × 5 m tran-
sects, whereby 1 diver counted all mobile fish (e.g.
Sparidae, Labridae, Scaridae, Carangidae) along the
transect mid-line and a second diver followed behind
counting cryptic species that typically hide under
crevices and boulders (e.g. Muraenidae, dusky
groupers). Transects were parallel to the coast to stay
within the same strata (i.e. depth strata: each 10 m,

main habitat type: rock or sediment). Typ-
ically, 2 transects (minimum 1, maximum
7) that did not overlap or represent the
same strata were sampled during 1 dive.
In total, 462 transects were sampled from
June 1997 to October 2004. Juveniles
were not considered in this study because
they are not efficiently counted during
UVCs. All transects were geo referenced
and projected in a geographic informa-
tion system (GIS, ArcGIS 9.3©ESRI). A
de tailed de scrip tion is given in Schmiing
et al. (2013).

Fish community parameters

Species were grouped according to
their trophic level (Harmelin-Vivien et al.
2001), main habitat type (Clau det et al.
2010) and commercial use (Morato et al.
2001, and see www. lotacor.pt/). Three
classic biodiversity indices were calcu-
lated based on all sightings along 1 tran-
sect: species richness (S, the number of

species), Shannon index (H ’) and Simpson diversity
(1 − D). In addition, the taxonomic diversity (Δ) and
taxonomic distinctness (Δ*) that consider the taxo-
nomic relatedness were assessed. Two (or more) indi-
viduals must be from different species for the calcu-
lation of Δ* (Warwick & Clarke 1995). Indices were
calculated with the vegan package (version 2.0-5,
Oksanen et al. 2012) in R (version 2.14.2, R Develop-
ment Core Team 2012) using an equal step length
between successive levels in the taxonomic hierar-
chy (species, genus, family, order, class) in the dis-
tance matrix. If only 1 species or a single individual of
1 species, respectively, was sighted in a transect, Δ or
Δ* could not be estimated and these samples were
excluded from modelling (Δ = 3, Δ* = 11 transects).

The IVUL that rates the vulnerability of fishes to
fishing is based on life history and ecological charac-
teristics, na mely maximum body length, age at first
maturity, von Bertalanffy growth parameters, natural
mortality rate, maximum age, geographic range,
annual fecundity and aggregation behaviour (Che-
ung et al. 2005). IVUL ranges from 1 to 100, consider-
ing values from 1 to 30 as low, from 30 to 50 as mod-
erate, from 50 to 70 as high and from 70 to 100 as very
high and most vulnerable (Cheung et al. 2005). Fuzzy
set theory allows gradation of membership. For ex -
ample, a species with an IVUL of 70 has a partial
membership to both the category ‘high’ and ‘very
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Fig. 1. Study area. Black dots indicate the location of 462 underwater vi-
sual transects (dots of neighbouring transects overlap) used to study the
coastal fish assemblage of 2 islands (light grey) in the Azores archipelago
(northeast Atlantic Ocean). Dark grey shaded areas: rocky bottom mapped
down to the 40 m isobath. Also shown are 10 m isobaths down to 40 m and 

the existing marine protected areas (mid-grey shaded boxes) 
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high’ (Cheung et al. 2005). IVULs of each species
were obtained from Cheung et al. (2007) or FishBase
(Froese & Pauly 2013). The average IVUL of each
transect was calculated from the arithmetic mean of
the IVUL of fish taxa weighted by their abundance
(i.e. counts, adap ted from Cheung et al. 2007). A
summary of all species and parameters is provided in
Table S1 in the Supplement (www.int-res.com/
articles/ suppl/ m513p187_ suppl. pdf).

Predictive models

The relationship of the biodiversity indices to avail-
able environmental variables (see Tempera et al.
2012 and Schmiing et al. 2013 for a detailed descrip-
tion) was non-linear and was therefore analysed with
generalised additive models (GAMs) using the mgcv
package (version 1.5-5, Wood 2006) in the software
R. A thorough data exploration (Zuur et al. 2007), sys-
tematic model formulation, selection and validation
were applied to avoid possible overfitting of the data.
Depending on the response variable, different prob-
ability distributions and link functions were used
(Table 1). Predictive models were built with data
from the main sampling period (‘summer data’: June
to November, 354 transects, Kruskal-Wallis rank sum
test revealed no significant differences between
these months) to account for an unequal temporal/
seasonal sampling effort (Schmiing et al. 2013). Fol-
lowing results from data exploration, which identi-
fied and excluded correlated variables, 5 out of 11
environmental variables were used as the initial set
of explanatory variables (see Table 2 in Schmiing et
al. 2013): (1) depth (mean transect depth measured in
situ), (2) slope (mean seafloor steepness estimated in
ArcGIS from a bathymetric grid), (3) distance to sed-
iment (mean distance to the nearest soft bottom, esti-
mated in ArcGIS), (4) exposure to current (relative
exposure, upscaled, from an oceanographic model)
and (5) exposure to swell (relative exposure, up -
scaled, GIS-based fetch analysis) (see Tempera 2008,
Tempera et al. 2012). All variables were available as
raster layers in a GIS (5 m grid). Exposure to current
was square-root transformed and distance to sedi-
ment was log transformed (base 10, adding the con-
stant 1 because of 0 values). A detailed description of
all environmental variables and the data exploration
is given by Schmiing et al. (2013). The same ap -
proach was used to model the IVUL of commercial
species, applying a gamma error distribution.

Starting with the full model, stepwise backwards
selection with minimisation of the Akaike informa-
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tion criterion was conducted. In addition, hypo thesis
testing (chi-squared test) was used in the last step,
and only smoothers that did not continuously include
0 in the confidence interval were accepted (Wood &
Augustin 2002). Final models were validated by
graphical analyses of the leverage and residuals, and
approved if no outliers, patterns, hetero geneity, spa-
tial or temporal dependence was present (Zuur et al.
2007). Residuals were plotted versus (1) each ex pla -
natory variable (including the 6 variables omitted
during data exploration, see above), (2) the spatial
coordinates of the transects, and (3) the sampling
years and months. In addition, Pearson’s correlation
coefficient between predicted and observed values
was calculated. The correlation analysis was re peated
with a validation data set (‘winter data’: December to
May, 108 transects). These data are from the same
study area and sampling period and were previously
set aside from the model building data set (see
Schmiing et al. 2013 for more details). Final models
that passed validation were used to produce spatial
predictions on a 5 m grid over the entire study area,
down to the 40 m isobath.

Spatial analyses and identification 
of hotspots

Predictive spatial patterns of biodiversity and vul-
nerability to fishing were analysed in relation to the
existing MPA network, and potential priority sites for
conservation were identified. For this purpose, ‘hot -
spots’ were identified as sites where the IVUL was
≥50 (Cheung et al. 2005) and biodiversity indices
were in the highest of 3 natural break categories
(Jenks optimisation, Jenks & Caspall 1971). The
choice of the latter threshold was based on the fre-
quency distributions of predictions and defined to be
at the lower boundary of the last peak to avoid possi-
ble under-representation of high values (see Fig. S1
in the Supplement). Using the predictive maps, total
hotspot size and the percentage that fell inside the
existing MPAs were calculated in ArcGIS. In addi-
tion, maps were overlaid to identify sites with com-
bined elevated IVUL and biodiversity (S and H ’) that
are considered to be of highest conservation value
(i.e. hotspots within hotspots). Simpson diversity (1 −
D) was not used for this exercise because the result-
ing predictive model and map was very similar to the
model of H ’. Instead, the focus was on H’ because of
its wide application in ecology, and because it is
more sensitive to rare species and recommended for
ecological frameworks that do not focus on dominant

or single species (Nagendra 2002). Similarly, no shared
hotspots of IVUL and Δ* were identified because pre-
dictions of Δ* were biased (i.e. only 1 unique value
was above the hotspot threshold).

RESULTS

Composition of fish assemblages

In total, we identified 57 taxa, including 3 species
of rays and a single shark, representing 50 genera
and 28 families (Table S1 in the Supplement). The
most diverse families were Labridae (8 species),
Sparidae (7 species) and Carangidae (6 species).
Sightings were dominated by 3 species (Diplodus
sargus, Thalassoma pavo, Coris julis) that were pres-
ent in >75% of the censuses, reaching a maximum
observation frequency of 84%. Another 8 species
occurred in >50% of the censuses (de creasing order
of frequency of occurrence: Serranus atricauda,
Chro mis limbata, Sarpa salpa, Sphoeroides marmo -
ratus, Boops boops, Mullus surmuletus, Abudefduf
luridus, Sparisoma cretense). Half of the species (29)
were present in <5% of the censuses, of which 15
species were observed with a frequency of <1%
(<5 sightings; Table S1). The majority of observed
species were representatives of the benthic habitat
(35 benthic, 15 bentho-pelagic species) and carnivo-
rous (38 species). Herbivorous taxa were the least
represented (4 species). Most species had a moderate
to high IVUL, and 3 species had a very high vulnera-
bility index (≥70, Table S1). The average IVUL of all
species from all transects was 43.9. The average
IVUL of commercial fishes in summer UVCs (45.1)
was similar to the median (43.1) and average pre-
dicted value (45.5). Five species are considered as
threatened in the IUCN Red List of Threatened Spe-
cies (IUCN 2013): Epinephelus marginatus, Mycte -
roperca fusca and Pagrus pagrus are listed as Endan-
gered, and Bodianus scrofa and Galeorhinus galeus
as Vulnerable.

Spatial patterns of fish biodiversity

Predictive models of S, H ’, 1 − D and Δ* passed
model validation (Table 1): no residual patterns, het-
erogeneity, spatial or temporal dependence or out-
liers were detected in the final models. It was not
possible to produce a sound model for Δ because
residual analysis revealed the violation of underlying
statistical assumptions (i.e. patterns and heterogene-
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ity). The deviance explained ranged from approxi-
mately 20% (H ’, 1 − D) to >59% (Δ*, S). The highest
correlation between predicted and observed values,
for both the model building and validation data set,
was found for the model of S. Resulting GAM
smoothers are provided in Fig. S2 in the Supplement.
All 4 biodiversity indices were significantly influ-
enced by distance to sediment, where Δ* was highest
above sediment and the other indices at a distance of
≥~10 m (Fig. S2). Similarly, exposure to oceano-
graphic forces (current or swell) significantly influ-
enced most biodiversity indices, which generally
decreased with increasing exposure. Slope was
never significant and depth was only significant for
patterns of S.

Predictive maps were produced for the 4 models
that passed model validation. They illustrate the spa-
tial heterogeneity and reflect the strong influence of
the main habitat type (Fig. 2). Highest values for all
classic biodiversity indices were predicted for rocky
habitats around Faial and Pico Islands. In contrast, Δ*
was highest above sediment, and the predictive map

mainly depicted the 2 extreme ends of the predicted
range (Fig. 2, Fig. S1). Species richness increased
with depth (Fig. S2). The predictive map of 1 − D is
shown in Fig. S3 in the Supplement. It was visually
similar to H ’ because model results (i.e. smoother
estimates, Fig. S2) were nearly the same for both
indices. The map-based spatial assessment showed
that, depending on the index, high-biodiversity sites
covered one-third (S) to about half (H') of the study
area (Table 2). Of these hotspots, 54 to 68% were
represented in the existing MPA network.

Spatial patterns of vulnerability to fishing

Depth and exposure to swell significantly influ-
enced spatial patterns of the IVUL of commercial
fishes (Fig. S2). Overall, it decreased with exposure
and increased with depth. The final model explained
only 16.6% of the deviance but performed well in
validation (Table 1) and did not violate any underly-
ing statistical assumption. Thus, it was used to pro-
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Fig. 2. Predicted spatial distribution of species richness (S), Shannon index (H ’), taxonomic distinctness (Δ*) and intrinsic
vulnerability index (IVUL) of coastal fishes (subtidal habitat down to 40 m depth), in relation to the boundaries of the
existing marine protected area network (black rectangles) in 2 islands of the Azores archipelago. The IVUL includes only
commercially used species. The outline of the rocky substrate is shown as a black contour (see also Fig. 1). Note the dif-

ferent scales for the indices
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duce a predictive map of the IVUL. Maximum pre-
dicted values (51.0) were less than the maximum
observed value of commercial fish assemblages of
one transect in summer (61.4, Table 1). Map-based
analyses showed that areas with a high IVUL cov-
ered 11% of the study area (Table 2, Fig. 2). These
areas were smaller than biodiversity hotspots but
representativeness in the existing MPAs was compa-
rable (56%).

High IVUL sites coincided with high biodiversity
sites in <10% of the study area, whereas the spatial
overlap of shared hotspots that considered either S or
H ’ was high (>50%). About two-thirds (63−71%) of
these hotspots fell inside the existing MPA network,
mainly in the channel between Faial and the Pico
Islands (Table 2, Fig. 3).

DISCUSSION

Composition of fish assemblages

The coastal fish assemblage, as ex-
pected, had a high proportion of infre-
quently observed species and only
few species dominated. The commu-
nity structure was comparable to
other studies in the Macaronesian re-
gion that also used visual censuses,
such as the Azores (Harmelin-Vivien
et al. 2001, Berton cini et al. 2010),
Madeira Island (Ribeiro et al. 2005)
and the Canary Islands (Falcón et al.
1996). In general, sparids, la brids and
carangids were the most diverse
groups, and carnivores dominated the
as sem blages, whereas herbivores and

omnivores were only present at low percentages. As-
semblages in this study have about half of the species
in common with assemblages in Madeira (Ribeiro et
al. 2005) and about two-thirds with those in the Ca-
naries (Falcón et al. 1996). In general, the ichthyofau-
nas of these Macaronesian islands are more similar to
each other than to that of the Portuguese mainland
and the Mediterranean (Santos et al. 1995, Harmelin-
Vivien et al. 2001), although some species overlap.
For example, fish assemblages described in Spain
(García-Charton et al. 2004) and continental Portugal
(Henriques et al. 2013) had about one-third of the
species in common with our study. However, the di-
rect comparison between species counts of different
studies is difficult because results may be influenced
by the census design (e.g. transect length, depth and
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Index Threshold % of % 
study area protected

Species richness ≥10.10 33.2 68.4
Shannon index ≥1.39 47.3 55.5
Simpson diversity ≥0.63 44.0 53.9
Taxonomic distinctness ≥63.92 41.6 59.5
IVUL ≥50.00 11.3 55.7
IVUL + Species richness ≥50.00, ≥10.10 4.3 71.0
IVUL + Shannon index ≥50.00, ≥1.39 5.8 63.2

Table 2. Identification of biodiversity and vulnerability hotspots around Faial
and Pico Islands, Azores archipelago. Natural breaks (Jenks optimisation) of 4
biodiversity indices were used to define the most diverse sites (within the
highest of 3 classes), and an intrinsic vulnerability index to fishing (IVUL) ≥50
(Cheung et al. 2005) was used as the threshold to define the most vulnerable
sites. The percentage coverage in the study area and in the existing marine
protected area (MPA) network is indicated. For comparison, about 60% 

(35 km2) of the study area was inside the MPAs

Fig. 3. Combined hotspots (red) of high vulnerability of commercial fishes to fishing and (A) species richness or (B) Shannon
index in 2 islands of the Azores archipelago. The boundaries of the existing marine protected area network (black rectangles) 

and rocky substrate down to 40 m (grey line, see also Fig. 1) are shown
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sampling season; Harmelin-Vivien et al. 2001, Kul-
bicki et al. 2010, Henriques et al. 2013).

The average observed and predicted IVUL of com-
mercial fishes was similar to the average vulnerabil-
ity of worldwide exploited coral reef-associated
fishes (about 48 out of 100) and coastal species (about
46, Cheung et al. 2007). Cheung et al. (2007) identi-
fied that the average vulnerability of commercially
exploited fish assemblages declined due to reduced
catches of large-bodied, long-lived, late-maturing
and thus more vulnerable species, especially in
coastal regions. These are depleted more rapidly
(Lloret et al. 2008) and consequently, the community
structure shifts and proportional catches of less vul-
nerable species increase. Azorean communities may
already be showing this influence of fishing (Diogo &
Pereira 2013). Alternatively, the moderate average
IVUL may be attributed to the natural composition of
coastal fish communities which is dominated by
small-bodied, fast-growing and highly reproductive
species (e.g. Labridae, Scaridae; Harmelin-Vivien et
al. 2001, Bertoncini et al. 2010, this study). Unfortu-
nately, there is no objective way to distinguish
between these 2 hypotheses in our study. The MPAs
are not fully implemented and thus it is not possible,
for example, to compare protected with unprotected
assemblages. More studies are needed to analyse the
effects of fishing, as the results would certainly influ-
ence management strategies.

Performance of predictive distribution models

Spatially explicit distribution models were imple-
mented for a set of biodiversity indices of fish assem-
blages and the IVUL of commercial fishes. Model
validation revealed strengths and weaknesses of the
models’ performance. For example, the model of H ’
and 1 − D had a low deviance explained and a com-
paratively low correlation between predicted and
observed values, indicating that one or more impor-
tant environmental variables that influence the pat-
terns of these indices are missing. The models could
not be improved by inclusion of previously omitted
variables (i.e. during data exploration) or by consid-
ering, for instance, variable interactions. However,
included variables were highly significant, and
should not lose their importance, even if other vari-
ables are identified and used in future models. Nev-
ertheless, all other model validation steps (i.e. resid-
ual plots) were good. Ideally, all presented models
should also be tested against spatially independent
data and predicted hotspots should be validated in

situ. The resulting predictive map of Δ* only displays
the extreme ends of the predicted scale and misses
fine-scale differences between habitats, although the
model explained 60% of the deviance. It merely dif-
ferentiates between the main habitat types, viz. sedi-
ment and rock, whereas the entire sediment is char-
acterised by the same value. Fewer transects were
sampled above sediment, but model results did not
differ when soft-bottom species were excluded to
account for that bias. Similarly to the models of H’
and 1 − D, additional environmental information may
further distinguish patterns of Δ*.

Analogous to the models of H ’ and 1 − D, the
explained deviance of the IVUL model was low,
although it otherwise performed well during valida-
tion. Its weakness lies in predicting vulnerability at
the lower and upper end of the index range. How-
ever, experimental GAMs including one or more of
the environmental variables that were excluded dur-
ing data exploration did not improve the fit.

Key environmental variables

All biodiversity indices, except Δ*, increased for the
first 10 m of rocky bottom and subsequently re mained
the same. On the one hand, rocky areas are struc-
turally more complex and offer a wider range of habi-
tats and refuges than sediment, resulting in higher
fish biodiversity (e.g. García-Charton et al. 2004,
Ribeiro et al. 2005, Pittman et al. 2007). On the other
hand, distance to sediment does not merely distin-
guish between hard and soft bottom but also shows
edge effects between both habitat types (Schmiing et
al. 2013), as shown by small peaks at about 10 m dis-
tance to sediment, i.e. the transition zone. Such zones
are known to support higher biodiversity, fish abun-
dance and biomass (Friedlander & Parrish 1998,
Pittman et al. 2007) and, consequently, should also be
considered in marine spatial management.

Contrary to all other biodiversity indices, Δ* de -
crea sed with increasing distance to sediment. This
pattern is probably driven by a few species of distant
taxonomic groups (e.g. Bothus podas, Mullus sur-
muletus, rays) that were mainly sighted on sandy
bottom or at the rock−sand interface. For example,
the highest observed Δ* (≥80) was observed for tran-
sects with a maximum of 4 species above sediment.
Although Δ* was not used for further analyses in this
study, biodiversity indices based on taxonomic dis-
tinctness have been successfully used to analyse fish
assemblages. For example, Campbell et al. (2011)
studied deep-water fish communities that included
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96 species, representing 75 genera and 39 families.
However, the study area and depth range was much
larger, indicating that Δ and Δ* might perform better
if no extreme spatial and bathymetric limitations are
given. Thus, future studies in the Azores and compa-
rable regions may need to consider the entire shelf
habitat to effectively analyse patterns of taxonomic
diversity.

Concordant to other studies, the present work
highlights the influence of exposure on coastal fish
assemblages. Similarly to abundance or biomass,
biodiversity decreased with increasing degree of
exposure (Friedlander et al. 2003, Krajewski & Floe -
ter 2011, this study). Depth was only significant in
explaining assemblage richness but did not influence
other biodiversity measures. Its importance would
most probably change if habitats below 40 m depth
would be included, for instance the shelf break.
Major changes in the assemblage composition are
known to occur along that depth gradient (Menezes
et al. 2006). The use of baited remote underwater
video systems is a non-invasive method to study fish
assemblages at greater depths (Zintzen et al. 2012).
This method is currently being tested in our study
region and may enable expanding predictive model-
ling to deeper habitats in the future.

The IVUL model of commercial fishes revealed the
significance of depth. Deeper assemblages were
potentially more vulnerable to fisheries than shal-
lower ones, in agreement with studies including mar-
ine fishes worldwide (Cheung et al. 2007). Large-
bodied, slow-growing, late-maturing and thus more
vulnerable species like Epinephelus marginatus,
Muraena helena and Mycteroperca fusca (Cheung et
al. 2007, Bustos et al. 2009, Froese & Pauly 2013)
have a wide depth range, also occur deeper than
40 m (Menezes et al. 2006, Bustos et al. 2009) and
probably influence the observed pattern. On the
other hand, small- and medium-bodied, fast-growing
species with high reproductive potential that have a
low to moderate vulnerability index (Cheung et al.
2005), such as Balistes capriscus, Diplodus sargus
and Sparisoma cretense, are more abundant in shal-
low habitats (Harmelin-Vivien et al. 2001, Bertoncini
et al. 2010, Schmiing et al. 2013). Many of these spe-
cies are herbivores or omnivores, and their increased
presence in shallow areas can be explained by envi-
ronmental characteristics (Schmiing et al. 2013).
However, dominance of lower trophic guilds can also
be indicative of the removal of higher trophic levels
(i.e. carnivores) due to selective fishing pressure
(Pauly et al. 2005, Lloret et al. 2008, Diogo & Pereira
2013). Intense fisheries may change the mean trophic

level and also the average intrinsic vulnerability of
shallow assemblages (Lloret et al. 2008). Further
studies are needed to objectively identify whether
observed patterns are fisheries related or ‘natural’
(see ‘Discussion: Comparison of fish assemblages’).

Implications for marine conservation planning

The ocean’s resilience and capacity to supply
human populations with food may decrease due to a
decline of marine biodiversity (Sala & Knowlton
2006, Worm et al. 2006). Consequently, the mapping
of biodiversity is very important, and the identifica-
tion of biodiversity hotspots is often demanded in
conservation planning (e.g. Myers et al. 2000, Pa -
lumbi et al. 2009). A set of biodiversity indices was
modelled in the present study. The merits and draw-
backs of these indices are extensively discussed and
no consensus has been reached which of them is the
most suitable to assess biodiversity (Magurran 2004).
Our results indicate that the performance of predic-
tive models of classic and taxonomic biodiversity
indices varies, as do the location and size of biodiver-
sity hotspots. This emphasizes the need to clearly
 formulate the biological/ecological objectives of an
MPA (Campbell et al. 2011). For example, species
richness may be easy to estimate and interpret, but it
considers all species of a community equally and
does not weigh them, for instance, according to their
relative abundance. On the other hand, the Shannon
index is sensitive to changes in rare species, whereas
the Simpson diversity is weighted towards the most
abundant species and is sensitive to changes in com-
mon species (Nagendra 2002, Magurran 2004).
These classic biodiversity indices are sensitive to
sample size, and may indicate equal biodiversity of
assemblages with the same number of species that,
in fact, are different (Warwick & Clarke 1995, Ma -
gurran 2004). For example, an assemblage consisting
of distantly related species (e.g. different families or
phyla) is more diverse than an assemblage composed
of similar taxa (e.g. species of the same family). Tax-
onomic biodiversity indices overcome this weakness
by considering the average evolutionary distance
between species (Warwick & Clarke 1995, Clarke &
Warwick 1998). However, they were not as efficient
as the other indices in this case study. These findings
should be verified on a larger scale before generalis-
ing conclusions. However, different biodiversity indi -
ces provide complementary information about the
community structure and, consequently, conserva-
tion planning may benefit from a combined use of
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several indices (Sala & Knowlton 2006, Campbell et
al. 2011).

Predicting patterns of biodiversity indices may be a
valuable addition to the utilisation of individual spe-
cies distribution maps. Indices can integrate a variety
of taxa simultaneously and, clearly, it would be more
effort to model the same set of species individually
and combine resulting distribution maps to assess the
biodiversity within an ecosystem. Future work may
compare results of both approaches and assess their
strengths and limitations. Nevertheless, spatial distri-
bution patterns of single species may support the
designation of appropriate management plans (e.g.
Cañadas et al. 2005, Bellido et al. 2008, Schmiing et
al. 2013). For example, threatened or highly mobile
species may benefit from the protection of previously
mapped, ecologically important areas/essential habi-
tats (e.g. Bellido et al. 2008, Game et al. 2009, Santora
& Veit 2013). Individual species distribution maps
were not integrated in the approach presented here
because no sound models could be established for
the 5 threatened species. Ultimately, however, the
conservation objective will guide the choice of using
single species and/or biodiversity indices. Addition-
ally, the cultural valuation of different taxa will influ-
ence the selection of target species, if societal prefer-
ences are also considered in conservation planning
(Ressurreição et al. 2012).

The IVUL is a straightforward method to study the
sensitivity of fish assemblages to exploitation. It can
be used to support site selection of fisheries-related
MPAs. Spatially explicit analyses were based on the
mean of the IVUL of commercial species, weighted
by their abundance. Excluding non-commercial spe-
cies, which typically had the lowest vulnerability,
reduces the risk of calculating a non-representative
IVUL of the assemblage. Alternatively, vulnerability
categories defined by Cheung et al. (2005) may be
used to weigh species differently and, for example,
give more weight to the most vulnerable species.
IVUL increases with depth, obviously highlighting
the importance of protecting deeper habitats. Yet,
shallow-water assemblages still may need to receive
special attention for protection, especially (1) when
coastal shelf habitats are limited in size and isolated
from others by deep waters, such as in oceanic
islands (Santos et al. 1995), and (2) considering the
high cumulative impact of human activities in coastal
ecosystems (Halpern et al. 2008). These habitats hold
important nursery grounds (Nash et al. 1993), re -
cruitment sites (Afonso et al. 2008) and adult habitats
(Afonso et al. 2011). If pressure on these already con-
strained habitats is increased by fishing, species have

no alternative habitat for re covery. Consequently, a
lower vulnerability index at shallower depths does
not automatically imply a better recovery of fish
assemblages from fishing, and a systematic manage-
ment of this habitat and its resources is advisable.
Future studies may also integrate distribution pat-
terns of juvenile fishes to further improve manage-
ment. Similarly, other measures, such as IUCN cate-
gories (IUCN 2013) or the NatureServe climate
change vulnerability index (Young et al. 2010) might
be used to extend the presented approach to other
taxa and habitats.

MPAs that serve multiple objectives are increas-
ingly implemented, for example to benefit biodiver-
sity conservation and fisheries simultaneously (e.g.
Roberts et al. 2003, Rice et al. 2012, Green et al.
2014). Accordingly, biodiversity patterns alone may
not represent well the areas of higher need for con-
servation. Integrating the intrinsic vulnerability to
fishing in spatial planning may result in a more pre-
cise identification of priority sites. Consequently,
areas with a high IVUL were overlaid with high bio-
diversity sites to identify multi-objective hotspots.
Such shared hotspots were substantially smaller than
biodiversity or fishing vulnerability hotspots sepa-
rately, further highlighting their need for conserva-
tion. All hotspots (i.e. individual and shared) were
well represented in the existing MPA network, and
were above commonly recommended targets for
MPA establishment (e.g. 30% of each marine biome
or habitat, World Parks Congress 2003). On the other
hand, a comparable amount of the study area (60%)
is already integrated in the existing MPA network,
relativising these numbers. However, the upper
range of promoted targets should be regarded as a
minimum (Gladstone 2007), and, more importantly,
protection of complete hot spots may be advisable to
ensure best ecological functioning and delivery of
marine goods and  services. Protected hotspots were
mainly in the channel between the islands. Around
Faial, however, they largely fell outside the existing
MPAs. These hotspots should receive particular at -
tention in future decision making processes. Adap-
tive management processes, for example, may use
results of this study to adjust site selection of the
existing MPA network.

Instead of targeting high-diversity sites as was the
strategy of this study, alternatively, low-diversity
sites may be analysed. These may have an even
greater need for protection if the emphasis of an
MPA is on ecosystem functioning (Roberts et al.
2003). Such sites may be less variable, resilient and
resistant against environmental changes, including
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anthropogenic influences (Chapin et al. 2000, Worm
et al. 2006, Stachowicz et al. 2007) and, arguably,
may lead to more sensitive assemblages. This applies
particularly when assemblages also exhibit a high
vulnerability to fishing. However, in addition to fish
biodiversity and vulnerability, other spatial informa-
tion may influence the selection of priority sites for
conservation as well, such as human impacts
(Roberts et al. 2003, Halpern et al. 2008, Staples &
Hermes 2012) or the importance of an area for
tourism (Dudley 2008, McCook et al. 2010).

Certainly, the presented classification and identifi-
cation of hotspots may be further adapted. The study
area was considered as ‘a single unit’. Yet, it may be
reasonable to identify hotspots in different biomes
and/or biotopes to facilitate choosing a range of spe-
cies with different ecological functioning and, vice
versa, to reduce the risk of selecting redundant sets
of species. In the Azores, stratification into biomes
would be vital, for instance, if deep-sea habitats and
seamounts were to be integrated in the analysis. Fur-
thermore, other criteria can be used to define hotspot
thresholds. Hotspots, for example, may contain a cer-
tain percentage of the target species or grid cells with
the highest values (Myers et al. 2000) or sites with
values >1 SD above the mean (Santora & Veit 2013).
The choice of a criterion ultimately depends on the
respective case study, and it will always have some
degree of subjectivity (Cayuela et al. 2011).

This study demonstrates the utility of predicting
the distribution of biodiversity indices and vulnera-
bility of marine fishes to fishing in the context of mar-
ine conservation planning. Predictive models help to
improve the knowledge about biological and ecolog-
ical spatial patterns, if modelling techniques are thor-
oughly implemented and are in concordance with
statistical assumptions. Certainly, in situ surveys
should be part of the analyses to complete model
 validation. Even in data-scarce situations, that other-
wise might only have point-wise information, model-
ling results can be used to produce comprehensive
maps. These can support the spatial assessment of
MPA networks and the identification of conservation
hotspots (Sundblad et al. 2011, this study). Given
their clarity and straightforward application, predic-
tive maps are proposed as an important tool in spatial
planning.

CONCLUSIONS

Predictive modelling can deliver maps that may
support the identification of priority sites for conser-

vation and spatial assessments of MPA networks.
Results will be a contribution to future spatial man-
agement activities in the region, but will also assist
MPA design tasks worldwide by introducing innova-
tive methods for the application of predicted fish vul-
nerability in support of spatial and fisheries manage-
ment. Future work may be expanded to a greater
range of habitats and depths, such as the entire shelf,
to analyse the effects of different biotopes on marine
assemblages and, most certainly, to improve the
model performance of some of the studied parame-
ters. Furthermore, predictions should be validated in
situ. MPA design and adaptive management pro-
cesses may use the presented approach, or similar
ones, to refine the localisation of hotspots within
larger areas of elevated conservation value, i.e. to
define hotspots within hotspots. It is a simple and
straightforward approach to identify candidate sites
for MPA networks that benefit both fisheries man-
agement and biodiversity conservation.
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