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INTRODUCTION

Under the influence of climate change, Arctic sea-
ice has been retreating over recent decades, with
break-up becoming earlier while freeze-up becomes
later (Gagnon & Gough 2005, Hochheim & Barber
2010, Hochheim et al. 2010, Stammerjohn et al.
2012). Arctic seabirds depend on the presence of
open water to feed, and consequently spring ice
break-up and clearance of sea-ice sets the timetable
for subsequent breeding activities (Gaston et al.
2009, Smith & Gaston 2012). Spring ice break-up

may also be influential in determining the timing of
other events within the food web (e.g. phytoplankton
blooms: AMAP 2011; ringed seal dispersal: Cham-
bellant 2010), hence affecting seabird foraging suc-
cess and potentially population dynamics (Gaston et
al. 2009, Smith & Gaston 2012). The timing of both
break-up and freeze-up likely affect the ecology of
Arctic seabirds, but, of the 2, the timing of ice break-
up is the most likely to affect reproduction (Gaston et
al. 2012). This is especially true for those species tied
to returning to large colonies which have sometimes
existed in the same location for centuries (e.g. Gaston
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& Donaldson 1996) and for which emigration be -
tween colony sites is likely to take generations,
rather than happening from year to year (Gaston
2004). Birds adopting this conservative strategy with
respect to nesting location cannot easily adjust to
changing conditions by shifting their breeding site,
necessitating other adjustments to changing environ-
mental conditions.

To understand the likely consequences for Arctic
seabirds and for their prey organisms of the climate
changes currently underway, we need to better
understand the role played by ice break-up and
other climate variables in determining inter-year
variations in prey availability. In this paper we
examine a 33 yr dataset relating to the breeding
biology and nestling diet of thick-billed murres Uria
lomvia in northern Hudson Bay, Canada, to explore
the role of environmental conditions in determining
the timing of breeding and changes in diet that
have already been identified (Gaston et al. 2003,
2012) and the effects of such changes in diet on
nestling growth.

Seabird diets can be useful for interpreting chan -
ges in prey populations (e.g. Barrett 2002, Deguchi
et al. 2004, Hedd et al. 2006, Piatt et al. 2007,
Springer et al. 2007, Renner et al. 2012). Most stud-
ies are based on nestling diets as these can be
observed or sampled non-destructively (Barrett et
al. 2007). The food delivered to nestlings in many
cases diverges from the adult diet, especially in spe-
cies where food is transported externally, held in
the bill, in which case larger prey items, providing
greater efficiency in transport, make up a higher
proportion of food items in nestling diets (Thaxter et
al. 2013). Although nestling and adult diets may not
be identical they normally encompass a similar
range of prey organisms, and individual specializa-
tions tend to be reflected in both adult and offspring
diets (Woo et al. 2008, Provencher et al. 2013). A
key result from numerous seabird dietary studies is
that seabird productivity is associated with one or a
few key species, and that when those key species
become less available the diet becomes more diver-
sified (Hedd et al. 2006, Schrimpf et al. 2012, Hatch
2013).

The physical and biological oceanography of
Hudson Bay is poorly characterized and monitored
relative to many other parts of the Arctic (Hochheim
et al. 2010, Stewart & Barber 2010). Therefore,
information from seabirds may be particularly valu-
able in detecting changes in Hudson Bay marine
ecosystems. Furthermore, the direct entry of air
masses from the Pacific and Atlantic Oceans into

the Hudson Bay is buffered by mountains and dis-
tance, and there are few topographical features
within the region to modify local climates (Maxwell
1986, Stewart & Barber 2010), leading to a homoge-
nous Arctic ecosystem relatively unaffected by
external influences. Ice freeze-up and break-up
dates in the Hudson Bay are primarily associated
with local surface air temperature and ocean circu-
latory processes (Hochheim et al. 2010, Stewart &
Barber 2010), although global processes — particu-
larly, energy waves associated with Pacific and
Atlantic oscillations — do impact freeze-up dates in
the Hudson Bay via their influence on air tempera-
ture (Hochheim & Barber 2010, Hochheim et al.
2011, Gaston et al. 2012). Likewise, because the
Hudson Bay is only connected to the Arctic and
Atlantic Oceans via small straits at its northern
edge, marine communities are impoverished rela-
tive to other marine environments at similar lati-
tudes, and changes in marine communities through
the immigration of more boreal elements are likely
to be slow in occurring.

Previous publications relating to older subsets of
the same data have dealt with nestling diet changes
that occurred during a period of step change in
northern Hudson Bay ice conditions (Gaston et al.
2003, 2012) and with changes in the overall diet
expressed as principal components within a multi-
variate framework (Smith & Gaston 2012). In this
paper we addressed (1) how individual prey taxa
and overall prey diversity are affected by ice condi-
tions, the timing of ice conditions relative to breed-
ing, sea-surface temperature (SST) and air tempera-
ture; and (2) how nestling growth is impacted by
diet variation and by changes in timing of breeding.
In addition, we examined whether the general prin-
ciple that diet diversifies when preferred prey is
scarce (Esterbrook & Dunham 1976, Pyke et al.
1977, Pyke 1984) applies to these marine predators.
In doing so, we attempted to infer causality within a
hierarchy of interrelated variables, based on the
assumption that physical changes precede biological
changes and that birds acquire prey by adopting
particular feeding strategies that may not be optimal
in a given year.

MATERIALS AND METHODS

Observations were made at the thick-billed murre
Uria lomvia colony near Cape Pembroke, Coats
Island (62.947° N, 82.015° W), during 1981, 1984−
2011 and 2013.
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Diet

Diet data were derived from watches carried out to
observe prey delivered to nestlings. During 1981 and
1984−1987, fish were observed opportunistically, as
and when work and conditions allowed. From 1988
onwards most observations were made during 3 or
more all-day watches carried out at evenly spaced
intervals over the chick-rearing period (feeding
watches), although additional opportunistic records
were also included. Up to 1992 many sightings were
made through binoculars at ranges of up to 40 m,
and at such distances some taxa could not be accu-
rately distinguished. From 1993 onwards all feeding
watches were carried out from a blind where the
majority of deliveries observed took place within 5 m
of the observer, allowing accurate identification of
>80% of prey brought in. Observers had binoculars,
but deliveries took place very rapidly, and the major-
ity of prey items recorded from 1993 onwards were
identified with the naked eye. Because of the dis-
tance at which observations were made, up to 1992
many deliveries were classified as simply ‘sculpins’
(Cottidae; 4 genera known from the colony; Elliott &
Gaston 2008) or ‘blennies’ (Stichaeidae, Pholidae,
Zoarcidae; 7 genera; Elliott & Gaston 2008). The
occurrence of prey taxa was scored for each year as
the proportion (percent by number) of all prey de -
liveries identified in that year (Table S1 in the Sup-
plement at www.int-res.com/articles/suppl/m513
p211_ supp. xls). More than 95% of deliveries con-
sisted of a single prey item. Occasionally >1 item was
delivered, but in such cases the items were usually of
the same species. In the rare cases (<1%) where
>1 taxon was delivered at once, the 2 taxa were both
counted. For some analyses the proportions of the 3
schooling fishes (Boreogadus, Mallotus and Ammo -
dytes) were combined.

The diversity of prey delivered was expressed using
the Shannon diversity index: H ’ = −Σpi × ln(pi), where
pi is the proportion of all items delivered constituted
by species i (Shannon 1948, Hill 1973). The index was
calculated for years from 1993 on wards, when differ-
ent genera of stichaeids, zoarcids and pholids were
identified. For inclusion in principal component
analyses (PCA; see ‘Statistical analyses‘), we estima -
ted H ’ for the period 1988−1992 (based on the
reduced diversity of fish identified in 1988−1992) by
interpolating the actual value of H ’ from the relation-
ship between the actual H ’ and reduced H ’ from the
1993−2013 dataset (R2 = 0.97). Sculpins were lumped
in all analyses, as the identification of different genera
was considered less reliable than other taxa.

Timing of breeding

Each year a sample of 60 to 100 (mean = 87) murre
eggs was marked during incubation and visited
every 2 d to ascertain the date of hatching. The
median date of hatching for this sample of eggs was
used as an index of timing of breeding (‘median
hatch’, 1986 onwards), as well as the difference
between the median date of hatching and the date of
50% ice clearance from the local area, ‘Northern
Hudson Bay Narrows’ (‘relative date of hatch’; see
Gaston et al. 2012 and next subsection). Nestlings
were weighed every 2 to 3 d and the mass on Day 14
(hatching = Day 1), either measured directly or esti-
mated by linear interpolation, was used as a measure
of nestling growth rate. The earliest age at which
nestling murres begin to depart from the colony vol-
untarily is 15 d, so mass at Day 14 is unbiased by
departure age (Gaston & Hipfner 2000). Inter-year
comparisons were based on the mean nestling mass
at Day 14, based only on nestlings hatching within
7 d on either side of the median date of hatching.

Climate and ice conditions

Ice conditions were derived from the Canadian Ice
Service ice archive using the ‘Icegraph 2.0’ analysis
tool (http://iceweb1.cis.ec.gc.ca/IceGraph20). Local
ice break-up was estimated from the Canadian Ice
Service region ‘Northern Hudson Bay Narrows’
(NHBN), while regional ice break-up was based on
the ‘Hudson Bay’ region (Fig. 1). Ice cover in both
regions changes from ~100% in winter to ~0% in late
summer (August−September). Break-up commences
in May (Prinsenberg 1986). Indices of annual ice
 conditions were derived from the extent of ice in
each region on 2 July, the date closest to having an
 average of 50% ice cover during the period
1971−2012 for the 2 areas used. Sea-surface temper-
atures (SST) were obtained from the NOAA website
http:// nomad3.ncep.noaa.gov/png, using the area
bounded by 61−65° N and 80−84° W and averaging
monthly values for June and July. Local air tempera-
tures were obtained from the Environment Canada
monitoring station at Coral Harbour, the closest cli-
mate station to the field site. Mean monthly tempera-
ture for June was used in modeling median date of
hatching, as the murres arrive at the colony in late
May and most have laid their eggs (and hence fixed
the timing of hatching, the incubation period being
very constant; Gaston & Hipfner 2000) by the end of
June (de Forest & Gaston 1996).
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Statistical analyses

Models were constructed using the
‘Best Subsets’ module of Statistica
7.1’s GLZ routine (Statsoft 2005), with
model suitability determined from
comparison of AICc values (Akaike
information constants for small sam-
ples), following the recommendations
of Burnham & Anderson (1998) and
Anderson (2008). All models contain-
ing more variables than the top
ranked model were discarded, as well
as all multiple-variable models with
ΔAICc > 3. AICc weights (wi) were cal-
culated based on the remaining mod-
els. Three types of model were con-
sidered: (1) The median date of
hatching was modeled for the effect
of year, SST, mean June air tempera-
ture and both local and regional ice
cover, as well as a 2-category variable
‘ice phase’, divided into years to 1995
and years from 1996 onwards, to rep-
resent the step change in ice condi-

tions in Hudson Bay in the mid-1990s, when ice cover
in late June dropped from an average of ~70 to
~50%, as noted by Gaston et al. (2012). (2) The pro-
portions of different prey taxa in the diet were mod-
eled using the same variables plus date of hatching
in relation to date of 50% ice (relative hatch date) but
omitting June air temperature as unlikely to be
directly linked to foraging conditions. The first round
of analyses showed that regional ice cover did not
enter into any top model so, given the close correla-
tion with local ice cover and SST, final analyses were
carried out using only year, ice phase, local ice cover,
SST and relative date of hatching. Only prey taxa
making up >1% of diet items, averaged over all
years, were analysed (this resulted in the exclusion of
7 taxa identified in >1 yr). (3) Lastly, 14 d nestling
mass was modeled in relation to ice phase, relative
date of hatching, June air temperature (which could
influence nestling energy balance) and the propor-
tions of all prey taxa averaging >3% of prey annually
(Boreogadus, Mallotus, Ammodytes, ‘all blennies’,
‘all sculpins’ and amphipods The misto). All these
taxa were identified in all years when 14 d mass was
measured. Full details of model comparisons are
given in  Table S1 in the Supplement.

We also examined the data within a multivariate
framework because we anticipated that many of the
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Fig. 1. Areas used in the calculation of ‘local’ (Northern
Hudson Bay Narrows , NHBN — double-hatched) and ‘re -
gional’ (Hud son Bay — single-hatched) ice cover, as defined
by the Canadian Ice Service (http:// iceweb1. cis.ec.gc.ca). 

A: Coats Island colony; B: Coral Harbour

Variable All years Years after 1995
n (yr) r p n (yr) r p

Physical
Local ice cover 30 −0.46 0.01 17 −0.27 0.29
Regional ice cover 30 −0.44 0.02 17 −0.11 0.66
June−July SST 29 0.13 0.49 17 −0.13 0.61
June air temperature 30 0.27 0.17 17 −0.15 0.58

Diet
Mallotus 30 0.81 <0.001 17 0.57 0.02
Boreogadus 30 0.77 <0.001 17 −0.58 0.01
Ammodytes 30 0.48 0.01 17 0.08 0.76
Leptoclinus 24 0.12 0.61 17 0.24 0.35
Eumesogrammus 24 −0.27 0.24 17 −0.09 0.74
Gymnelus 24 −0.1 0.66 17 0.31 0.22
Sculpins 30 −0.55 <0.01 17 −0.36 0.16
‘Blennies’ 30 −0.08 0.68 17 0.23 0.37
Themisto 30 −0.05 0.79 17 0.03 0.9
Gonatus 30 0.12 0.52 17 −0.28 0.28
Schooling fish 30 −0.01 0.94 17 −0.06 0.83

Timing of breeding
Median date of hatch 27 −0.46 0.01 17 0.09 0.72
Relative date of hatch 27 0.37 0.06 17 0.04 0.87

Table 1. Pearson correlation coefficients and probabilities for time trends in
physical and diet variables examined over the period 1986−2013 (no data for
2012). Correlations significant at p < 0.05 are shown in bold. SST: sea-surface 

temperature
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prey items and climatic variables would covary due
to similar underlying processes. We calculated a PCA
for arcsine-transformed diet components. We used
the PCA primarily as a visualization tool, especially
within the context of examining the components and
dimensionality of diet diversity. We only included
those axes with eigenvalues >1.0. To examine for cor-
relations between dietary components and climatic
variables within their respective multivariate spaces,
we then conducted a redundancy analysis (RDA). For
the multivariate analyses, we only used data from
1988 to 2013, as that was the period when fish were
identified to detailed taxonomic groupings. We only
included continuous variables within the RDA, and
therefore excluded ‘ice phase’ as a climatic variable.
We used R 2.14.2 for all multivariate analyses.

RESULTS

Inter-correlations and time trends

Areas of local (NHBN) and regional (Hudson Bay)
ice cover were strongly correlated over the period
1981−2013 (r31 = 0.66, p < 0.001), but there was much
variation in local ice cover not explained by the
larger regional situation. Both decreased signifi-
cantly over the period of the study (Table 1, Figs. 2 &
3) and both were correlated with June to July SST
(local r31 = −0.63, regional r31 = −0.54, both p < 0.001).
Taken over the entire period, Mallotus and Ammo -
dytes increased, while Boreogadus and sculpins
decreased (Table 1, Table S1 in the Supplement).
After 1995 there were no significant time trends in
the environmental variables (ice, SST; Table 1,
Fig. 2), timing of breeding (median hatch, relative
hatch) or any diet component other than Mallotus
and Boreogadus.

Timing of breeding

Median date of hatching of thick-billed murre Uria
lomvia nestlings was correlated with June to July SST
(r25 = −0.74, p < 0.001) and ice cover on 2 July (regional
and local, both r25 = 0.66, p < 0.001). The top best sub-
sets model for median hatching included ice phase, re-
gional ice cover and SST (wi = 0.48, adjusted R2 = 0.69,
p = 0.001; Table 1). A model including only ice phase
and SST was the only other model within ΔAICc < 2
(wi = 0.36), and SST was included in models comprising
a combined AICc weight of >0.99. The top-ranked
model had an AICc weight 40 times greater than the

highest single-variable model (SST). There was no
trend in date of hatching after 1995 (Fig. 3).

Despite the correlation between median date of
hatching and ice cover on 2 July, estimated change in
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Fig. 2. Trends in primary physical variables and principle
prey species, expressed as percent deviations from the
mean of annual indices: (a) local ice cover on 2 July, July
sea- surface temperature (SST) and mean June−July air tem -
peratures at Coral Harbour; (b) schooling fish; and (c) ben-

thic fish and Themisto
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the former over the study period (~5 d, range: 19−
31 July) was much less than for the change in the
date of 50% ice cover (~11 d, range: 9 June−15 July).
Relative date of hatching was negatively correlated
with local and regional ice cover (r25 = −0.55 and
−0.76, respectively, both p < 0.01), but was only mar-
ginally affected by year (r25 = −0.37, p = 0.06).

Diet

In years after 1992 (when different benthic genera
were identified separately), proportions of Leptocli-
nus, Gymnelus, Eumesogrammus and ‘all sculpins’
were all positively correlated with one another (all r18

> 0.52, all p < 0.02; Fig. 4) and Leptoclinus, Eumeso-
grammus and ‘all blennies’ were positively corre-
lated with Themisto (all r18 > 0.54, all p < 0.02; Fig. 4).
Among the prey taxa for which best subsets models
were run, 3 yielded no worthwhile model fit (R2 < 0.1,
model p > 0.1; Table 2): the stichaeid (prickleback)
Leptoclinus, the squid Gonatus and the amphipod
Themisto. Among the other 6 taxa modeled, none of
the top models, or those within ΔAICc < 2, included
regional ice cover, whereas 5 included local ice cover
and 5 in cluded the step variable ‘ice phase’ (Table 2).
Despite the inclusion of the ice phase variable, year
entered into the top models for Boreogadus and Mal-
lotus, the 2 most common taxa in the diet, and rela-
tive date of hatching was included in the top models
for Mallotus and ‘all blennies’. June SST was in -
cluded in the top model for Boreogadus, and was
the only variable included for Eumesogrammus
(Table 2).

Among the 6 taxa with models yielding R2 > 0.1,
Mallotus increased over time, while Boreogadus
decreased. Boreogadus, Mallotus and Ammodytes
increased with local ice cover, while ‘all blennies’
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and sculpins decreased (Table 2). Those taxa which
increased with ice cover decreased with relative
hatch date and vice versa, presumably because of the
strong correlation between local ice cover and rela-
tive hatch, so Mallotus decreased in the diet as the
time between hatching and 50% local ice cover
increased, whereas ‘all blennies’ increased.

Shannon’s H’ was negatively correlated with all 3
species of schooling fish (significant only for Mallo-
tus, r18 = 0.58, p = 0.007) and positively correlated
with all other taxa (p < 0.01 for all taxa except Gym-
nelus, for which the relationship was not significant).
When diet diversity was modeled in relation to phys-
ical variables (year, ice, SST) and relative date of
hatching, only relative date of hatching appeared in
the top model (wi = 0.57), and the model including
both relative date of hatching and year was within
ΔAICc < 2 (wi = 0.20). However, if the proportion of
schooling fish was included, the top model included
year, local ice cover, SST and sum of schooling fish,
with wi = 0.97, and no other models were within
ΔAICc < 2.

Chick mass at 14 d was correlated with the propor-
tion of Leptoclinus, Gymnelus and ‘all blennies’ in
the diet (all r = 0.45, p = 0.03), but not with year or
either ice cover variable. The top best subsets model
contained only ‘all blennies’ (Table 2). When the pro-
portions of the 3 schooling genera were pooled, the
resulting top model included both relative hatching
date and ‘all blennies’, with a higher R2 (0.31 vs. 0.17)
and the model including ‘all blennies’ and Gonatus
was also well supported (ΔAICc < 2). None of the non-
prey variables (year, June air temperature, relative
date of hatching) gave wi > 0.05.

Within the multivariate analyses (Fig. 4), diet
could be decomposed into 3 principal axes, each
explaining >10% of the variation in diet (Table 3).
Variation in the proportion of secondary prey items
(benthic prey and invertebrates) was associated
with PC1 (Table 2, Fig. 4). Variation in the composi-
tion of primary, schooling prey was associated with
PC2 (Boreogadus relative to Mallotus−Ammodytes)
and PC3 (Mallotus relative to Ammodytes; Table 3,
Fig. 4). The Shannon diversity index was heavily
loaded on PC1, demonstrating that it was primarily
linked to variation in the proportion of secondary
prey items (benthic and invertebrate prey; Table 3,
Fig. 4).

Climate variables significantly explained variation
in diet (permutation test: F5,19 = 4.05, p = 0.005, 199
permutations). Climate variables that explained diet
components could be decomposed into 2 main axes.
The main correlate of diet was year, which
explained primarily the variation in Boreogadus and
Mallotus (Fig. 5). The second axis was directly asso-
ciated with climate variables, especially lo cal ice
cover, which in turn was correlated with SST and
hatch date. That axis primarily re flected variation in
diversity. Diversity was high when ice cover was
low.

217

–0.4 –0.2 0.0 0.2 0.4

–0.4

–0.2

0.0

0.2

0.4
a

b

Principal Component 1

P
rin

ci
p

al
 C

om
p

on
en

t 
2

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999

2000

2001

2002

2003

20042005
2006

2007
2008

2009

2010

2011
2013

–4 –2 0 2 4

–4

–2

0

2

4Boreogadus

Mallotus
Ammodytes

Leptoclinus

Gymnelus

Eumesogrammus

Cottidae

Themisto
Gonatus

H’

–0.4 –0.2 0.0 0.2 0.4

–0.4

–0.2

0.0

0.2

0.4

Principal Component 3

P
rin

ci
p

al
 C

om
p

on
en

t 
4

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999

2000

2001

2002

2003

2004

2005

2006

2007

2008
2009

2010
2011

2013

–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

Boreogadus

Mallotus

Ammodytes

Leptoclinus

Gymnelus

Eumesogrammus

Cottidae

Themisto

Gonatus

H’

Fig. 4. Principal components analysis of thick-billed murre
Uria lomvia diet variation at Coats Island, Nunavut 1988−
2013. Principal Component 4 had an eigenvalue <1.0
(eigenvalue = 0.79; percentage of variation explained = 8%)
and therefore was not included in the interpretation. SST: 

sea-surface temperature



Mar Ecol Prog Ser 513: 211–223, 2014

DISCUSSION

Timing of breeding by the
murres Uria lomvia at Coats
Island was associated with ice
phase, regional ice conditions
and SST, with SST apparently
the strongest driver. Although
regional ice cover was more
important than local ice cover in
models predicting timing of
breeding by the murres, the
proportions of different prey
taxa in the diet was more influ-
enced by local ice cover, being
included in all top models,
except those for the zoarchid

(eelpout) Gymnelus and the stichaeid (prickleback)
Eumesogrammus. That result was also backed up
by the strong support for ice cover in relation to diet
diversity within the redundancy analysis. Ice phase
also appeared in top models for 5 taxa, and given
the small number of ‘pre-step’ years included in the
sample of years analysed for individual benthic gen-
era, its exclusion from top models for Leptoclinus
and Eumesogrammus is not surprising. The promi-
nence of this variable among factors affecting murre
diets confirms the importance of the step-change in
marine ecosystems that occurred in Hudson Bay in
the mid-1990s (Gaston et al. 2012), a change that
also created a strong signal in freshwater ecosys-
tems in the Hudson Bay lowlands (Rühland et al.
2013). Similarly, in the Antarctic, ice conditions
were more important than year effects for the diet of
Adélie penguins (Pygoscelis adeliae) monitored over
7 yr, with more fish consumed during years of lower
ice cover (Ainley et al. 2003). Timing of hatching
relative to the date of 50% ice cover appeared in
the top-ranked models for Mallotus (capelin) and
‘all blennies’, but date of hatching itself was not
included in any, supporting the idea of Gaston et al.
(2012) that timing of breeding per se is less impor-
tant than timing relative to ice break-up, for the
biology of the murres.

To date, there is little evidence that birds are
adjusting their timing of breeding to match changes
in ice conditions. An initial advance in timing of
breeding in the period up to 1996 (Gaston & Hipfner
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Species Common name PC1 PC2 PC3

Variation explained (%) 37 26 13
Boreogadus saida Arctic cod 0.138 0.568 −0.188
Mallotus villosus Capelin 0.106 −0.512 0.373
Ammodytes hexapterus Sandlance 0.174 −0.426 −0.417
Leptoclinus maculatus Daubed shanny −0.426 0.234 0.139
Gymnelus viridis Fish doctor −0.283 0.296 0.443
Eumesogrammus praecisus Fourline snakeblenny −0.388 −0.191
Cottidae Sculpin −0.373 0.225
Themisto libellula Amphipod −0.372 0.223
Gonatus fabricii Squid −0.215 −0.539
Shannon diversity index (H ’) −0.451 −0.170 −0.222

Table 3. Loadings from a principal components (PC) analysis of diet composition for
thick-billed murres Uria lomvia at Coats Island, Nunavut, 1988−2013. Only axes
with eigenvalues >1.0 are shown; no other axis explained >10% of the variation in 

diet. Loadings with absolute values <0.1 are not shown
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1998) was followed by relative stasis. This situation
contrasts with observations at Prince Leopold Island,
in the high Arctic, where there was a strong correla-
tion between date of 50% ice cover and date of lay-
ing by thick-billed murres (Hipfner et al. 2005). The
lack of correlation between ice conditions and timing
of breeding means that the difference between date
of 50% ice and date of hatching (relative hatch date)
has increased, although the significance is marginal
(p = 0.06).

The current analysis did not confirm the previous
suggestion that a decrease in Boreogadus in the diet
caused decreased nestling growth (Gaston & Hipfner
1998). It appears that during the period of rapidly
diminishing ice cover in the 1990s, murres may have
had difficulty adapting their foraging behaviour to
the changing spectrum of prey, causing a reduction
in the amount of food delivered to nestlings, either
through a reduced rate of delivery or through the
delivery of smaller or less nutritious meals. Subse-
quently, either they have become more successful at
foraging on capelin Mallotus, or capelin has be come
more abundant locally, because post-1995 there was
no relationship between nestling mass and the pro-
portion of Boreogadus delivered. Chick 14 d mass in
several years after 2000 was high relative to that in
the early 1990s.

Year entered into the top models for the 2 main
prey taxa, Mallotus and Boreogadus, suggesting that
trends in these populations over time were, to some
extent, independent of year-to-year fluctuations in
ice conditions. Likewise, in the multivariate ap -
proach, the main environmental variable influencing
diet composition was year, and that was caused pri-
marily by changes in the proportions of Mallotus and
Boreogadus. This is not surprising, because individu-
als of both genera delivered by murres to nestlings
were >1 yr old and therefore availability probably
would have been partially related to conditions in
previous years. Smith & Gaston (2012) found that
detrended diet, as represented by PC1 and PC2 in a
principle components analysis, was affected prima-
rily by local SST, with the PCs heavily weighted by
the main prey species, Mallotus and Boreogadus. In
the current study, year was not included in any top
models for benthic fish (sculpins, ‘all blennies’, Lep-
toclinus, Gymnelus, Eumesogrammus), suggesting
that there has been no secular trend in the availabil-
ity of these fish. The importance of ‘all blennies’ in
models (and overall diversity within the multivariate
analyses) relating to chick mass at 14 d suggests that
these fishes, of diverse phylogeny but all benthic and
often associated with the kelp Laminaria spp. (Cairns

1987, Scott & Scott 1988), tend to be taken more often
in years when schooling prey (Boreogadus, Mallotus,
Ammodytes) is less available than usual. This hypo -
thesis is supported by the positive correlations
among all the non-schooling prey taxa (benthic fish,
as well as the epipelagic amphipod Themisto).
Assuming these resources are relatively stable from
year to year, it appears that when schooling fish are
not adequately available, the Coats Island murre
population diversifies its diet to include a variety of
prey types, but especially those associated with bot-
tom habitat. A similar pattern was observed in com-
mon murre Uria aalge diets in California (Ainley &
Boekelheide 1990, Ainley et al. 1996). These obser-
vations support theoretical predictions that diet will
diversify as preferred species become harder to find
(Estabrook & Dunham 1976, Pyke et al. 1977, Pyke
1984). The fact that diversity has declined over time
apparently reflects the fact that Mallotus has contin-
ued to increase in the diet.

The most important parameter associated with
variation in diet, as measured by loadings on the first
principal component (Table 3), was the proportion of
secondary prey items (benthic fish and inverte-
brates). A similar analysis examining average energy
content delivered to offspring per year (Table 3 in
Smith & Gaston 2012) also showed a strong loading
of invertebrates and benthic prey on PC1, suggesting
that high levels of secondary prey items are associ-
ated with low-energy delivery rates. The second-
and third-most important parameters associated
with variation in diet, as measured by loadings on the
second and third principal components (Table 3),
were the proportion of the schooling prey items
 Boreogadus, Mallotus and Ammodytes. Years that
were low in Boreogadus tended to be high in both
Mallotus and Ammodytes (PC2), but, within low-
 Boreogadus years (PC3), years with a high propor-
tion of Ammodytes were characterized as also having
a high proportion of deep-water secondary species
(Gonatus and Eumesogrammus), and years with a
high proportion of Mallotus also had a high propor-
tion of shallow-water secondary species (Gymnelus).
In high-Mallotus years gravid Mallotus were ob -
served being fed to nestlings (Elliott et al. 2009a).
Perhaps foraging behaviour during high-Mallotus
years involved the capture of spawning fish and asso-
ciated foraging in shallow, near-shore environments,
with the consequence that other shallow-water prey
were captured disproportionately. In contrast, forag-
ing behaviour during high-Ammodytes years may
have involved foraging in deeper water for open-
water schools.
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Several benthic fish species are preyed on by spe-
cialist individuals which use particular feeding
strategies (Woo et al. 2008, Elliott et al. 2008, 2009b).
These birds maintain their specialization across years
(Woo et al. 2008), and there is no evidence that, in
terms of total calories received, nestling nourishment
differs among the various prey specialties, or be -
tween specialists and generalists. Consequently, the
lowering of chick growth rates in years when a
higher proportion of benthic fish is being delivered
could be the result of non-specialists turning to
 benthic prey when schooling prey is comparatively
scarce in the chick-rearing period and being less suc-
cessful at finding such prey. Such conditions appear
to be most likely when hatching is delayed relative to
the timing of 50% ice cover and when local ice cover
is low. All the schooling prey showed a positive rela-
tionship with local ice cover, whereas benthic fish
had a negative relationship (Table 1).

We document a change in marine communities
within Hudson Bay associated with changing local
conditions. Although a few long-distance migrants,
such as orcas Orcinus orca and razorbills Alca torda
may be able to directly and quickly respond to
changing conditions by moving into the bay to breed
(Gaston & Woo 2008, Higdon & Ferguson 2009),
many of the changes within the relatively isolated
marine community must occur through variation in
the abundance of pre-existing community members
(e.g. an American eel Anguilla rostrata in the
St Lawrence estuary cannot immediately take advan-
tage of ideal oceanographic conditions in James
Bay). As such, murre diets at Coats Island do not
demonstrate the arrival of new prey, but rather a
change in the proportion of community members
already present, in particular, a shift from Bore-
ogadus to Mallotus and Ammodytes. Mallotus domi-
nates beluga Delphinapterus leucas diet in southern
Hudson Bay (Kelley et al. 2010), and Ammodytes has
dominated ringed seal Phoca hispida diet in western
Hudson Bay since at least 1998 (Chambellant 2010).
The changes seen at Coats Island may therefore
 represent a northward spread of Mallotus and
Ammodytes, or of their spawning grounds, within
Hudson Bay.

The switch away from Boreogadus occurred rap-
idly and so far irreversibly in the mid-1990s, despite
substantial short-term, year-to-year variation in ice
conditions (Gaston et al. 2012; Table 1, Figs. 3 & 5).
The increased use of capelin from the mid-1990s is
consistent with the movement towards the Arctic
and/or an increase in abundance of a subarctic fish
previously at the margins of its historical distribution,

under conditions of increasing ocean temperatures
(Carscadden et al. 2013).

The step change in the mid-1990s impacted
nestling condition at departure, as the fledging mass
of murre nestlings declined steeply after the mid-
1990s (Gaston et al. 2012). Mass at departure is
 correlated with subsequent survival to recruitment
(Hipfner 2001). In a similar manner, the diet of many
seabirds in the northern Atlantic and Pacific have
shown stepwise changes, particularly, though not
exclusively, in the abundance of Ammo dytes and
Mallotus (Barrett et al. 1997, Anderson & Piatt 1999,
Barrett 2002, Montevecchi 2007, Hatch 2013). Those
changes often reflected apparent warm-to-cold or
cold-to-warm regime shifts in physical oceanography
(Anderson & Piatt 1999, Montevecchi 2007, Hatch
2013). The response of the biological community is
often rapid and difficult to reverse, once environmen-
tal change reaches a tipping point (Overland et al.
2010, Spencer et al. 2012). In our case, the cold-to-
warm shift was clearly associated with a reduction in
ice cover, as ice is an important habitat for Bore-
ogadus (Crawford & Jorgenson 1993, Gradinger &
Bluhm 2004). Our dataset differs from datasets
derived from temperate systems in that (1) the cold-
to-warm shift can be clearly linked to a change in
physical habitat (ice) and (2) some regime shifts
appear to have occurred periodically for centuries,
but the mid-1990s shift in Hudson Bay forms part of a
general trend in Arctic sea ice cover, possibly associ-
ated with anthropogenic climate change (AMAP
2011) and therefore unlikely to be reversed. Our abil-
ity to detect the trends that we have described is
greatly enhanced by the availability of a wide range
of secondary prey at Coats Island, a situation that
also exists at other low Arctic murre colonies in Can-
ada (Gaston 1985).

CONCLUSIONS

Compared with changes in the timing of ice break-
up in Hudson Bay, change in the timing of breeding
of murres Uria lomvia has been small and timing has
not advanced since the step change in about 1995.
The subsequent mismatch between ice conditions
and murre egg-laying has resulted in ice phase and
local ice conditions being the most widespread fac-
tors affecting diet variables. Both appear in top mod-
els for 5 out of 6 taxa examined. When ice cover was
low on 2 July and hatching was late relative to ice
break-up, diet included a higher than average pro-
portion of benthic fish and a lower than average pro-
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portion of schooling fish. Diet diversity was inversely
related to the proportion of schooling fish. Chick
mass at 14 d of age was inversely related to the pro-
portion of benthic fishes in the diet, suggesting that
feeding nestlings on these fish was sub-optimal for
the population as a whole, although, based on previ-
ous work (Elliott et al. 2008, 2009a), individual spe-
cialists can provision their nestlings adequately on
benthic fishes. Based on 14 d nestling mass as an
indicator of diet quality, diet diversity increased
when feeding conditions were sub-optimal, support-
ing previous observations of seabird diet breadth in
relation to reproductive success and other measures
of breeding conditions (e.g. Takahashi et al. 2001,
Hedd et al. 2006, Waluda et al. 2012).

When diet analysis is based on the proportions of
different taxa in the prey, it is inevitable that
increases in one taxon will be at the expense of one
or more other taxa. Consequently, it seems appropri-
ate to base interpretations on convergences and
divergences among prey taxa, rather than on individ-
ual trends. The 2 most important taxa in nestling
diets (Mallotus, Boreogadus) showed secular trends,
even after environmental variables were taken into
account, suggesting that cumulative environmental
effects were causing progressive changes in local
marine communities. There was no evidence for sec-
ular trends in other diet elements. Inter-year varia-
tion in the dominant diet taxa probably relates to rel-
ative availability, but variation in secondary diet taxa
is probably driven by the availability of the dominant
taxa.
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