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ABSTRACT: Ocean circulation models are useful for determining population connectivity, but are
only available for a limited number of years. In contrast, meteorological reanalyses are available
over decades. Since planktonic larvae are typically found in surface waters which are highly influ-
enced by winds, the relationship between connectivity as estimated using an ocean circulation
model and wind was used to develop a long-term hindcast of larval dispersal. The University of
California Santa Cruz (UCSC) 31 yr Regional Ocean Modeling System (ROMS) hindcast of the
California Current System was used to model inter-estuarine transport of larvae with a 6 d larval
duration from 1981 to 2010, and between 3 and 8 connectivity patterns were identified using the
self-organizing map (SOM) clustering algorithm. Regression models were developed for those
connectivity patterns using meteorological reanalyses of winds. Training periods of 5, 10, and
30 yr were used for model development; in all cases there were strong associations between SOM
connectivity estimates and winds. Regression models were validated using connectivity estimates
from the ocean model. Validated regression models were used with winds from 1950 to 1980 to
hindcast connectivity beyond the time range of the original ocean model. Connectivity as esti-
mated from winds was correlated with the Pacific Decadal Oscillation and with upwelling from
1950 to 2010. Multi-decadal hindcasts of population connectivity can be carried out using meteoro-
logical reanalysis winds and statistical clustering of connectivity patterns derived from ocean hind-
casts of 5 to 10 yr duration.
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INTRODUCTION

Dynamics of marine organisms with planktonic
larvae are strongly influenced by the degree of con-
nectivity within metapopulations. Changes in con-
nectivity affect the geographic range limits of those
organisms (Gaylord & Gaines 2000, Ayata et al.
2010), which can cause broader-scale consequences
for marine ecosystems (Siegel et al. 2008). To esti-
mate the maximum distance to which larvae can be
dispersed, ocean circulation models are often used to
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estimate connectivity (Pineda 2000, Connolly & Baird
2010, Lett et al. 2010, Sponaugle et al. 2012). This
approach is possible if the ocean models have ade-
quate spatial resolution to resolve flow along the
coastline of the region of interest, and if they have
adequate temporal resolution. Short time scales
(<6 h) are needed for velocity estimates due to the
importance of tides and variations in winds, and a
high-resolution grid is needed to resolve flow around
peninsulas and within bays. However, estimates of
connectivity are constrained to the particular dates
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described by the ocean circulation model, and most
long-term ocean hindcasts are of too coarse a spatial
resolution and do not have the short temporal resolu-
tion needed for informative connectivity hindcasts.
For example, the 37 yr Bay of Biscay hindcast (Huret
et al. 2013) has a 4 km horizontal resolution, but has
a temporal resolution of 5 d, which is too long for ade-
quate estimates of larval trajectories. The 44 yr NW
European Shelf Reanalysis (Hines et al. 2013) has a
12 km horizontal resolution, but only monthly tempo-
ral resolution, which is far too long for larval trans-
port studies. Other recent multidecadal ocean re-
analyses have high temporal resolution but spatial
resolutions that are too coarse to describe coastal fea-
tures important to larval transport (NOAA Climate
Forecast System Reanalysis [CFSR]: Saha et al. 2006,
European Centre for Medium-Range Forecasts
[ECMWF] Ocean Reanalysis System 4 [ORAS4]: Bal-
maseda et al. 2013). Thus, there is a need for ways to
estimate connectivity on long time scales at fine spa-
tial resolutions, despite the scarcity of appropriate
oceanographic data, models, or reanalyses. Here we
tested the feasibility of using statistical clustering
and correlation methods to develop long-term hind-
casts of connectivity in marine populations with
planktonic larvae. A multi-decadal time series of sur-
face winds was used to test the potential of a signifi-
cant relationship between meteorological data and
larval transport as a means for predicting connectiv-
ity when long-term ocean velocity field hindcasts of
the necessary resolutions are not available.
Traditionally, velocity fields from ocean models are
used to predict dispersal patterns of larvae that are
modeled either as Lagrangian passive particles or
behaving particles with limited swimming ability
(e.g. Ellien et al. 2000, Siegel et al. 2003, Ayata et al.
2009, Mitarai et al. 2009, Huret et al. 2010, Drake et
al. 2011, 2013). This approach is constrained by the
availability of velocity fields, which are derived from
computationally intensive ocean models, so there are
often only a few years (frequently less than a decade)
of model data available for predicting dispersal pat-
terns. By contrast, gridded meteorological reanalysis
data, including surface wind fields, are available in
uninterrupted sub-daily time series spanning multi-
ple decades (NOAA CFSR 1979 to the present, Saha
et al. 2006; Twentieth Century Reanalysis 1871 to 2011,
Compo et al. 2011). Since surface ocean currents are
strongly influenced by surface wind stresses and dis-
persal rates in surface waters are high (e.g. Levin
2006), we expected maximum larval connectivity to
be correlated with surface winds. If connectivity esti-
mated from ocean circulation models and that esti-

mated from surface winds were to be strongly corre-
lated, this would provide a possible means of extend-
ing connectivity estimates throughout the period of
available meteorological reanalysis data sets. Our
approach has philosophical similarities to the work of
Logemann et al. (2004), who used statistical correla-
tions between air pressure gradients and ocean cur-
rents to estimate ocean circulation patterns.

We discuss the following questions:

(1) Is there a relationship between surface winds
and maximum larval connectivity in species with
short planktonic larval duration, whose larvae re-
main in surface waters?

(2) If the answer to Question 1 is affirmation, can
winds be used to estimate maximum larval connec-
tivity during time periods when ocean model data are
not available, e.g. hindcasting of the past?

(3) What are the implications of hindcasts of long-
term and large-scale connectivity patterns to our
understanding of the dynamics of coastal recruitment
in our model system, the California Current System?

METHODS
Assumptions

We carried out this analysis as a proof of concept of
a method for carrying out multidecadal analyses of
connectivity in marine systems. We recognize that
there are many complexities of larval transport in the
coastal zone, with possible barriers to transport in the
near shore (e.g. Rilov et al. 2008, Morgan et al. 2009,
Pineda et al. 2009), all of which can affect connectiv-
ity estimates. We also recognize that the spatial scale
of the model grid (~10 km) cannot resolve some
coastal features, so it is at the upper end of utility for
the analysis we propose. However, our analysis is
designed to ask (1) if one has a time-series of connec-
tivity estimates that one believes are correct, can one
extend that time series further into the past, by using
a combination of statistical clustering methods and
wind data, and (2) how many years of connectivity
data are necessary for the development of a multi-
decadal hindcast? Here we make the assumption that
our connectivity estimates derived from an ocean cir-
culation model are reasonable since they are similar
to estimates made by other authors (e.g. Drake et al.
2011, 2013) which were validated with drifting buoys,
and use them to test the method of hindcasting. The
test of the hindcasting method itself depends only
upon the statistical relationships between winds and
the connectivity estimates. As higher resolution oce-



Oliver at al.: Multi-decadal hindcasts of connectivity 49

an models become available, and as larval behavior
of individual species is better understood, the bio-
logical accuracy of the hindcasts derived from our
method will increase.

Model organism

We chose to estimate population connectivity for
benthic species with a short planktonic larval dura-
tion, and larvae that remain in surface waters. The
intertidal sediment-dwelling polychaete annelid
Abarenicola pacifica is an example of such a species.
A. pacifica spawns in shallow coastal waters in
March and April (Strathmann 1981), and has a plank-
tonic larval duration of less than 6 d, so winds are
likely to be influential in the larval transport process.
We use a hypothetical species with larval character-
istics similar to A. pacifica as a model for other organ-
isms with short planktonic larval duration whose lar-
vae remain in surface waters.

Estimation of larval connectivity

Connectivity matrices describing transport of lar-
vae were generated using output from the University
of California Santa Cruz (UCSC) 31 yr Regional
Ocean Modeling System (ROMS) hindcast of the
California Current System. This model had the
longest time series of high temporal resolution ocean
velocities that was available anywhere. The hydro-
dynamics in the ROMS model were forced using
meteorological data (short-wave and long-wave
radiation, precipitation, atmospheric pressure, wind
velocities at 10 m, air temperature) (Veneziani et al.
2009). Drake et al. (2011, 2013) used a similar ROMS
model in the same region and obtained good corre-
spondence of model predictions to trajectories of sur-
face drifting buoys.

The following procedures are outlined in Table 1;
each step is represented by 1 row in the table, and
the input data used, the data processing methods
used, and the output data generated are all defined.

Modeling steps 1 & 2: Ocean model file prepara-
tion. Zonal (west to east) and meridional (north to
south) velocities were used to predict larval trajecto-
ries (Table 1, Step 1). The UCSC ROMS model output
is on a longitude-latitude-depth grid with a horizon-
tal spacing of 0.1° x 0.1° and velocity grids are avail-
able at time intervals of 6 h. As we wanted to obtain
an estimate of maximum potential transport of parti-
cles in surface waters, we extracted near-surface 2-

dimensional (2-D) velocities from the 3-D ROMS
model data files. ROMS model velocities at each
longitude-latitude and time were interpolated in the
vertical direction to a depth of 5 m below the surface
to allow simulation of 2-D particle movement near
the surface (Table 1, Step 2).

Modeling steps 3 & 4: Particle transport simula-
tions. Lagrangian passive particles representing lar-
vae were transported using numerical integration of
these gridded velocities at 5 m depth. Particle tra-
jectories were estimated using Euler's method with
a time step of 5 min. Euler's method assumes that
water velocities at the location of the particle do not
change during the 5 min integration step, so that the
distance moved is initial water velocity x elapsed
time:

Xuar= Xp+ Upgy x Atand Yoz = Yi+ Vi, x At (1)

where X; and Y, define the particle position at time £,
U,y and V,,, are water velocities in the E-W and
N-S directions at the position of the particle at time ¢,
and At is the integration time step (in this case 5 min)
(Table 1, Step 4).

To estimate water velocities U, ,, and V,, , for use
in the numerical integration described above, ocean
velocities in the ROMS model output grids were lin-
early interpolated in time and bilinearly interpolated
in space to the location of each particle at each
5 min interval during the transport simulation
(Table 1, Step 3). The time interpolation was neces-
sary because water velocities from the ROMS model
were at 6 h intervals yet they were needed at 5 min
intervals for the calculations in Eq. (1). The linear
interpolation of velocity with respect to time was
carried out as:

UX,y,tz UX,MT+ (UX,Y,T+6 - UX,y,T) x t/6 and

VX,y,t= VX,y,T+ (Vx,y,T+6 - VX,y,T) x t/6

where U,,r and Uy, ¢ are the E-W velocities at
position (x,y) in the ROMS model files at times T and
T+6 (h), respectively, and Uy,, is the interpolated
E—-W velocity at time ¢t (h) after ROMS model time T.

Interpolation of water velocities in space was nec-
essary because the ROMS model velocities were at
discrete points on a 0.1° grid (~11.1 km apart in the
N-S direction and ~8.5 km apart in the E-W direc-
tion at 40° latitude), and we needed estimates of
velocities at the locations of individual particles
which could be anywhere in the grid. Bilinear inter-
polation assumes that there are no fronts or other dis-
continuities, so velocities change linearly among
points on the grid. The bilinear interpolation was
done with the akima package in R (Gebhardt 2013).
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Table 1. Outline of steps used in modeling process, data sources used and their spatial and temporal scales. UCSC: University of California

Santa Cruz; ROMS: Regional Ocean Modeling System; SOM: self-organizing map; NPGO: the North Pacific Gyre Oscillation; ENSO: El

Nino-Southern Oscillation; CCWI: California Current Winter Index. For descriptions of modeling steps 1 to 14 see ‘Methods: Estimation of
larval connectivity’

Modeling Data type Data source Model Horizontal Vertical Time Interpolation/Averaging/

step grid scale  scale scale Other calculation

1 ROMS water UcCsc 3-D 0.1°x 0.1° 42 depths 6h None
velocities (8.5 x 11.1 km)

2 Interpolate ROMS Step 1 2-D 0.1° x 0.1° S5mdepth 6h Interpolation
2-D water velocities (8.5 x 11.1 km) Linear in

depth dimension

3 Interpolate particle Step 2 2-D 1x1m 5mdepth 5 min Interpolation
positions at 5 min Bilinear in space
intervals Linear in time

4 Particle transport Step 3 2-D 1x1m 5mdepth 5 min Euler's method for

calculation numerical integration
of water velocities

5 Connectivity matrix =~ Step 4 2-D 5 km source 5mdepth 6dlarval None
calculation and destination transport

area period

6 1800 (6 d) connec- Step 5 1-D Estuary scale  None 1 per6d None
tivity matrices (19 estuaries) larval trans-

port period

7 Random sample of Step 6 1-D Estuary scale  None 6d None
connectivity matrices (19 estuaries)

8 3-8 cluster connec- SOM or K-means 1-D Estuary scale  None 6d None
tivity matrices clustering (19 estuaries)

9 Surface wind 20th Century 2-D 1.875° x 1.904° 10 m above 6d Region average
velocities Reanalysis water averages 37°—47° N, 123°-125° W

surface of 6 h data

10 Wind-SOM regres- Steps 8, 9 1-D Estuary scale  None 6d None
sion model (19 estuaries)

11 Wind-SOM regres- Steps 9, 10 con- 1-D Estuary scale  None 1yr Yearly averages of 6 d
sion model nectivity compared (19 estuaries) connectivity
validation to Step 5 connectivity

12 Hindcast Step 9 winds, 1-D Estuary scale None 6d Yearly averages of 6 d

Step 10 wind-SOM (19 estuaries) connectivity
regression

13 Estimation of data Step 9 winds, Yearly averages of 6 d
requirements for Step 10 regressions connectivity
hindcasts From 5, 10, 30 yr periods

14 Relation of connec- Step 12 and indices: 1-D Region scale 6d Yearly average
tivity to large scale upwelling (19 estuaries) of cluster frequency
ocean processes NPGO

ENSO
CCWI

Lagrangian passive particles (proxies for larvae)

each release location. We released particles offshore

because the ROMS model did not resolve all shallow
water features, and to avoid flow artifacts associated
with regions immediately adjacent to the land—water
boundary. Transport calculations were conducted for
each date of probable fecundity (March 11 to May
31) for the years 1981 to 2010, and more than 10 mil-
lion larval particle trajectories were simulated.

were released into the ROMS ocean at high tide from
5 km offshore from 19 different estuaries along the
US west coast (see Fig. 1 and Table S1 in the Supple-
ment at www.int-res.com/articles/suppl/m530p047_
supp.pdf) and followed for the 6 d planktonic larval
duration. A total of 500 uniformly distributed larvae
were released in a 5 km diameter patch centered on
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Modeling steps 5 & 6: Calculation of connectivity
from larval particle trajectories. Connectivity of lar-
vae released from each site on each date was calcu-
lated by determining what fraction passed within
5 km of each of the 19 release sites during the 6 d lar-
val period (Table 1, Step 5). Some larvae never pas-
sed within a 2.5 km radius of any of the 19 sites and
were therefore lost from the system. Connectivity
was estimated as the proportion of larvae originating
from each release (source) site that passed by each
destination site. The connectivity values were put in
a matrix whose rows represented the sites of origin of
the larvae and the columns represented the desti-
nations. As there were 19 sites, each connectivity
matrix had 19 rows and columns. This process yiel-
ded 1800 individual ROMS connectivity matrices, 1
for each larval release date (Table 1, Step 6). Since
the model species has 1 reproductive season per
year, a yearly connectivity matrix was calculated
from the mean of each element in the individual
matrices for each year.

Modeling steps 7 & 8: Clustering methods. The
connectivity analysis (Table 1, Step 6) generated
1800 matrices, 1 for each of the release dates. Cluster
analysis was used to find groups of similar patterns
among individual ROMS connectivity matrices
(Table 1, Steps 7 and 8). The clustering methods con-
dense the primary differences among 1800 individ-
ual ROMS connectivity matrices into a small number
of representative matrices or clusters. Clustering
methods like these have been used very successfully
in oceanography (e.g. Cassou & Terray 2001, Liu &
Weisberg 2005, Barrier et al. 2013) and climatology
(e.g. Johnson et al. 2008, Lee & Feldstein 2013) to
detect large scale patterns and their drivers.

We compared K-means (Hartigan & Wong 1979)
and self-organizing map (SOM) (Kohonen 2001) clus-
tering methods, constraining the maximum number
of clusters between 3 and 8 (Table 1, Step 8). In the
SOM clustering method, a competitive learning pro-
cess is used, in which a random (training) subsample
of the connectivity matrices is used to obtain a speci-
fied number of clusters. As each connectivity matrix
is entered into the SOM algorithm during the train-
ing process, its Euclidean distance to all existing
clusters is calculated, and then the cluster that mini-
mizes the distance is identified as the best matching
unit of that matrix. The best matching unit cluster is
then updated to be more similar to the newly added
matrix. The K-means clustering algorithm matches
each matrix to the cluster that minimizes the within-
cluster sum of squares before updating the cluster to
which the matrix is matched.

The proportion of data used for training the algo-
rithms was varied, incorporating a random sampling
of 1/3, 1/2, or 2/3 of the original data matrices. Once
the algorithms assigned the connectivity matrix for a
particular larval release date to a cluster, the cluster
ID number (between 1 and 8) was used to record the
assignment. This process was repeated with 1000 dif-
ferent random training data sets for each combina-
tion of number of clusters, fraction of data used for
training, and clustering algorithm. Due to the unusu-
ally long duration of the ROMS model hindcast, the
same process was repeated with 3 sets of 5 yr of con-
nectivity matrices (1991-1995, 1996-2000, 2006-
2010), 10 yr of connectivity matrices (2001-2010) and
30 yr of connectivity matrices (1981-2010).

Modeling steps 9 & 10: Relationship between con-
nectivity and wind. Since the passive larval particles
were transported in surface currents, which are
expected to be strongly influenced by surface winds,
the relationship between connectivity and the aver-
age surface winds during the period of larval trans-
port was examined (Table 1, Steps 9 and 10). The
20th Century Reanalysis Version 2 (Compo et al.
2011) was used as the source of the time series of
gridded wind data because it has the longest time
series available among all reanalysis data sets (1871
to 2011). This product has a spatial scale of 1.875° x
1.904° and a temporal scale of 6 h. For the period of
transport from each larval release, we made spatio-
temporal averages of the zonal (u) and meridional (v)
wind components, and wind direction at 10 m eleva-
tion, over the coastal ocean in the geographic region
of our study (37° to 47°N, 123° to 125°W) (Table 1,
Step 9). Wind direction was calculated as the arctan-
gent of the average u and v components.

Linear regressions were calculated to predict clus-
ters from wind magnitude and direction (Table 1,
Step 10). Separate regressions were calculated using
zonal wind, meridional wind, wind direction, and
combinations of the three. These analyses were car-
ried out for each of the combinations of clustering
method (SOM and K-means), number of clusters (3 to
8), proportion of original data used in training (1/3,
1/2, 2/3), and duration of training data (5, 10, 30 yr1)
using matrices from the 31 yr ROMS dataset. In each
case, the regression models with the largest R? values
were chosen for further analysis. Aikake's Informa-
tion Criteria (AIC) were calculated for the regressions
as an alternative method of model selection. Since all
but one of the best regression models (see Tables 1
& 2) used N-S wind or N-S wind and wind direction
as the independent variable(s), we did the remainder
of our analyses using N-S wind and wind direction.
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Modeling step 11: Validation of the wind model
for predicting larval dispersal. Yearly connectivity
matrices were created by calculating the mean values
of each element of the matrices for each year, using
both the matrices calculated directly from the ROMS
model and using the cluster matrices predicted solely
from winds (Table 1, Step 11). In order to estimate the
population consequences of the ROMS connectivity
matrices versus the yearly connectivity patterns pre-
dicted from winds, 1000 larvae were released from
each of the 19 sites and the geographic distribution of
recruiting larvae was calculated using the connectiv-
ity matrices. The site-specific recruitment densities
predicted from the ROMS and wind-based connectiv-
ity matrices were regressed against one another. This
analysis was repeated using wind-based regressions
derived from 3 to 8 SOM clusters, to determine how
model performance changed as a function of the
number of clusters used. The regression R? values
were used to evaluate model performance.

Modeling step 12: Connectivity hindcast using
winds. The regression model predicting connectivity
from wind is likely to be valid if the conditions in the
hindcast period are similar to those used in estima-
tion of model parameters. Therefore, it is important to
determine whether there were extreme events in the
hindcast period (1950 to 1980) that lay outside the
range of conditions that occurred during the 5,10,
and 30 yr model estimation periods. Ranges of wind
speeds and directions were compared between the
model estimation period and the hindcast period.

To carry out the hindcast, we calculated 6 d aver-
ages of the regional zonal and meridional winds from
the Twentieth Century Reanalysis following all po-
tential larval release dates during the period 1950 to
1980. These average winds were used with the vali-
dated regression model from the 5, 10 and 30 yr
training datasets with the largest R? values to predict
cluster IDs for the larval transport period during the
years 1950 to 1980. The cluster matrices predicted for
each release date were averaged to generate yearly
connectivity matrices for the duration of the hindcast
period (1950-1980) (Table 1, Step 12).

Modeling step 13: Estimation of number of years
needed for connectivity model development. Many
ocean model hindcasts span periods shorter than 3
decades and therefore have less data available for
generating connectivity estimates. It was therefore
necessary to test the sensitivity of our methods to
differences in the total amount of data available
(Table 1, Step 13). The majority of models available
have between 5 and 10 yr of data, which usually
occur in the past 5 to 10 yr, so we used data from the

past decade to test our methods. To test how differ-
ences in the duration of the ocean model time series
would affect the quality of the hindcast, we per-
formed our clustering and wind analyses on sets of
connectivity matrices spanning 5 yr (2006-2010),
10 yr (2001-2010) and 30 yr (1981-2010) (see Fig. 1).
We also examined whether there was an effect on
model performance depending on the time period
used for building the model. We did this by using 5 yr
of data from 1991-1995, 1996-2000, and 2006-2010.

Modeling step 14: Relation to large-scale atmo-
spheric and oceanographic processes. To determine
whether connectivity patterns were associated with
large scale atmospheric or oceanographic processes,
we calculated regressions of connectivity patterns
versus the Multivariate El Nino-Southern Oscillation
(ENSO) Index (MEI, Wolter & Timlin 2011), the Pacific
Decadal Oscillation (PDO, Mantua & Hare 2002), the
North Pacific Gyre Oscillation (NPGO, Di Lorenzo et al.
2008), and the regional upwelling index (Bakun 1973)
(Table 1, Step 14). MEI data were obtained from the
National Oceanic and Atmospheric Administration
(NOAA). PDO data were obtained from the Joint Insti-
tute for the Study of the Atmosphere and Ocean at the
University of Washington. NPGO data were obtained
from E. Di Lorenzo (Georgia Institute of Technology).
Coastal upwelling index data were obtained from the
NOAA Pacific Fisheries Environmental Laboratory. Re-
gional average upwelling indices for the planktonic
larval period were calculated from the monthly time se-
ries for the US West coast at 39°N, 42°N, and 45°N, the
locations encompassing the study region (see Fig. 1).

Each year from 1950 to 2010, we calculated the fre-
quency of occurrence of each of the connectivity
cluster matrices that were predicted by the winds,
using regression equations developed from the 5, 10
and 30 yr training periods. We regressed the cluster
frequencies against the seasonal values of the MEI,
PDO, NPGO and upwelling indices corresponding to
the larval transport period in each year.

Statistics

All calculations were carried out in the statistical
programming language R (Ihaka & Gentleman 1996,
R Core Team 2012) Version 2.15, using the akima
library (Gebhardt 2013) for interpolation, the clim.
pact library (Benestad 2004) for conversion between
latitude/longitude coordinates and meters, the koho-
nen library (Wehrens & Buydens 2007) for SOM cal-
culations, and the stats library for K-means clustering
calculations.
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RESULTS
Clustering method selection

Surface winds explained up to 57, 48, and 38 % of
the variance in the respective 5, 10, and 30 yr con-
nectivity patterns, based on linear regressions of
cluster identity versus wind magnitude and direction.
Comparisons of the best regression R? values from
different clustering methods, number of clusters, pro-
portion of data used for training, and wind data
(Table 2) showed that the clusters generated by K-
means and SOM algorithms correlate similarly to the
Twentieth Century Reanalysis wind data. The SOM
algorithm did a slightly better job of clustering the
connectivity data than the K-means algorithm, based
on the relationships between connectivity patterns
and surface winds. In general, more clusters and
larger proportions of the data used for training
resulted in smaller correlation coefficients. The best
R? values that were used for further analysis were
found by correlating the clusters generated by the
SOM clustering method (7 clusters for 5 yr [2006—
2010] and 10 yr training data [2001-2010], and 4 and
7 clusters for 30 yr training data [1981-2010] with
meridional wind magnitude and wind direction,
using 1/3 of the data for training). Smaller numbers of
clusters had higher correlation with meridional wind
magnitude and wind direction, while larger numbers
of clusters generally had higher correlation with only
meridional wind magnitude (Table 2). AIC analyses

(Table 3) indicated that the smallest number of clus-
ters should be used, but we felt that fewer clusters
captured less of the variation in connectivity, and
possibly underestimated maximum dispersal dis-
tance, so we chose 5 clusters as a compromise be-
tween best AIC and best R% As the vast majority of
the results in Table 2 were based on meridional wind
magnitude and wind direction, we decided to use
these 2 variables as predictors in the remainder of
our analyses.

Hindcast model validation

A measure of the quality of the wind-derived clus-
ter connectivity estimates is the consequence of con-
nectivity for population dynamics. We used yearly
averages of the ROMS matrices and the wind-
derived cluster connectivity matrices to predict the
geographic distribution of arriving larvae, if 1000 lar-
vae were released from each of the 19 estuaries
(Fig. 1), and then regressed the distribution using the
winds against the predicted distribution of larvae
from the original connectivity matrices found using
the ROMS model. The slope of the relationship
ranged from 0.86 to 1.45 with a mean of 1.15, and the
R? value ranged from 0.64 to 0.98 with a mean of 0.85.
The quality of the wind-derived connectivity esti-
mates did not change with the number of clusters
used, within the range of 3 to 8 clusters (Fig. 1). For
the remainder of our analysis, we used 5 clusters as a

Table 2. Highest R? values resulting from regressions correlating cluster ID to reanalysis wind data. Bold, non-italicized, and

non-shaded data resulted from using meridional wind magnitude and wind direction as predictors; all values in normal type-

face resulted from using just north—-south wind magnitude as a predictor; the value in italics resulted from using total wind

magnitude and wind directions as predictors; the value in the shaded cell resulted from using wind direction and zonal wind

magnitude as predictors; and the underlined values are the highest maximum R? values resulting from each regression
analysis for each model duration. SOM.: self-organizing map

Cluste- No. 2006-2010 model 2001-2010 model 1981-2010 model
ring of 1/3 172 2/3 1/3 1/2 2/3 1/3 1/2 2/3
method  clusters training training training training training training training training training
SOM 3 0.51 0.47 0.40 0.41 0.41 0.37 0.33 0.34 0.33
4 0.54 0.47 0.42 0.45 0.43 0.41 0.38 0.32 0.32
5 0.52 0.44 0.41 0.45 0.40 0.38 0.35 0.33 0.30
6 0.53 0.44 0.39 0.45 0.42 0.43 0.35 0.30 0.30
7 0.57 0.44 0.43 0.48 0.39 0.37 0.33 0.30 0.28
8 0.57 0.49 0.41 0.45 0.40 0.37 0.33 0.30 0.31
K-means 3 0.47 0.46 0.41 0.43 0.40 0.37 0.37 0.33 0.33
4 0.51 0.47 0.45 0.44 0.41 0.40 0.37 0.32 0.31
5 0.52 0.47 0.43 0.44 0.40 0.38 0.35 0.31 0.31
6 0.51 0.45 0.43 0.45 0.40 0.39 0.35 0.31 0.30
7 0.54 0.46 0.41 0.46 0.42 0.38 0.34 0.32 0.30
8 0.51 0.46 0.44 0.43 0.40 0.39 0.34 0.30 0.30
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Table 3. Aikake's information criterion (AIC) values resulting from regressions with highest R? values correlating cluster ID to
reanalysis wind data as used in Table 2. Bold, non-italicized, and non-shaded data resulted from using meridional wind mag-
nitude and wind direction as predictors; all values in normal typeface resulted from using just north—south wind magnitude as
a predictor; the value in italics resulted from using total wind magnitude and wind directions as predictors; the value in the
shaded cell resulted from using wind direction and zonal wind magnitude as predictors; and the underlined values are the AIC
values from regressions with highest maximum R? values from analyses for each model duration. SOM: self-organizing map

Cluste- No. 2006-2010 model 2001-2010 model 1981-2010 model
ring of 1/3 1/2 2/3 1/3 1/2 2/3 1/3 172 2/3
method  clusters training training training training training training training training training
SOM 3 180 260 374 373 564 771 1213 1825 2529
4 244 360 489 519 775 1065 1640 2478 3377
5 297 459 632 632 991 1305 2006 2978 4036
6 326 534 711 738 1087 1457 2265 3466 4491
7 350 540 775 776 1221 1623 2485 3780 5061
8 385 607 839 852 1280 1699 2689 4011 5517
K-means 3 185 251 363 357 575 776 1160 1826 2430
4 241 362 491 495 775 1053 1655 2579 3403
5 313 473 638 625 959 1315 2026 3085 4055
6 337 523 704 696 1096 1446 2266 3405 4623
7 341 584 791 718 1178 1596 2466 3701 5025
8 407 619 803 843 1266 1716 2623 4017 5328
48— 1981-2010 2001-2010 1991-1995 1996-2000 2006-2010 Esoe d°f clusters
8
46
7
44
6
42
5
40
4
38 ' 3
l l l l
I I I I
200 400

Recruitment density

Fig. 1. Site-specific recruitment densities after dispersal modeled by the Regional Ocean Modeling System (ROMS) or winds
using yearly connectivity matrices from 1981 to 2010 and comparison of the utility of different numbers of clusters for recruit-
ment density predictions. The yearly averages of ROMS model matrices and cluster predictions were used to predict dispersal,
beginning with 1000 passive particles released at each site. The sites of release are marked with black dots on the map of the
Pacific coast of North America (California, Oregon, Washington); 1 dot per estuary. The colored curves show the average
recruitment using self-organizing map (SOM) cluster models based on 30 yr of training data from 1981-2010 (min R* = 0.89,
max R? = 0.99), 10 yr of training data from 2001-2010 (min R? = 0.91, max R? = 0.99), and 5 yr of training data from 1991-1995
(min R? = 0.69, max R? = 0.95), 1996-2000 (min R? = 0.90, max R? = 0.95), and 2006-2010 (min R? = 0.77, max R? = 0.98), with
each color indicating the number of clusters used. Dashed line = prediction of recruitment density from average of original
Lagrangian particle tracking data from the ocean model for 1981-2010, colored lines = predictions from SOM connectivity
derived solely from winds for each number of clusters
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reasonable compromise between model complexity
and ability of the model to capture the underlying
variability of the system.

Estimation of number of years needed for training

Many ocean models have shorter durations than 3
decades, so it was necessary to determine whether
regression models correlating winds to clusters of
connectivity from shorter time periods would be
appropriate for making multidecadal hindcasts of
connectivity. The sensitivity of the regressions to dif-
ferences in the total amount of data provided for sam-
pling for training (a shorter training period would
have less connectivity information available) was
first tested by looking at the maximum R? values
using connectivity matrices from 5 yr periods (1991-
1995, 1996-2000, 2006-2010) and a 10 yr period
(2001-2010) (Table 2, see Table S2 in the Supple-
ment). Winds explained up to 57 % of the variance in
connectivity for the 2006-2010 model and up to 48 %
of the variance in connectivity for the 10 yr model,
while they explained 38% of the variance for the
30 yr model. The best regression model for the 10 yr
training period used SOM clustering, 1/3 training, 7
clusters, and meridional (N-S) wind magnitude and
wind direction as predictors, while one of the best 2
regression models for the 5 yr period used SOM clus-
tering, 1/3 training, and 8 clusters but was anomalous
in that it used zonal (W-E) wind magnitude as a pre-
dictor for connectivity along a north—south-running
coastline (R2 = 0.57). However, while higher cluster
numbers tended to account for more of the variance
in wind velocity data, the AIC values tended to
decrease for decreased numbers of clusters (Table 3,
see Table S3 in the Supplement), with AIC values at
least doubling by increasing the number of clusters
from 3 to 8. Using 1/3 of the data for training and
using meridional wind magnitude and wind direction
resulted in consistently higher R? and lower AIC val-
ues whether SOM or K-means was used (Tables 2 &
3), and the 2 different clustering methods resulted in
no major differences between
R? and AIC values. Therefore

The geographic distribution of larvae arriving at
the 19 west-coast estuaries was predicted for the
1981-2010, 2001-2010, 1991-1995, 1996-2000, and
2006-2010 models (Fig. 1) for each number of clus-
ters (3 to 8), 1/3 sampling, and SOM clustering. Re-
gressions were calculated correlating the distribution
of larvae predicted using surface winds (meridional
magnitude and wind direction) to the distribution of
larvae predicted from the original connectivity matri-
ces. Recruitment patterns predicted by the SOM
model were highly correlated with those predicted
directly from the ocean model. For the SOM model
trained using data from the 5 yr period covering
2006-2010, the R? values ranged from 0.77 to 0.98
with a mean of 0.92, and all p-values were less than
0.01. For the SOM model trained with 5 yr of data
from 1996-2000, the R? values ranged from 0.90 to
0.95 with a mean of 0.92, and all p-values were less
than 0.01. For the SOM model trained with 5 yr of
data from 1991-1995, the R? values ranged from 0.69
to 0.95 with a mean of 0.90, and all p-values were less
than 0.01. For the 10 yr SOM model (2001-2010), the
R? values ranged from 0.91 to 0.99 with a mean of
0.95, and all p-values were less than 0.01. The 30 yr
SOM model (1981-2010) had R? values ranging from
0.89 to 0.99 with a mean of 0.96, and all p-values
were less than 0.01.

Validity of winds as predictors of connectivity
in hindcast period

To determine whether ranges of wind conditions
were similar during both the hindcast period and the
dates used to develop the wind-based connectivity
model, the ranges of wind speeds and directions in
the hindcast period (1950-1980) were compared to
those in the 3 training periods. The ranges of wind
values in the 5 yr (2006-2010) and 10 yr (2001-2010)
training data sets were smaller than the ranges dur-
ing the hindcast period, so conditions similar to the
most extreme events of 1950-1980 did not occur be-
tween 2001 and 2010 (Table 4). In this situation, the

Table 4. Ranges of wind reanalysis datasets for the hindcast period (1950-1980) and

validations of the model were
proceeded with using meridio-

the period used for training (1981-2010)

nal wind magnitude and wind
direction, 1/3 sampling used for

training, SOM clustering (though

K-means clustering may also
have been used), and all 6 num-
bers of clusters (3 to 8).

Hindcast period Training periods
1950-1980 2006-2010 2001-2010 1981-2010
Zonal velocity -1.33t03.19 -0.79t03.26 -0.80t03.26 -1.69to 3.26
Meridional velocity -2.66to 3.17 -2.39t03.05 -2.39t03.05 -2.64to 3.28
Direction -3.04t03.12 -2.84t02.39 -2.84t02.71 -3.08to-3.12
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regression equations are, in a few cases, applied out-
side the range of the independent variables used to
derive the equations. By contrast, the range of wind
values in the 30 yr (1981-2010) training data set was
similar to the range of values in the 60 yr hindcast
period (1951-2010) (Table 4), so the regression equa-
tions are being used within the range of the indepen-
dent variables used to derive the equation in this
case.

Relation between connectivity and large-scale
oceanographic processes

To test whether long-term connectivity patterns
were associated with large scale oceanographic and
meteorological oscillations for the hindcast period
from 1950 to 2010, the annual predicted frequencies
of occurrence of each cluster estimated from the
training periods 1981-2010, 2001-2010, and 2006—
2010 (Fig. 2) were compared to the ENSO, the PDO,
the regional upwelling index, and the NPGO. While
using 5 clusters from the 30 yr training period, none
of the frequencies correlated with ENSO, but there
were correlations between PDO and the first (p <
0.01) and third clusters (p < 0.05), the regional up-
welling index and the first (p < 0.01), second (p <
0.01), and fourth clusters (p < 0.01), and NPGO and
the third (p < 0.05) cluster. In the 10 yr model with 5
clusters, PDO correlated with the first (p < 0.05) and
third (p < 0.01) clusters, the regional upwelling index
correlated with the first (p < 0.01), second (p < 0.01),
and fourth (p < 0.01) clusters, and neither ENSO nor
NPGO correlated with the cluster proportions. In the
5 yr (2006-2010) model with 5 clusters, PDO corre-
lated with the first (p < 0.05) and third (p < 0.05) clus-
ters, the regional upwelling index correlated with the
first (p < 0.01), second (p < 0.05), and fourth (p < 0.01)
clusters, while ENSO and NPGO did not correlate
with the clusters.

DISCUSSION

In order to understand long-term dynamics of
marine species, it is important to estimate changes in
connectivity among populations. Lagrangian parti-
cle-tracking methods have been used very success-
fully to estimate connectivity using velocity fields
from ocean models (e.g. Siegel et al. 2003, 2008,
Ayata et al. 2010, Drake et al. 2011, 2013, Sponaugle
et al. 2012). However, ocean circulation model data
are only available for a limited number of years, so

alternative methods become necessary for hindcasts
extending beyond the dates described by the ocean
models. In contrast, sub-daily meteorological re-
analysis data are available for dates extending back
to the 19th century (Compo et al. 2011). For species
whose larvae are typically found in surface waters,
there should be a strong influence of winds on con-
nectivity. Therefore the relationship between winds
and larval connectivity patterns predicted by the
ocean model was investigated as a potential meth-
od for hindcasting connectivity patterns for years
presently described by wind data, but not by ocean
models. By corresponding connectivity with wind
reanalysis data using statistical clustering methods,
the proposed method doubled the temporal range
of connectivity estimates by accounting for much of
the variance of coastal connectivity over 30 yr with
only a few connectivity patterns.

Hindcast model validation

Using clustering methods, it was possible to com-
press large numbers of individual 6 d connectivity
patterns in the California Current System from 5, 10
and 30 yr periods (2006-2010, 2001-2010, and 1981-
2010) into 7 or fewer major clusters (Fig. 2). These
connectivity patterns were associated with winds:
57 % of the variance in cluster identity can be ex-
plained by winds in the 5 yr analysis (2006-2010),
and 38% of the variance in the 30 yr analysis
(Table 2). Similar correlations have been shown to be
characteristic of other SOM analyses that led to
robust conclusions about shifting wind patterns
(Johnson et al. 2008, Lee & Feldstein 2013).

The population consequences of dispersal are
well described using connectivity estimated with

-
7

Fig. 2. Yearly frequencies of each of 5 connectivity clusters
in the 1950-2010 hindcast. Each frequency graph is a plot of
proportion of each cluster for each year hindcasted using the
regression model. The plots are as follows: (A) 5 clusters
using a 5 yr training period, (B) 5 clusters using a 10 yr train-
ing period, and (C) 5 clusters using a 30 yr training period.
Plots of the respective clusters (connectivity matrices plot-
ting the proportion of larvae beginning from each of the
19 start sites that arrive at the 19 destination sites) are below
their frequency plots, with the color in the top right-hand
corner of each indicating that particular plot's frequency in
the graph above it. The scale is given at the bottom, along
with an interpretive schematic of the connectivity matrices.
Values to the right of the diagonal indicate southward
transport, values to the left of the diagonal represent north-
ward transport
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the regression model using winds and connectivity
clusters for all tested total numbers of clusters (3 to
8). Yearly connectivity matrices were used to dis-
perse virtual larvae among 19 estuaries on the
US west coast, and strong association was found
between virtual recruitment densities estimated
using 3 to 8 SOM matrices and recruitment densi-
ties estimated using the matrices from the La-
grangian particle tracking over the period 1981 to
2010, with every p-value < 0.01 (Fig. 1). Such sta-
tistically significant validations of the regression
model suggest that wind data from meteorological
reanalysis can be used to temporally extend a
time-limited ocean circulation model for predicting
larval dispersal.

Our analysis was carried out for an organism with a
6 d planktonic larval duration. We suspect that the
accuracy of the method will decline to some extent as
planktonic larval duration increases because varia-
tion in wind speed and direction during the larval
period will not always be well represented by longer
averages.

One could argue that since winds are used to force
the ocean model, connectivity patterns derived from
clustering methods are by definition correlated with
winds. In the ROMS model, winds contribute to
water movements, just as they contribute to real-
world water flows. However, in both the ocean and
the ROMS model, there are also influences of bottom
topography, bottom friction, viscosity, water density,
and tides, all of which contribute to flows, even in the
absence of wind. Therefore there should be a corre-
lation between wind and connectivity, but it will be
modified by the physics of ocean water and its inter-
actions with the atmosphere, gravitational forces,
and topography.

Number of years needed for training

Frequently, ocean models are only available for
periods shorter than 30 yr, so the same regression of
winds and connectivity analyses were run using the
ROMS model output for a 5 yr period and a 10 yr
period (Table 2). The maximum R? value for the
2006-2010 period was 0.57, which was actually an
improvement over using the connectivity matrices
from all 30 yr (R? = 0.38), suggesting that shorter pe-
riods reduce the chance of overspecification of the
regression models. Virtual recruitment density esti-
mates for that particular 5 yr period (mean R? = 0.88)
were also slightly improved over the 30 yr period
(mean R? = 0.85) (Fig. 1). The similar success of using

shorter periods suggests that multi-decadal connec-
tivity hindcasts are feasible with 5 to 10 yr of ocean
model data.

To determine whether a connectivity hindcast
using winds would be reliable, the ranges of values
for meridional wind magnitude, zonal wind magni-
tude, and wind direction on the dates described by
the original data and the dates intended to be hind-
casted were compared. It was expected that a hind-
cast would be most likely to underestimate connec-
tivity if the range of wind data in the hindcast period
fell outside the ranges of the winds for the dates of
the original data. While the range of wind data in the
1981-2010 training period was similar to the 1950-
1980 hindcast period, the shorter training periods
had smaller ranges of data than the 1981-2010 train-
ing period and the 1950-1980 hindcast periods be-
cause they capture fewer extreme events (Table 4).
However, the clusters found using shorter training
periods (2001-2010, 1991-1995, 1996-2000, 2006—
2010) saw similar success (all p-values < 0.01) during
verification analysis (Fig. 1), suggesting that captur-
ing more extreme wind patterns in the training
period does not make a significant difference to con-
nectivity, especially when looking at yearly averages
of connectivity. The validated regression models
were used with winds from 1950-2010 to hindcast
yearly connectivity beyond the time range of the
original ocean model, effectively producing twice, 6
times, or 12 times the number of years for which con-
nectivity data is available. Based on this analysis, 5 yr
of data are likely to be adequate for building a wind-
based regression model of connectivity like that
which we have proposed here.

Relation between connectivity and large-scale
oceanographic processes

As connectivity was well correlated with winds,
and long-term measures of climatic and environmen-
tal variability are linked to patterns of recruitment
(Menge & Menge 2013), we expected to find associa-
tions between connectivity and large-scale oceano-
graphic processes. PDO and especially the regional
upwelling index had very strong correlations with
the cluster frequencies. The significant correlation
between the frequencies and the regional upwelling
index makes sense in that the connectivity clusters
with higher self-recruitment occur most often in
years when the regional upwelling index is low.
Larvae in the surface layer are largely transported
offshore and are lost from the system, particularly
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during upwelling (Drake et al. 2011), and major dif-
ferences in larval recruitment have been attributed
to shifts in upwelling (Menge & Menge 2013).

Implications of the results

Our results provide an opportunity to examine the
importance of long-term, large-scale hindcasts for
understanding population dynamics in coastal eco-
systems, in this case the California Current System.
Spatial and temporal variation in recruitment has
been documented in the California Current System
since the beginning of the 20th century, and early
authors attributed interannual fluctuations to varia-
tions in ocean currents (e.g. Coe 1953, 1955). How-
ever, at the time of Coe's work, there was no way to
test his ideas directly, since there had been few
large-scale measurements of ocean currents during
the years in which he observed massive recruitment
events (1931, 1934, 1938, 1950), since CalCOFI
surveys did not start until 1950 (CalCOFI 1950).
Though limited drift bottle data and current meter
data from the first half of the 20th century does
exist, high-resolution patterns of currents were not
well characterized at the time (Marmer 1926). While
the southern region of the California Current Sys-
tem has been sampled intensively since 1950, Ore-
gon has less data (Wyatt et al. 1972), making the
methods described in the present paper a means of
providing estimates of patterns for a time when rel-
atively few surface current observations exist for
the Northern California and Oregon coast. More re-
cently, large-scale differences in recruitment have
been linked to regional differences in upwelling
regimes (e.g. Connolly et al. 2001, Broitman et al.
2008, Menge et al. 2011, Menge & Menge 2013).
Our connectivity hindcast patterns are consistent
with the observations of these authors. The bound-
ary between recruitment regimes that they observed
is in the same area where we see a reduction in
north—south connectivity. By extending the temporal
range of ocean models decades into the past, our
methods also offer the opportunity to examine the
environmental conditions surrounding historical
variations in recruitment on large spatial scales, in
conjunction with data on long-term variability in the
California Current System (Bakun & Nelson 1991,
Bograd & Lynn 2003). In addition, it raises the possi-
bility of extending population connectivity estimates
even farther into the past, using long-term recon-
structions of general properties of the California
Current System (Black et al. 2014).

Degree of self-recruitment versus northward or
southward transport across latitudes

The connectivity patterns indicate that there is a
great deal of self-recruitment, which should uncou-
ple the population dynamics of sites separated by
distances greater than ~20 km. If these patterns are
maintained in species with longer planktonic larval
duration, they would help explain the spatial pat-
terns of synchrony in space occupiers like barnacles
and mussels (e.g. Broitman et al. 2008, Gouhier et al.
2010, Menge et al. 2011). For example, Gouhier et al.
(2010) found that the spatial correlations of mussel
population dynamics on the US Pacific coast decayed
to zero at a distance of 150 km, which is approxi-
mately 3x the spatial scale of mussel larval dispersal
(Gilg & Hilbish 2003). Broitman et al. (2008) observed
high similarity in recruitment timing and intensity
among sites from Strawberry Hill (44.25°N) to the
north. This region showed high intra region connec-
tivity in our analyses (Fig. 2), which may contribute to
the patterns observed by Broitman et al. (2008).

It is possible that the greater number of estuaries
north of 43°N compared to south of 43°N influences
our ability to estimate connectivity in those 2 regions.
However, Drake et al. (2011, 2013) observed similar
patterns in their high resolution simulations of con-
nectivity in the same geographic region. They esti-
mated connectivity among locations spaced by 2 to
4 km along the entire coastline and found higher
connectivity among northern sites than between the
northern and southern regions of our study area.
Therefore, we believe that our connectivity estimates
are representative of the actual patterns in the
region.

Differences in correlations between long-term
cycles and recruitment

An association between long-term cycles and
recruitment patterns on the US Pacific coast has been
documented on large geographic scales by Menge et
al. (2011). These authors found associations at some
temporal scales and not others, and some relation-
ships were relatively constant over 15 yr whereas
others varied in intensity over that period. For exam-
ple, the seasonal scale association between the NPGO
and MEI was strong between 1995 and 2001 and
weak otherwise. We found a major shift in connectiv-
ity patterns bracketing these dates, with a large
increase in the frequency of connectivity cluster 5
before and after those years (Fig. 2).
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We suspect that offshore transport of larvae during
upwelling events may contribute to changes in the
degree of connectivity among sites. This leads to the
correlations between some connectivity patterns and
the regional upwelling index. Menge et al. (2011)
found the strongest associations with upwelling at
seasonal time scales, but they also observed associa-
tions at multi-annual scales. Since our connectivity
analysis was restricted to a 3 mo period of each year,
we cannot resolve the seasonal patterns, but we do
see the multi-annual association with the upwelling
index.

The relationship between connectivity and the
PDO (see 'Results: Relation between connectivity
and large-scale oceanographic processes’) may ac-
centuate shifting biogeographic patterns of coastal
species that are associated with the PDO. For in-
stance, during the PDO warm phase in 1994 to 1997,
the subtropical mussel Mytilus galloprovincialis was
common at 41°N, but as the PDO shifted to cold
phase by 2005 to 2007, this species was rare to absent
north of 39°N (Hilbish et al. 2010). The range con-
traction was likely due to reproductive failure caused
by cold conditions in northern sites, but was probably
accelerated by southward transport conditions that
are more common in the PDO cold phase (e.g. Fig. 2).

Why peaks in recruitment occur where they do
across latitudes

The equilibrium population structure predicted by
our connectivity models (Fig. 1) has a peak around
45°N, which is the same region where recruitment
rates have been observed to have the highest levels
on the US Pacific coast (e.g. Connolly et al. 2001,
Broitman et al. 2008). We hypothesize that connectiv-
ity contributes to the pattern, perhaps intensifying
the effects of upwelling that have been documented
by others (e.g. Connolly et al. 2001, Broitman et al.
2008, Menge et al. 2011).

SUMMARY

We proposed means for extending the temporal
range of connectivity estimates using a combination
of multivariate statistical clustering by SOM and by
using relationships between connectivity and wind
magnitude and direction. We validated the method
with a 30 yr hindcast of the California Current Sys-
tem. Only a few connectivity patterns were needed to
account for much of the variance in coastal connec-

tivity over 30 yr. The weekly and yearly frequencies
of these connectivity patterns were estimated using
surface wind fields from meteorological reanalysis
data in place of long time series of ocean model data
with fine spatial and temporal scales. Therefore, at
least for larvae with short planktonic durations, it is
possible to make multi-decadal estimates of maxi-
mum connectivity using wind fields, so long as an
adequate period of ocean data is available for para-
meterizing and validating a wind-based model. Ana-
lysis of the results of our hindcast indicates that there
are multi-annual associations between connectivity
and long-term cycles like the PDO, and that there are
episodic large-scale shifts in connectivity patterns.
These changes in connectivity presumably contribute
to the continental scale variations in recruitment
intensity and population structure of intertidal inver-
tebrates that have been observed on the US Pacific
coast over the past 2 decades.
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