ABSTRACT: Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain nitrogen-fixing (diazotrophic) cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming, 2 drivers of marked future change in the marine environment. Here, we enclosed a natural plankton community in 12 indoor mesocosms (volume ~1400 l) and manipulated partial pressure of carbon dioxide (p_{CO_2}) in seawater to yield 6 CO$_2$ treatments with 2 different temperature treatments (16.6°C and 22.4°C, p_{CO_2} range = 360–2030 µatm). We followed the filamentous, heterocystous diazotrophic cyanobacteria community (Nostocales, primarily *Nodularia spumigena*) over 4 wk. Our results indicate that heterocystous diazotrophic cyanobacteria may become less competitive in natural plankton communities under ocean acidification. Elevated CO$_2$ had a negative impact on *Nodularia* sp. biomass, which was exacerbated by warming. Our results imply that *Nodularia* sp. may contribute less to new nitrogen inputs in the Baltic Sea in the future.

KEY WORDS: Cyanobacteria · Environmental change · Baltic Sea · Nitrogen fixation · *Nodularia spumigena*
These changes are termed ocean warming and ocean acidification, respectively. Increases in summer surface temperature of 2–4°C (von Storch et al. 2015), concurrent with an average surface ocean pH decrease of up to 0.4 pH units (Schneider et al. 2015), are projected for the Baltic Sea by the year 2100. In some regions of the Baltic Sea such as the Kiel Fjord, short-term and seasonal fluctuations already markedly exceed project changes (Thomsen et al. 2010). These fluctuations may be exaggerated under ocean acidification (Omstedt et al. 2012). Diazotrophic organisms appear to be sensitive to both ocean acidification (Barcelos e Ramos et al. 2007, Fu et al. 2007, Czerny et al. 2009, Wannicke et al. 2012, Hutchins et al. 2013, 2015, Eichner et al. 2014, Gradoville et al. 2014) and warming (Fu et al. 2014) in laboratory studies. However, the response of diazotrophs in field studies with mixed plankton assemblages has been contradictory, with no response to elevated partial pressure of carbon dioxide (pCO_2) in seawater observed in studies in the Pacific Ocean (Law et al. 2012, Böttjer et al. 2014) and the Baltic Sea (A. J. Paul et al. 2016) and a positive response observed in the Mediterranean Sea (Rees et al. 2017).

In this mesocosm study, we wanted to stimulate a bloom of *N. spumigena* and follow (1) the response of diazotroph growth and activity to future ocean acidification and warming scenarios in a natural plankton community and (2) any potential changes in new N inputs. When using a natural community, important factors such as grazing and resource availability and competition will likely modulate bloom initiation and the response of *N. spumigena* to increasing CO_2, in contrast to the physiological response observed in single-strain culture studies. This experimental setup used shallow mesocosms (~1.5 m deep) with high light availability, similar to the conditions present in surface waters in the Baltic Sea during summer. There, strong stratification, high light availability and high temperatures facilitate the development of extensive blooms of filamentous diazotrophic cyanobacteria. Based on laboratory experiments using *N. spumigena* (Czerny et al. 2009, Eichner et al. 2014), we expected diazotroph activity and growth to be negatively affected by increased CO_2 under phosphate repletion but positively affected by increased temperature (Suikkkanen et al. 2013), a controlling factor of diazotrophy in the Baltic Sea (Wasmund 1997). Furthermore, we anticipated that CO_2- or temperature-related changes in diazotroph activity and growth will be visible in plankton community biomass due to potential relief of N-limitation in the plankton community.

MATERIALS AND METHODS

Experimental set-up and sampling procedures

This mesocosm study took place using the indoor mesocosm facilities at GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, between 13 August and 13 September 2013. Four temperature-controlled rooms each held 3 mesocosms with a volume of ~1400 l and surface area of ~1.54 m². We employed an experimental design with 2 temperature treatments (cold = 16.5°C, warm = 22.5°C), each containing 6 target pCO_2 treatments ranging from ambient (~400 µatm) up to 2500 µatm. The temperature in the warm and cold treatments was increased and decreased by 3°C, respectively, from ambient temperature of the Kiel Fjord during mesocosm filling to exclude the effect of any potential temperature shock. The 12 mesocosms were filled simultaneously on 13 August (t=−3 = 3 d before the onset of the experiment, see also Table S1 in the Supplement at www.int-res.com/articles/suppl/m589p049_supp.pdf) with unfiltered seawater from the Kiel Fjord collected from approximately 2 m water depth. This water contained a natural summer plankton community from the western Baltic Sea including bacteria, phytoplankton and protozoa. To encourage formation of a filamentous diazotrophic cyanobacterial bloom, 1.75 l of *Nodularia spumigena* culture (strain: SCCAP K-1536) was added to each mesocosm on 14 August 2013 (t=0). This resulted in an initial cell density of approximately 5100 cells l$^{-1}$ in each mesocosm.

Before addition to the mesocosms, the *Nodularia* sp. culture was cultivated under temperature and light control (18°C, 150 µmol photons m$^{-2}$ s$^{-1}$) in sterile filtered (0.2 µm) Kiel Fjord water with f/2 nutrients, vitamins and trace elements. Mesozooplankton (90% copepods, mixed species and stages) collected from the Kiel Bight from vertical net catches (10 m depth) were also added to the mesocosms on t=0 at a density of 20 ind. l$^{-1}$, simulating levels reported for this region in the summer season (Behrends 1997) to replenish those lost during mesocosm filling. To acclimate the mesozooplankton to the temperature treatments, collected mesozooplankton were kept in 10 l containers for 24 h in the temperature-controlled rooms. This also enabled dead individuals to be removed before addition to the mesocosms.

A light-permeable polyvinylchloride (PVC) cover on each mesocosm maintained a headspace above the water surface to reduce outgassing of CO$_2$ during the experiment. An electrical propeller gently mixed the water in each mesocosm and ensured
homogenous distribution of particulate matter and reduced sedimentation. The light intensity and period reflected natural conditions for this latitude and season as calculated by the astronomic model of Brock (1981). The 5 spotlights (HIBay-LED, 100 W each, Lamp unit HL3700 and ProfiLux II, wavelength range: 400–800 nm) were computer controlled (GHL Groß Hard- und Softwarelösungen). The light:dark cycle of 14.05:9.95 h included a sunrise/sundown simulation of approximately 2 h and an average maximum light intensity of 382.7 µmol photons m⁻² s⁻¹ around noon. Light intensity was measured using a LICOR Li-250A light meter. The experimental time line and a diagram of the mesocosm set-up are provided in Table S1 and Figs. S1 & S2. Regular sampling from all mesocosms took place every Monday, Wednesday and Friday between t⁻² (Wednesday, 14 August 2013) and t₂₈ (Friday, 13 September 2013) between 07:00 and 09:30 h local time. Samples for dissolved inorganic carbon (DIC) were taken directly from the centre of the mesocosms at approximately 0.5 m depth using flexible silicon tubing. Samples for total alkalinity (TA) were collected on the previous evening so that up-to-date TA concentrations could be determined overnight and used on the following sampling day to calculate the required CO₂ enrichments. TA fluctuations over the 48−72 h sampling periods were small and thus the difference in sampling timing to DIC samples had minimal influence on calculation of the CO₂ system. Dissolved organic matter was also sampled directly from the mesocosms using a membrane pump and acid-rinsed tubing to minimise the risk of contamination. Water for all other variables (e.g. particulate matter, dissolved inorganic nutrients) was collected into plastic carboys for subsequent sub-sampling.

Carbonate system manipulations

A range of CO₂ treatments was attained by the addition of CO₂-saturated seawater. Different amounts of CO₂-enriched seawater were added to each treatment to set up a range of ~420–1670 µatm average pCO₂ in the warm treatment and ~365–1920 µatm average pCO₂ in the cold treatments (see Table S2 for a summary of total amounts added). CO₂ enrichment started on t⁻² after sampling and took place every sampling day after general sampling until t₁₀. Thereafter, CO₂-enriched seawater was added every day, apart from t₁₆ and t₂₃, to maintain more stable CO₂ treatments. Seawater for the CO₂ enrichments for the whole experiment was collected at the beginning of the study when the mesocosms were being filled, sterile filtered (0.2 µm) and stored at 15°C. Water was bubbled with CO₂ gas for at least 6 h on the day of addition. Nutrient concentrations were determined (see ‘Analytical procedures’ below) on the day of collection as well as on the last day of CO₂ enrichment (t₂₆).

Analytical procedures

Carbonate chemistry (TA, DIC)

Samples for TA and DIC concentrations were taken directly from the centre of each mesocosm and gently pressure-filtered (Sartstedt Filterpur PES 0.2 µm) to exclude particulate material before analysis. DIC samples were collected as gas samples into 50 ml glass flasks (Schott Duran) with at least 100 ml of overflow. TA was analysed by potentiometric titration on an autosampler (Metrohm 869 Sample Changer) and a 907 Titrando Dosing unit according to the open cell method described by Dickson et al. (2007). DIC was analysed by infrared detection of CO₂ by a LICOR LI-7000 on an AIRICA system (MARIANDA). Reported values were calculated as the mean of the 3 best out of 4 measurements with typical precision of 1.5 µmol kg⁻¹. Certified reference material provided by Andrew Dickson (CRM 115, Scripps Institute for Oceanography of the University of California, San Diego, USA) was used to correct for any drift during analyses for both TA and DIC between sampling days and within a run. Carbonate system parameters and pCO₂ were calculated using measured DIC and TA and the carbonic acid dissociation constants of Millero et al. (2006) in the CO2SYS program (Pierrot et al. 2011), taking into account measured nutrient concentrations, temperature and salinity.

Dissolved inorganic and organic matter

Dissolved inorganic nitrogen (DIN = NO₃⁻ + NO₂⁻), phosphate (DIP) and ammonium (NH₄⁺) were filtered (cellulose acetate, 0.8 µm pore size, Sartorius Stedim) and frozen at −20°C until analysis. Concentrations were determined on an auto-analysers (Skalar, SAN⁺PLUS) as described by Hansen & Koroleff (1999). The actual detection limit varied between sampling days but was on average 0.57, 0.09 and 0.34 µmol l⁻¹ for DIN, DIP and NH₄⁺, respectively. Phosphate
excess (P^*, Deutsch et al. 2007) was calculated from DIP, DIN and NH$_4^+$ concentrations according to:

$$P^* = [\text{DIP}] - ([\text{DIN}] + [\text{NH}_4^+])/16 \quad (1)$$

For dissolved organic nitrogen and phosphorus (DON and DOP, respectively) analyses, 60 ml of samples were filtered through pre-combusted, acid-rinsed GF/F filters (450°C, 6 h) and collected in acid-rinsed, high-density polyethylene (HDPE) bottles and stored at -20°C until analyses. Total dissolved nitrogen and phosphorus were converted to inorganic nitrogen and phosphorus using an autoclave (20 min) and alkaline persulfate oxidation. Concentrations were then determined colorimetrically as described by Hansen & Koroleff (1999). DON concentrations were calculated from total dissolved nitrogen by subtracting DIN and NH$_4^+$ concentrations. DOP concentrations were calculated from total dissolved phosphate by subtracting DIP concentrations.

Particulate matter (C, N, P)

Particulate matter for C/N and P analyses was collected on GF/F filters (Whatman, nominal pore size of 0.7 µm, diameter 25 mm) by filtration under reduced vacuum (<200 mbar) between t1 and t28. Filtration volumes ranged between 100 and 250 ml to ensure sufficient biomass on the filters for analysis. Samples for analysis by mass spectrometry were stored at -20°C until analysis before they were dried overnight at 60°C and packed into tin capsules. Particulate nitrogen and carbon were converted to N$_2$ and CO$_2$ gas, respectively, using the method of Sharp (1974), and the stable isotope ratio (15N/14N) was analysed on a Finnigan Delta Plus isotope ratio spectrometer coupled by a Conflo II to an elemental analyser (EuroEA). In addition to the standard calibration at the beginning of each run, standard materials (caffeine, peptone and acetanilide) were also included within runs to identify any drift and ensure accuracy and full combustion of the samples during analysis. Natural abundance isotope ratios in particulate N (15N-PN) are reported in per mil (‰) compared to the atmospheric N$_2$ standard (AIR). Due to analytical problems (SD >0.2‰ in standard material 15N) with the samples on t1 (biomass too low) and t28 (problems with calibration), these data points were excluded from analyses. Total particulate phosphorus concentrations were determined spectrophotometrically as described by Hansen & Koroleff (1999).

Phytoplankton biomass

Phytoplankton abundances for organisms >5 µm were determined to the species level and counted using an inverted light microscope in Lugol-fixed samples (Utermöhl 1958) using 50 ml sedimentation chambers. Common species were counted in diametrical strips using 20×, 40× and 60× lens magnification, depending on cell size. Large and rare species (including *Nodularia*) were counted by scanning the entire bottom plate with a 10× lens. The uppermost volume of the chambers was examined for floating cyanobacterial colonies, which were never found. Phytoplankton biomass (µg C l$^{-1}$) was calculated from abundances using geometric standards (Hillebrand et al. 1999) and carbon content as described by Menden-Deuer & Lessard (2000). Flow cytometry abundances for organisms <5 µm were converted to carbon content using the factors of Sommer et al. (2012). Total phytoplankton biomass was calculated as the combination of phytoplankton carbon content from flow cytometry (<5 µm) and microscope (>5 µm) estimations. Nostocales biomass is the combined biomass of *N. spumigena* and *Dolichospermum* sp., the 2 most abundant filamentous diazotrophic cyanobacteria observed in this study.

Statistical analyses

We tested the effects of temperature and measured pCO$_2$ on diazotroph biomass (Nostocales) and indicators of diazotroph activity (15N-PN, P^*, DOP) by building non-linear mixed-effects (NLME) models using the R package nlme (Pinheiro et al. 2015). The experiment was divided into a bloom (t0–t10) and a post-bloom phase (t12–t28). We defined this as the phase when phytoplankton biomass was in decline and below 100 µg C l$^{-1}$ on average across all treatments (see also Fig. 3). An NLME model was chosen for this particular analysis because the longitudinal data set included repeated measures, potentially non-constant correlation between observations and non-linear variable response (Lindstrom & Bates 1990). Nostocales biomass was not normally distributed, so data were log-transformed to satisfy the assumption of normality in the model residuals. We used pCO$_2$ and temperature as fixed effects to test their influence on diazotroph biomass in the first model (pCO$_2$ × temperature). We then tested the effect of diazotroph biomass, CO$_2$ and temperature on key biogeochemical indicators (15N-PN, P^*, DOP) using the model Nostocales biomass × pCO$_2$ × temperature. In
both models, mesocosm was included as a random effect. We simplified the models to exclude all non-significant terms (p > 0.05). Normality of residuals and heteroscedasticity were inspected visually and satisfied model assumptions before performing an ANOVA to test significance of each variable. No collinearity was detected between pCO2 and Nostocales biomass.

RESULTS

Carbonate system and environmental variables

Temperature treatment levels of 22.4 ± 0.1°C (warm) and 16.6 ± 0.4°C (cold) were reached (mean ± SD) by t2 and remained within 0.4°C of these values until the end of the experiment on t28. A gradient of CO2 treatments was present from t3 onwards, with average pCO2 ranging from 420 to 1760 µatm in the warm treatment, and from 360 to 2030 µatm in the cold treatment (Fig. 1A,B). However, there was a high level of variability within each treatment, particularly in the highest pCO2 treatments primarily due to the high concentration difference to the atmospheric level and corresponding high level of outgassing in the shallow mesocosms. Daily additions of CO2-enriched seawater after t10 (except for t16 and t23) improved stability within each treatment.

Salinity ranged between 15.2 and 15.3, and TA remained relatively stable and ranged between 1950 and 1970 µmol kg−1. There was a small TA drawdown later in the study period during the post-bloom phase (Fig. 1C,D). This appeared to be slightly higher at lower CO2 and higher temperature.

Filamentous diazotrophic cyanobacterial biomass and contribution to phytoplankton community biomass

Nodularia spumigena was the dominant filamentous diazotrophic cyanobacterium identified in all mesocosms. Biomass increased with additions of *N. spumigena* culture to all mesocosms with an average biomass on t0 of 0.62 ± 0.09 and 0.62 ± 0.11 µg C l−1 (mean ± SD) in the warm and cold treatments, respectively (Fig. 2A,B). The next dominant species identified in the order Nostocales was *Dolichospermum* sp., which contributed on average to less than 15% of Nostocales biomass (*N. spumigena* = 0.32 ± 0.32 µg C l−1, *Dolichospermum* = 0.05 ± 0.10 µg C l−1, mean ± SD), but up to 100% of biomass in some warm treatments during the post-bloom phase when *N. spumigena* was no longer present.

Total phytoplankton biomass declined during the experiment and remained low (89.7 ± 66.7 µg C l−1, mean ± SD; Fig. 3A,B) and within the range of reported values for the Kiel Fjord (Wasmund et al. 2008). There was a higher variability in starting phytoplankton community biomass on t2 between mesocosms in the cold treatment (157.6 ± 49.5 µg C l−1) than in the warm treatment (168.3 ± 13.1 µg C l−1). Nostocales biomass declined over time, and the maximum biomass (<1.5 µg C l−1) remained well below the definition of a bloom of 22 µg C l−1 according to Wasmund (1997). The observed biomass was also considerably lower than other studies with artificial blooms (~460 µg C l−1, Engström-Öst et al. 2002) and contributed on average to less than 3% of total phytoplankton biomass throughout the study period. In some cold treatment mesocosms, the contribution of Nostocales to phytoplankton community biomass increased after t20 to up to 23% (Fig. 2C,D).

No direct effect of temperature was detected, but there was a significant effect of CO2 on Nostocales biomass in both the bloom and post-bloom periods and in both temperature treatments. A highly significant interactive effect between CO2 and temperature was detected (p < 0.0001, Table 1). Nostocales biomass was generally highest under low CO2 and low temperature and lowest under high CO2 and high temperature (Fig. 2). An increase in Nostocales biomass after the *N. spumigena* culture addition on t0 was only discernible in the lowest CO2 treatments.

Indicators of diazotrophic activity

While N2-fixation rates were analysed following a method with minor modifications from Mohr et al. (2010), 15N-N2 gas contaminated with 15N-labelled ammonium, nitrate and/or nitrite was used (Dabundo et al. 2014) and thus the measured rates are considered unreliable for this study. Nevertheless, we analysed δ15N-PN, DOP and P* as indicators of diazotrophic activity as described in the following 2 sections.

Stable isotope ratios in particulate nitrogen

δ15N-PN decreased from 3.5 ± 1.2‰ (mean ± SD) on t3 to reach a minimum of −0.2 ± 1.2‰ on t10 before increasing again in the post-bloom period to reach 2.2 ± 1.7‰ on t26 across all CO2 and temperature treatments (Fig. 2E,F). There was a significant
negative effect of temperature on δ¹⁵N-PN in both the bloom and post-bloom periods (p = 0.0054 and p = 0.0008, respectively; Table 2), but no significant effect of CO₂. In the post-bloom period, there was a significant interaction between CO₂ and Nostocales biomass on δ¹⁵N-PN (p < 0.0001, Table 2), even though there was no significant effect of either factor independently.

Inorganic and organic nutrient concentrations

Nutrient concentrations directly after mesocosms were filled on t-3 were 0.60, 1.83 and 0.66 µmol l⁻¹ for DIN, NH₄⁺ and DIP, respectively. DIN and NH₄⁺ concentrations in almost all samples were below the detection limits, which were on average 0.60 and 0.34 µmol l⁻¹, respectively, as is common for the summer season in the Kiel Fjord (Smetacek 1985). There was an excess of inorganic phosphate (P*) in all mesocosms throughout the study period (Fig. 3C,D; 0.33 ± 0.10 µmol l⁻¹, mean ± SD), compared to inorganic N according to the Redfield ratio (Redfield 1958). During the bloom phase, Nostocales biomass, pCO₂ and temperature all had a significant negative effect on P* (Table 2), whereas in the post-bloom period, only temperature still had a significant negative effect (p < 0.0001). In addition, there was a positive interactive effect of Nostocales biomass and temperature on P* during the post-bloom phase.

Through the regular additions of CO₂-enriched seawater to maintain more constant pCO₂ in the

![Fig. 1. Carbonate system variables during the study period. Calculated pCO₂, measured total alkalinity and dissolved inorganic carbon (DIC). Grey vertical lines indicate when the Nodularia spumigena culture was added to the mesocosms, and the black dashed vertical lines indicate the division between bloom and post-bloom phases.](image-url)
mesocosms, we also inadvertently added small amounts of inorganic nutrients (NH$_4^+$, DIN and DIP). However, total amounts added during the study period were small (0.02 µmol l$^{-1}$ DIN, 0.02 µmol l$^{-1}$ DIP, 0.07 µmol l$^{-1}$ NH$_4^+$) and remained well below the ambient N pool size (e.g. DON ~17 µmol l$^{-1}$, PON ~2 µmol l$^{-1}$) in the mesocosms. We consider the minor nutrient input during CO$_2$ manipulations to have had a negligible effect on Nostocales biomass with negligible relief of N-limitation of the phytoplankton present. Amounts of added NH$_4^+$ were not of a magnitude shown to affect *N. spumigena* growth or activity (Huber 1986, Sanz-Alférez & del Campo 1994, Lehtimäki et al. 1997, Vintila & El-Shehawy 2010).

DOP concentrations in the mesocosms were on average 0.32 ± 0.08 µmol l$^{-1}$ (mean ± SD) over the entire study period, and there was no significant effect of Nostocales biomass, pCO$_2$ or temperature (data not shown).

DISCUSSION

Influence of elevated seawater CO$_2$ and temperature on diazotroph abundances

Rising seawater CO$_2$ led to lower biomass of filamentous diazotrophic cyanobacteria, predominantly *Nodularia spumigena* and *Dolichospermum* sp., with excess phosphate present. Thus, this study using a natural Baltic Sea plankton community agrees with the results of 2 monoculture studies which reported...
lower growth rates in N. spumigena with rising CO₂ (Czerny et al. 2009, Eichner et al. 2014). The small artificial N. spumigena bloom was sustained for longer in the lowest CO₂ treatments in both temperature treatments. An increase in observed biomass indicates net growth in these treatments during the bloom phase (Fig. 2A, B). In contrast, there was no clear period of biomass accumulation or bloom development in any CO₂ treatment above 1000 µatm (average treatment pCO₂) in the warm treatment.

The CO₂ treatment levels selected here of up to an average of ~2000 µatm spanned a much wider range than the widely recognised projections by 2100 of up to 1000 µatm (Collins et al. 2013) but are within the natural range of the Kiel Fjord which can reach up to 3000 µatm during late summer (Thomsen et al. 2010). Nevertheless, the strongest biomass response to pCO₂ appeared to be between ambient and approximately 1000 µatm. This indicates a potential pCO₂ threshold for net Nostocales growth. Similarly, the most marked changes in diazotroph activity and growth in a variety of oceanic taxa were evident within a comparable, and ocean acidification-relevant, pCO₂ range (Hutchins et al. 2013). Based on both our study and results from Hutchins et al. (2013), we suggest that the most critical changes in diazotroph physiology may occur within the range of realistic future average pCO₂ levels (under 1000 µatm).

Rising temperature has been proposed as a key driver of the observed increased filamentous cyanobacterial presence in summer in the Baltic Sea (Suikkanen et al. 2013), with suggestions that future warming will continue this positive trend (HELCOM 2013). Warmer temperatures promote growth in slow-growing diazotrophs, increasing their competitiveness with other autotrophic organisms in plank-
Table 2. Summary of detected significant fixed effects in mixed effects model analyses of and indirect indicators of diazotroph activity (δ^{15}N in particulate nitrogen [δ^{15}N-PN] and excess dissolved inorganic phosphate concentration [P*]). The initial model tested (Nostocales biomass $\times p$CO$_2$ \times temperature) was simplified to remove all insignificant fixed effects. Bloom and post-bloom indicate t_2 to t_{10} and t_{12} to t_{28}, respectively. Values indicate F-statistics, and dashes (–) indicate that the fixed effect had no significant effect on the variable. Arrows indicate direction of the response, with **p < 0.01, ***p > 0.001

<table>
<thead>
<tr>
<th>Significant fixed effect</th>
<th>δ^{15}N-PN</th>
<th>δ^{15}N-PN</th>
<th>[P*]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bloom (df = 35)</td>
<td>Post-bloom (df = 69)</td>
<td>Bloom (df = 55)</td>
</tr>
<tr>
<td>Nostocales biomass</td>
<td>–</td>
<td>23.70 *** ↓</td>
<td>–</td>
</tr>
<tr>
<td>pCO$_2$</td>
<td>–</td>
<td>20.89 *** ↓</td>
<td>–</td>
</tr>
<tr>
<td>Temperature</td>
<td>8.81 ** ↓</td>
<td>12.24 *** ↓</td>
<td>8.79 ** ↓</td>
</tr>
<tr>
<td>Nostocales biomass \times pCO$_2$</td>
<td>16.50 *** ↓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nostocales biomass \times temperature</td>
<td>–</td>
<td>7.30 ** ↑</td>
<td>–</td>
</tr>
</tbody>
</table>

Negative effect of ocean acidification on diazotroph biomass not reflected in diazotroph activity

During the period of highest Nostocales biomass (t_{3}–t_{10}), δ^{15}N-PN decreased in all treatments. This may indicate increased uptake of isotopically light N, potentially through fixation of low δ^{15}N from atmospheric N$_2$ by diazotrophs, into plankton community biomass. Yet there is no direct evidence that δ^{15}N-PN, a proxy for diazotroph activity, was directly affected by CO$_2$, despite the strong negative response to CO$_2$ observed in Nostocales biomass (Tables 1 & 2; see also discussion in previous section).

Temperature had a more significant influence on δ^{15}N-PN than CO$_2$, with warmer temperature having a negative effect on δ^{15}N-PN. This temperature effect on this potential diazotroph activity proxy could not be attributed to higher diazotroph biomass in the higher temperature treatment (Tables 1 & 2). Additional factors such as a high importance of regenerative production (Sigman et al. 2009), differential nitrate isotope fractionation between phytoplankton species (Needoba et al. 2003) and uncertainty in inorganic N concentration, also complicate interpretation of the potential diazotrophic δ^{15}N signature in δ^{15}N-PN. In this study, there were higher zooplankton abundances (C. Paul et al. 2016), and presumably also higher zooplankton organic matter respiration, in the warmer treatments. Inorganic N concentrations were below the detection limit, and therefore their influence on δ^{15}N-PN was assumed to be negligible. Hence, increased regeneration of
isotopically light inorganic nitrogen by zooplankton may better explain variation in δ¹⁵N-PN than diazotroph activity. The response of other indicators of diazotrophic activity, such as P*, to CO₂ and temperature are also contradictory. For example, Nostocales biomass had a significant negative correlation with P* during the bloom phase (Table 2), fitting with the idea from Deutsch et al. (2007) that diazotrophs add N, use P and thereby reduce P*. However, P* was also negatively correlated with both CO₂ and temperature independently during the bloom phase (Table 2). This would suggest higher N₂-fixation under higher CO₂ and higher temperature, thus contradicting the negative relationship detected between Nostocales biomass and CO₂ and CO₂ × temperature (Table 1). These opposing responses indicate that Nostocales were not shaping the response of P* to CO₂ and temperature. Reasons for this could be their low contribution of diazotrophic cyanobacteria to plankton biomass, or the nutrient uptake of other more abundant, non-diazotrophic plankton. Thus, while diazotrophic biomass was significantly affected by elevated CO₂, we have no clear indication of any temperature or CO₂ effect on diazotrophic activity within this 28 d long study period.

Potential consequences for future diazotrophic N supply to the Baltic Sea

Despite warm temperatures (>16°C), light and phosphate availability fitting the suggested requirements for diazotrophic growth in the Baltic Sea (Wasmund 1997), no large bloom of Nostocales developed in our study. Nostocales generally contributed to less than 1% of total phytoplankton biomass (Fig. 2C,D). This is considerably less than in field studies reporting large surface aggregates contributing around 20 to 30% of plankton community biomass (Stal et al. 1999, Andersson et al. 2015); consequently, their influence on biogeochemical pools was limited. The lack of bloom development could also be due to experimental artefacts. In order to control temperature, this study took place indoors, where we mimicked natural light conditions using an artificial light source with no UV radiation. Lack of UV radiation can influence phytoplankton community composition (Mousseau et al. 2000) and cell stoichiometry (Hessen et al. 2008), and can modulate the physiological response of phytoplankton to ocean acidification (Gao et al. 2009). Additionally, the well-mixed mesocosms may have provided less favourable conditions for N. spumigena, which usually bloom in highly stratified water columns (Wasmund 1997).

The negative growth response of the dominant diazotrophic cyanobacterium in this study, N. spumigena, to increasing CO₂ reported in some physiological studies was verified here in a natural plankton community. The direction of the negative physiological CO₂ response in this Baltic Sea cyanobacterium was not modified through resource competition with other phytoplankton functional groups or by top-down grazing pressure. If this negative CO₂ effect on biomass cascades through the food web over longer time periods, it may lead to a decrease in diazotroph N inputs, with consequences for productivity in the wider plankton community.

Acknowledgements. We thank all participants of the indoor mesocosm study, in particular Jessica Garzke for experiment co-ordination, logistics and assistance with CO₂ manipulations. We also thank Roberto Benavides, Bente Gardeler, Laura Gobelius, Thomas Hansen, Dana Hellemann, Henriette Horn, Andrea Ludwig and Kerstin Nachti-gall for assistance in mesocosm set-up, sampling and analyses. Thanks also to Lennart Bach, Sonja Endres, Scarlett Sett and Arvind Singh for helpful discussions while preparing this manuscript, and to 2 anonymous reviewers for their constructive comments. This study was funded by the Cluster of Excellence ‘The Future Ocean’ (Project CP1141) and the German Federal Ministry of Education and Research (BMBF) programme BIOACID II (FKZ 03F06550).

LITERATURE CITED

Brewer PG (1997) Ocean chemistry of the fossil fuel CO₂...

HELCOM (Helsinki Commission) (2013) Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. HELCOM, Helsinki

water as a function of salinity and temperature. Mar Chem 100:80–94

Sommer U, Moustaka-Gouni M (2015) Warming and ocean acidification effects on phytoplankton—from species shifts to size shifts within species in a mesocosm experiment. PLOS ONE 10:e0125239

Thomsen J, Gutowska MA, Saphörster J, Heinemann A and others (2010) Calculifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7: 3879–3891

Editorial responsibility: Ronald Kiene, Mobile, Alabama, USA

Submitted: October 9, 2017; Accepted: May 8, 2018

Proofs received from author(s): June 12, 2018