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and rubble sites are likely not due to changes in com-
munity composition over time (Fig. 8), although this
was not well resolved in the data due to the limited
number of recruits at the rubble site. Patterns in coral
density and survival were similar between the refer-
ence and restoration areas (Fig. 5), likely due to sim-
ilarities in benthic cover of turf algae, macroalgae,
and other organisms (Section 1, Fig. S1B, in the Sup-
plement).

Octocoral recruit density and survival were higher
than patterns seen in scleractinian corals, although still
limited and variable. Density and survival of recruits
were predominantly lower at the rubble site than the
pavement site, reference site, or restoration structures
(Figs. 6B, D, & 7). The change in octocoral density from
2008 to 2013 was significantly higher within the pave-
ment site than within the rubble site (rubble and pave-
ment mean ranks were 4.9 and 9.8, respectively; U = 0,
Z = −2.2, p < 0.05, r = −0.6; Fig. 7); this appeared due to
increases in density of octo corals sized from 5 to
>20 cm at the pavement site (Fig. 6), as surviving octo-
corals grew larger. In contrast, although the density of
octocorals at the rubble site was higher than that of
scleractinians (Figs. 7 & 8) and some octocorals grew
into larger size classes, octocoral density did not signif-
icantly in crease from 2008 to 2013 (Fig. 7).

At the rubble site, analysis of benthic quadrat
photo graphs showed that selected individual rubble
clasts changed locations within permanent quadrats
between field surveys, indicating repeated mobiliza-
tion. Of 249 rubble clasts tracked between sampling
events, only 5 (2.0%) were relocated in the subse-
quent years’ photos. These 5 consistent pieces ap -
peared larger than the mean of the rubble size distri-
bution, and were in approximately the same location
for a single subsequent year.
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Fig. 8. Change in (A) density and (B) richness for scleractin -
ians and octocorals from within the rubble and pavement
sites. Richness shows change in number of scleractinian 

species and octocoral genera per 10 m2 transect
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Fig. 9. Change in species composition from 2008−2013 for impacted coral communities relative to reference populations (Ref)
at (A,C) pavement and (B,D) rubble sites. Scleractinian coral composition is in A and B, and octocoral composition is in C and D
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Rubble and wave energy models

The 4 yr wave model hindcast showed that wave
forcing near the substrate was similar between the
rubble and pavement disturbance sites (Fig. 10).
Multiple events occurred during the model hindcast
period when bottom-orbital velocities exceeded
thresholds required to mobilize mean-sized rubble
(Figs. 11 & 12). The mean return intervals for forcing
required to slide rubble was approximately 7 d (max-
imum return interval approximately 23 d), shorter
than for return intervals of forces required to over-
turn rubble, where the mean return interval was 12 d
(maximum 134 d; Fig. 12A). The duration of sliding
events was longer (mean = 1 d, max = 58 d) than
for overturning events (mean = 0.5 d, max = 22 d;
Fig. 12B). During multiple events each year, forcing
was sufficient to slide (60−131 events yr−1) and over-
turn rubble (151−241 events yr−1). A number of the
mobilization events are linked to the passage of trop-
ical storms or hurricanes (Fig. 11). Forcing sufficient

to mobilize rubble by sliding or overturning occurred
in all months (Figs. 11 & 12C), with peak occurrence
in August through December during the Atlantic
tropical cyclone season (Fig. 12C).

DISCUSSION

The frequency and spatial extent of multiple distur-
bances constrain recovery processes (Turner et al.
1993), including colonization of key species (Connell
1997). Temporal intervals between extreme events
regulate coral community trajectories and return or
reset communities to alternate or early successional
stages (Done 1999, Hughes & Connell 1999). Here,
we show how diverging coral recovery trajectories
are caused by repeated, chronic physical distur-
bances from wave energy. Coral colonization into 2
proximal ship grounding sites with a similar post-
impact recovery time was far higher on a reef flat-
tened to pavement than on reef area broken to rub-
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Fig. 10. Spatial distribution of (A,C,E) significant wave heights and (B,D,F) bottom-orbital velocities obtained from long-term 
wave model hindcasts: (A,B) calmest 5% percentile, (C,D) mean, and (E,F) stormiest 95% conditions
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Fig. 11. Comparison between model hindcast estimates of bottom-orbital velocities (ub) and the critical orbital velocities re-
quired to slide (uslide) or overturn (uoverturn) coral rubble at (A) rubble and (B) pavement sites. Grey vertical lines indicate named
storm events south of Puerto Rico within 100 km. Solid red and blue lines indicate general values of coefficients used in forcing
needed to overturn (red) or slide (blue) rubble. Shading indicates minimum and maximum coefficient sensitivity values for 

uslide (red) and uoverturn (blue)

Fig. 12. (A) Return intervals (in days) between hydrodynamic forcing events that exceeded threshold levels to mobilize coral
rubble through overturning (light grey) or sliding (dark grey). Return intervals for threshold conditions to overturn rubble
have a longer return interval than those to slide rubble. (B) Durations of hydrodynamic forcing conditions exceeding condi-
tions to mobilize coral rubble through overturning are shorter than those required for sliding. (C) Probability of occurrence of
hydrodynamic forcing events by month. Chronic hydrodynamic forcing events of rubble occur in all months and more fre-
quently in the hurricane season. (D) Probability of occurrence of hydrodynamic forcing events by year, showing that threshold 

 conditions were exceeded in all study years
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ble. Recruitment density and survival on pavement
substrate also initially exceeded that of the reference
and restoration sites, a pattern that is likely indicative
of less available benthic space in reference and res-
toration sites due to existing corals, octocorals, and
other benthic organisms. As coral recruits at the
pavement site survived and grew into larger size
classes, new recruitment declined, also supporting a
pattern of space availability limitations as more
corals became established. In contrast, within unsta-
ble substrate, the data suggest a colonization bottle-
neck for corals and sustained loss of coral habitat. To
contrast these diverging recovery trajectories on
reefs with otherwise similar coral species composi-
tion, we further explored the potential physical
mechanisms behind the observed biological patterns.

Using rubble mechanics, we showed that the
hydro dynamic forcing hindcast for the study sites
would be sufficient to mobilize rubble on a chronic
timescale not limited to large, infrequent events
such as named tropical storms. The recruitment lim-
itations within unstable substrate observed in this
study are consistent with previous studies that have
shown correlations between decreased survival of
small corals and substrate mobilization by water
motion (Fox et al. 2003, Fox & Caldwell 2006, Yadav
et al. 2016). Our mechanistic model indicates that
substrate instability lowers a threshold for subse-
quent hydrodynamic disturbances. Such chronic
multiple disturbances limit coral colonization rela-
tive to adjacent disturbed areas with comparable
hydrodynamic forcing but consolidated substrate.
Without stabilization of unconsolidated rubble, the
threshold for disturbance remained low and did not
recover during the study. In contrast, the threshold
for hydro dynamic disturbance at the pavement site
was much higher, as evidenced by successful coral
colonization. The fate of unstable rubble depositions
is determined by frequency and intensity of subse-
quent hydro dynamic disturbances (Scoffin 1993),
and continued mobilizations may establish a posi-
tive feedback loop in which continued rubble clast
mobilizations cause additional mechanical erosion
or breakage and a shift to ever smaller rubble sizes.
Smaller rubble clasts subsequently mobilize at a
lower level of hydro dynamic forcing, and thus
become subject to more frequent and sustained dis-
turbances.

Estimating hydrodynamic forces on submerged
objects contains inherent uncertainties. Spatial
variability in flow patterns (notably, at a scale
smaller than the 40 m model grid cell resolution of
this study) may influence probabilities of rubble

mobilization. Small-scale flow patterns may drive
hydrodynamic patchiness within a disturbance site,
resulting in some areas being more likely to mobi-
lize than others. For example, colonies along edges
of undamaged reef surrounding disturbance area
may have turbulent wakes (Hench & Rosman 2013)
that may influence the likelihood of rubble mobi-
lization. Potential for substrate mobility is influ-
enced by friction and drag forces’ sensitivities to
rubble exposure to the flow, rubble interlocking, or
ratio of rubble to sediment. Improved modeling of
rubble mobility could include rubble collisions
(Imamura et al. 2008, Nandasena & Tanaka 2013)
and rubble interactions with smaller sediment size
classes (Kain et al. 2012). Fi nally, bioturbation (e.g.
sand tilefish, rays) may mobilize rubble, but is diffi-
cult to quantify on its own or in conjunction with
hydrodynamic mobilization.

Alternative explanations for the comparatively
lower coral recruitment into the rubble site than
the pavement site include differential temperature
stresses leading to mortality (e.g. via bleaching), or
competition for space with existing benthic organ-
isms such as algae. Mean near-bottom water tem-
perature at the pavement site was slightly warmer
than the rubble site, with the same variance, and
skewed toward higher temperatures (Section 2,
Fig. S2, in the Supplement). One might expect that
greater thermal stress at the pavement site could
translate to less favorable thermal conditions for
coral survival; however, since coral density and
survival were higher at the pavement site, it
appears that thermal stress is not the dominant
physical driver accounting for differences between
sites. Cover of other benthic organisms also did not
appear to be sub stantially different between the
pavement and rubble sites. Both were similar in
cover for benthic algae, turf, and sponges; however,
the rubble site had more crustose coralline algae
than the pavement site for several years (Figs. S1A
& S1B in the Supplement), a condition which would
seem favorable for coral settlement (Ritson-Williams
et al. 2009). Cementation and encrustation (Perry
1999) and sponge stabilization (Biggs 2013) have
been reported to be biological mechanisms to stabi-
lize substrate, and potentially provide suitable sub-
strate for successful multi-species coral colonization
(e.g. Dollar & Tribble 1993, Hughes 1999, Perry
2005). In our study, however, only limited stabiliza-
tion of unconsolidated substrate through biological
mechanisms was noted, and biological stabilization
was not observed to be a significant contributor to
stabilize the rubble site.
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Although direct observation of rubble mobiliza-
tion and coral mortality during hydrodynamic
events proved elusive in this study, the findings
are consistent with other work showing that large
disturbances can have cascading effects that can
lead to continued habitat degradation. Effects of
large disturbances are well known to have long-
lasting impacts on coral communities (Done 1992,
Connell et al. 1997, Connell 1997). Hydrodynamic
energy from hurricanes is related to declines in
reef structural complexity (Alvarez-Filip et al.
2009), low coral recruitment (Crabbe et al. 2008),
and coral loss in the Caribbean over the last 30 yr
(Gardner et al. 2005). On Caribbean reefs, the
combined effects of disturbances, adult mortality,
and recruitment limitations of framework-building
scleractinian coral species have contributed to
community shifts to small, weedy coral species,
octocorals, or algae, thereby reducing potential for
future structural complexity. This limitation is
likely to have impacts beyond benthic communities,
as complexity provided by both corals and under-
lying geologic structure contributes to system-wide
biodiversity (Graham & Nash 2013), including fish
communities (Graham et al. 2006), fisheries pro-
ductivity (Graham 2014, Rogers et al. 2014), and
mitigation of nearshore wave energy through
attenuation by reefs (Ferrario et al. 2014).

After an extreme initial disturbance to the bio-
logical and structural complexity of a coral reef,
projec ted recovery may be limited by ecological as
well as hydrodynamic forcing. Our findings empha-
size the importance of physical and biological limi-
tations on juvenile coral survival and negative
effects of multiple disturbances on community
recovery. It is clear that without substrate stabi-
lization, subsequent chro nic hydrodynamic mobi-
lization of unstable substrate can lead to prolonged
or permanent habitat loss.
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