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1.  INTRODUCTION

Delivery of planktonic larvae to the intertidal zone
is necessary for the persistence of coastal marine
populations. Larvae are transported across the shelf
by one or more mechanisms, including wind-driven
surface currents, upwelling and relaxation circula-
tion, and breaking internal tidal waves, often termed
bores (Ladah et al. 2005, Jacinto & Cruz 2008, Shanks
et al. 2014, Morgan et al. 2018). Subsequent transport
into and across the surf zone occurs through similar
mechanisms (Shanks 1995, Pfaff et al. 2015, Morgan
et al. 2018), including onshore winds, Stokes drift
from breaking surface waves, non-linear or breaking
internal waves or bores, and benthic streaming (for
organisms near the bottom) due to the dissipation of

energy in the wave boundary layer near the bottom
(Fujimura et al. 2014, Shanks et al. 2014, Navarrete
et al. 2015).

Plankton can be transported onshore by winds,
which can result from various mechanisms. The sea
breeze, which occurs due to a temperature gradient
that is generated between the land and the ocean,
can result in onshore surface currents of up to 10 cm
s–1 over an area of influence of about 3 km from shore
(Tapia et al. 2004, Woodson et al. 2007), and can
transport surface zooplankton shoreward (Shanks
1995). Wind-forced upwelling−downwelling circula-
tion occurs when equatorward winds, generally asso-
ciated with large-scale geostrophic pressure systems,
displace coastal surface waters offshore due to
Ekman transport, which are replaced with colder,
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denser, upwelled waters that can transport zooplank-
ton from deeper layers shoreward. When these winds
relax or change direction, the colder and denser
waters sink, and the warmer surface waters that
were initially pushed offshore return to shore, trans-
porting surface zooplankton shoreward (Wing et al.
1995, Shanks et al. 2000, Almeida & Queiroga 2003).

Planktonic larvae can also be transported onshore
by internal tidal bores, which generally occur in 2
phases (Pineda 1994, 1999). As the internal tide,
which is an internal wave of tidal frequency, enters
shallow waters, it becomes unstable and breaks, caus-
ing waters from below the thermocline to shoal and
move shoreward, known as the cold phase or bore
(Pineda 1991). Afterwards, as the cold, dense water
sinks and is advected offshore, warmer surface waters
move back onshore, called the warm phase or bore.
These 2 alternating phases occur once each tidal cycle
and are characteristic of a mode-1 internal wave, with
currents flowing in opposite directions above and be-
low the thermocline (Shanks 1983, Pineda et al. 2007).
Therefore, for a semidiurnal internal tide, 2 cold and 2
warm bores are expected each day. Warm bores have
been shown to transport organisms that are near the
surface in the direction of the propagating wave
(Pineda 1991, Leichter et al. 1998), while cold bores
can transport organisms from deeper strata in the di-
rection of the propagating wave (Pineda 1994).

After marine invertebrate larvae have been trans-
ported nearshore, the surf zone represents the final
barrier that they must cross to reach their adult habi-
tat in the intertidal zone (Rilov et al. 2008, Morgan et
al. 2017, 2018). Surf zone hydrodynamics affect the
supply of larvae to the intertidal zone and can vary
greatly depending on beach morphology, breaking
surface waves, and currents (Pfaff et al. 2015, Mor-
gan et al. 2018). Dissipative beaches are character-
ized by high wave energy, wide surf zones, and fine-
grain sand (Thornton & Guza 1983). Plankton can
cross dissipative beaches through transport forced by
on shore winds at the surface, Stokes drift from
breaking surface waves (Tilburg 2003, Fewings et al.
2008, Lentz et al. 2008), or benthic streaming. Reflec-
tive beaches, on the other hand, are characterized by
lower wave energy, narrow energetic surf zones and
narrow rocky beaches (Elgar et al. 1994). Many of the
same cross-shore processes occur on reflective
beaches (albeit with a much narrower surf zone to
cross), such as Stokes drift, onshore wind-driven cur-
rents for near-surface organisms, internal bores, and
benthic streaming for bottom organisms (Fujimura et
al. 2014, Shanks et al. 2014, Navarrete et al. 2015,
Morgan et al. 2018). However, the cross-shore pro-

cesses at reflective beaches have been much less
studied, and are less efficient compared to those on
dissipative beaches due to the lack of rip currents,
the reduced undertow, and the narrow surf zone.

Semidiurnal internal waves have been well charac-
terized in the northern part of the Bay of Todos San-
tos, Baja California, Mexico (Ladah et al. 2005, 2012,
Filonov et al. 2014). In this area, internal tidal bores
have been shown to modulate changes in the vertical
distribution, abundance, and settlement of mero -
plankton. Liévana MacTavish et al. (2016) showed
significant changes in the vertical distribution and
abundance of barnacle and crabs in the water col-
umn across internal tidal fronts, and internal tidal
bores have been associated with settlement of the
barnacle Chthamalus spp. in the intertidal zone
(Ladah et al. 2005, Valencia-Gasti & Ladah 2016).
Internal tidal bores occur on every continental shelf
(Shanks 1995, Leichter et al. 2005), and because they
may be critical for cross-shelf and surf zone transport
of many marine larvae, exploring their  ability to
deliver plankton to nearshore waters is necessary for
understanding the dynamics of coastal populations
(Franks 1997, Helfrich & Pineda 2003), particularly
on less-studied reflective beaches.

We aimed to evaluate high-frequency changes
(hourly) in the abundance of target meroplankters
(gastropods, mussels, oysters, barnacles, crabs, bry-
ozoans, and cyprids) and holoplankton (foraminifera
and ostracods) in the surf zone during a period of
strong internal tidal forcing in summer, when many
larvae settle and recruit in this area. Concurrent
measurements of temperature, currents, and winds
helped to identify the mechanisms occurring while
zooplankton abundance was measured. We hypothe-
sized that significant increases in the abundance of
the zooplankters would occur during rapid tempera-
ture changes, related to internal tidal bores reaching
the surf zone.

2.  MATERIALS AND METHODS

2.1.  Study area

The study was conducted in Playa San Miguel, a
rocky wave-exposed beach located in the northern
part of the Bay of Todos Santos, Baja California, Mex-
ico (31° 55’ N, 116° 38’ W), near Ensenada. The coast-
line orientation is 47° from geographic true north (fac-
ing the southeast) at this shore, and it is classified as a
reflective beach due to its steep shore, narrow and en-
ergetic surf zone, and narrow beach with large boul-

16



Fernández-Aldecoa et al.: Delivery of zooplankton by internal bores and onshore winds

ders. Summertime conditions are characterized by a
highly stratified water column, with strong semidiur-
nal internal wave activity (Ladah et al. 2005).

2.2.  Data collection

Zooplankton samples were collected every hour in
triplicate for 3 continuous days from 31 August to
3 September 2015 from the low intertidal/shallow
subtidal, using pumps connected to wide-mouthed
hoses (5.08 cm diameter). One end of the hose was
weighted and anchored to sample at 20 cm from
 bottom. The other end of the hose fed into a nytex
(150 µm) mesh bag to collect filtrate. Pump rates
were adjusted and standardized to collect 100 l of
water. The contents were filtered and fixed in 92%
ethanol immediately after collection. The high-fre-
quency sampling was essential for detecting changes
that occur at hourly scales in response to breaking
internal tidal waves at the coast. Identification to
the lowest taxonomic level was performed using a
stereo microscope (32× objective). All meroplankton
taxa and the most abundant holoplankton taxa were
enumerated.

A set of instruments and a weather station re cor -
ded physical variables near the study area. Tempera-
ture of the water column was measured using a ver-

tical array of thermistors (HOBO® Tidbit v2; Onset)
deployed every 1 m at 2 mooring stations located
450 and 850 m offshore of the intertidal site, in 5 and
15 m depth, respectively (Fig. 1). Instruments recorded
temperature every 1 min. This type of array has been
used to identify internal waves with periods greater
than 10 min at this site (see Ladah et al. 2012, Filonov
et al. 2014). Winds were measured every 5 min from
the CICESE Observatory at El Sauzal (http://obser-
vatorio.cicese.mx/cicese/Current_cicese.htm), located
2 km from the study area. Tidal heights, specific for
this bay, were provided by the MAR  program v.1.0
2011 (http://predmar.cicese.mx/). A 600 kHz acoustic
Doppler current profiler (ADCP; RDI workhorse, http://
www. teledynemarine.com/ workhorse- sentinel- adcp?
BrandID= 16) was deployed at 15 m depth and set to
record every 1 min in 1 m bins.

2.3.  Data processing

Rapid temperature changes characteristic of inter-
nal waves were explored using the absolute value of
the difference of temperature at the 5 m depth moor-
ing every 1 h to correspond with hourly plankton
samples: 

Δ°C = |°Ct + 1h − °Ct| (1)

17

Fig. 1. Study site in the Bay of Todos Santos. Playa San Miguel (d) is
located in the northern part of the bay. Offshore mooring Stns 1 and
2 (m) were located on the 5 and 15 m isobath, respectively. A ther-
mistor line was deployed next to each station and an acoustic
Doppler current profiler (ADCP) was deployed next to Stn 2. The
north−south current velocity component (v) was graphed against
the east−west current velocity component (u ), and the major axis u ’
(rotated α = 42.03°) indicates the principal current direction either
onshore (positive u ’ values) or offshore (negative u ’ values). Bathy -
metry was provided by Dr. Ruiz de Alegría-Arzaburu’s laboratory
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where °Ct is the temperature at time 1 and °Ct + 1 h is
the temperature 1 h later. Temperature data were
taken from the 3 m depth thermistor, creating a new
time series used in further analyses explained below.

Wind speeds and direction were decomposed into
their Cartesian components u (east−west) and v
(north−south). Similarly, current velocity components
were decomposed. To calculate the horizontal com-
ponent with the greatest variability, we used the fol-
lowing equation:

u’ = u cos(α) + v sin(α) (2)

The angle between the reference system of u and
the reference system of u’ for current velocity was α
(Fig. 1). Positive u’ current velocities indicate current
propagation towards the northern part of the bay
(onshore), while negative u’ velocities indicate cur-
rent propagation away from the study site (offshore).
For wind speed, the angle between the reference
system of u and u’ was α = −21.6°. Shoreline orienta-
tion of the study site faced southeast. Thus, a west-
northwesterly sea breeze corresponds to cross-shore
winds, with positive velocities indicating onshore
winds, while negative velocities indicate offshore
winds. The v ’ component of the wind had a north−
south principal direction at the study site.

2.4.  Data analysis

Because high-resolution measurements were
taken over time, autocorrelation in the zooplankton
data set was expected, potentially resulting in non-
independence of data. To remove the autocorrela-
tion, we fit an autoregressive integrated moving
average (ARIMA) model to the zooplankton data.
The residuals from the ARIMA model were then used
in the ANOVA and generalized linear models
(GLMs), to avoid the problem of non-independence.
A 1-way ANOVA with α = 0.05 was performed to
determine differences in the abundance of larvae
with a posteriori comparisons using Fisher’s least sig-
nificant difference (LSD) test (StatSoft). GLMs (with
identity link function) were performed, where rapid
temperature change (see Eq. 1 above), wind speed u’
and v’ (see Eq. 2 above), tidal height and their inter-
actions were used as predictors for zooplankton
abundance for every taxon. Akaike’s information cri-
teria (AIC), the proportion of the explained deviance
(D2), and the independence of the residuals from the
model (Durbin-Watson test), were used as criteria to
identify which physical mechanism best explained
the variability of zooplankton abundance in the surf

zone. Spectral analyses were used to determine pat-
terns in the vertical and temporal variability in the
temperature time series at both moorings, and coher-
ence analyses were used to explore the relationship
of temperature variability with the tide and the sea
breeze. Periodograms were smoothed to just 3 fre-
quencies due to the short sampling period (7 d; 27
August to 2 September 2015).

3.  RESULTS

3.1.  Internal tidal bores nearshore

Water-column temperature at the 15 m mooring
station showed diurnal fluctuations in temperature
near the surface, with a stronger semidiurnal signal
(12.4 h) below the thermocline and near the bottom
(Fig. 2a). Temperature differences between the sur-
face and bottom were over 5°C during periods of
high stratification (Fig. 3d). Cold and warm water
fronts alternated approximately every 6 h and coin-
cided with fluctuations of the thermocline and move-
ment of water in opposite directions above and below
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Fig. 2. Spectra (periodogram, cycles d−1) of temperature at
the (a) 15 m and (b) 5 m moorings. All depths were averaged 

for the 5 m mooring
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the thermocline. For example, a cold front was de -
tected on 1 September starting at around 02:00 h and
ending at 07:00 h, with currents flowing in the south-
western direction (offshore flow) near the surface,
while bottom currents showed a northeastern direc-
tion (onshore flow). Following the cold front, the tem-
perature of the water column abruptly increased, and
a warm front began around 08:00 h and ended at

12:00 h, with currents switching direction above and
below the thermocline.

Nearer to shore, at the 5 m mooring station, strong
internal tidal bores were apparent in the temperature
time series, resulting in periods of little to no stratifi-
cation that lasted at times longer than the expected
6 h periods (Fig. 3e). For example, on 31 August
around 09:00 h, the water column temperature was

19

Fig. 3. Time series of (a) tidal
height at San Miguel beach at
mean low water (MLW) refer-
ence, (b) cross-shore wind ve -
locity (positive values are on -
shore winds and negative
values are offshore winds) and
(c) cross-shore current velo city
(u’) at 3 and 11 m above bottom
(mab) — positive values are on-
shore flow and negative values
are offshore flow. Temperature
of the wa ter column at the (d) 15
m and (e) 5 m mooring stations;
warm and cold fronts advecting
to the intertidal are numbered
and shown by dashed lines in (d)
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below 21°C. Following this event, the entire water
column warmed, and 4 h later reached above 23°C.
The spectral analysis of the averaged water column
temperature at the 5 m mooring generally showed a
weaker peak in the semidiurnal band than the
 temperature at most depths of the 15 m mooring
(Fig. 2b).

During the 3 d of sampling, 12 cold or warm fronts
reached the nearshore site (Fig. 3d). The bores were
highly non-linear, most of them breaking before
reaching the subtidal, resulting in strong water-
 column temperature changes for at least a few hours
in most cases. However, on 31 August, the strongest
warm front of the study period arrived and tempera-
ture was maintained around 24°C for a full 16 h
(Fig. 3e).

3.2.  Sea breeze

Cross-shore winds were dominant during our
study. Higher wind speeds occurred in the after-
noons (Fig. 3b). The offshore component reached a
maximum of nearly 3 m s−1 while onshore winds only
reached 1 m s−1. Water-column temperature at the
15 m mooring and the sea breeze were coherent in
the diurnal band and in phase near the surface layer
(Fig. 4).

3.3.  Delivery of zooplankton to intertidal

The vast majority (85%) of the enumerated zoo-
plankters were late-stage larvae (Table 1). Gastro -
pods (late larvae) and foraminifera were the most
abundant of meroplankton and holoplankton taxa,
respectively. Zooplankton arrived to shore in pulses
(Fig. 5), with nearly 60% of organisms arriving in a
span of 6 h (12:00 to 18:00 h on 31 August).

The GLM explained the abundance patterns of
gastropods, foraminifera, cyphonautes (bryozoan lar-
vae), and barnacle cyprids (Table 2). For both gas-
tropods and foraminifera, the models that incorpo-
rated all of the factors (changes in temperature,
cross-shore winds, north−south winds, and tidal
height) and their interactions best explained the
abun dance patterns. However, for cyphonautes and
barnacle cyprids, the models that incorporated tem-
perature change, tidal height, and only the north−
south winds showed the best fit.

GLM analysis showed that rapid temperature
changes, most likely related to tidal bores advecting
to the nearshore, explained nearly 25% of barnacle

cyprid variability (Table 3). Also, the interaction be -
tween rapid temperature changes and cross-shore
winds played an important role, explaining more
than 30 and 25% of gastropod larvae and foraminif-
era variability, respectively. For example, during a

20

Taxon Mean SE %

Gastropod late larvae 131.96 16.34 76.25
Foraminifera 14.63 3.22 8.46
Ostracods 10.54 1.70 6.09
Mytilus spp. late larvae 7.56 1.71 4.37
Crassostrea spp. late larvae 3.24 0.86 1.87
Cyphonautes 2.98 0.54 1.72
Barnacle cyprids 1.66 0.89 0.96
Larvaceans 0.30 0.17 0.17
Crab zoea 0.11 0.09 0.06
Barnacle nauplii 0.07 0.05 0.04

Table 1. Mean (+SE) concentration (no. of zooplankters 
per 100 l) and percentage of zooplankton collected from 

31 August to 3 September 2015 at San Miguel Beach

Fig. 4. Spectral density (cycles d–1)between the sea breeze
(u') and temperature of the surface layer is shown. Vertical
dashed lines represent the diurnal band of the (a) wind com-
ponent u’ and (b) temperature at 14 m above the bottom
(near the surface); (c) coherence and (d) phase difference
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warm bore arrival between 13:00 and 18:00 h on
31 August, over 25% of all zooplanktonic organisms
collected during the entire study were found. The
tide also explained 10% of the variability of cypho-
nautes.

4.  DISCUSSION

Rapid changes in temperature associated with
internal tidal bores reaching the coast significantly
explained the abundance patterns of late-stage lar-
vae at an hourly scale on this reflective shore. For
some organisms, there was also a significant interac-
tion between internal tidal bores and onshore winds.
Although in other studies these factors have been
found to independently have a significant relation-
ship with larval concentrations or larval settlement
(Pineda 1994, Tapia et al. 2004, Ladah et al. 2005,
Shanks et al. 2014), our results support the proposal
that, for some taxa, both factors might act in concert
to deliver larvae to the surf zone.

At the 15 m mooring station, semidiurnal internal
waves were detected propagating across the shore.
An alternating pattern of colder and warmer waters
occurred approximately every 6 h, with circulation
above and below the thermocline flowing in opposite
directions, as expected for a semidiurnal mode-1
internal tide. Mode-1 internal waves have been pre-
viously observed at this site in the nearshore water
column during stratified conditions and strong
atmospheric tides (Filonov et al. 2014). This circula-
tion pattern follows the model proposed by Pineda
(2000), showing how different phases of an internal
bore can theoretically transport larvae to the coast as
a function of depth.

In contrast, at the 5 m mooring station located
400 m from shore, just offshore of the surf zone, the
shallow water column was completely flooded by
either colder or warmer waters at a time. Water col-
umn temperatures showed little stratification, inter-
nal waves did not show the expected mode-1 signa-
ture, and there was no clear pattern of alternating
warm and cold bores. The semidiurnal frequency
typical of internal waves that was found at the 15 m
mooring and that has been found previously at this
site (Ladah et al. 2005, 2012, Filonov et al. 2014) was
not present in the 5 m mooring data, suggesting that
as the internal waves propagated across the shore
into shallower water, they broke up and overturned
the water column. Warm bores were often strong
enough to persist over more than the semidiurnal
cycle, as subsequent bores did not replace the warm
water that had been mixed onto the shelf. Circulation
and retention times of bores in such shallow water
have not been well studied and could be important in
the delivery and retention of larvae (Mateos et al.
2009, Filonov et al. 2014).

For bryozoans (cyphonautes), tidal height was the
factor that best explained their abundance patterns.
Saunders & Metaxas (2010) suggested that onshore
transport of cyphonautes occurs during wind-driven
downwelling events; however, in our study we did
not have any such events. Differences found in the
delivery mechanism between studies may be related
to regional variability in the vertical distribution of
larvae. For example, Saunders & Metaxas (2010)
found higher abundances of cyphonautes closer to
the surface in Nova Scotia, whereas in California,
near our study site, other authors (Bernstein & Jung
1979, Yoshioka 1982, Pineda 1999) found that they
occurred below the thermocline in strongly stratified

22

Taxon                      Candidate model                                                         K         AIC       Lag         Auto-           D-W         p-
                                                                                                                                                           correlation    statistic    value

Gastropods             Δ°C + Wns + Wcs + T + Δ°C × (Wns + Wcs + T) +        15       786.94       1             0.04             1.91        0.37
                                Wns × (Wcs + T) + (Wcs × T) + (Δ°C × Wns × T) +                                                                                        
                                (Δ°C × Wcs × T) + (Wns × Wcs × T)                                                                                                                

Foraminifera          Δ°C + Wns + Wcs + T + Δ°C × (Wns + Wcs + T) +        15       573.12       1           −0.26            2.53        0.09
                                Wns × (Wcs + T) + (Wcs × T) + (Δ°C × Wns × T) +                                                                                        
                                (Δ°C × Wcs × T) + (Wns × Wcs × T)                                                                                                                

Cyphonautes          Δ°C + T + (Δ°C × T)                                                      3         332.1        1           −0.02            2.05        0.98

Barnacle cyprids    Δ°C + Wns + T + Δ°C × (Wns + T) + (Wns × T) +          7        410.12       1             0.07             1.85        0.33
                                (Δ°C × Wns × T)

Table 2. Models representing hypotheses of onshore larval transport at San Miguel beach. Model selection was based on low-
est Akaike’s information criteria (AIC) values and independence of residuals (Durbin-Watson [D-W] statistic). Factors used in
the candidate models included changes in temperature (Δ°C), cross-shore winds (Wcs), north−south winds (Wns), and tidal 

height (T). K: number of parameters included in the model. AIC and results from the D-W test are shown
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conditions, similar to those shown in the present
study (Fig. 3d). The relationship detected between
tidal height and abundance of bryozoans suggests
that the incursion of water onto the shore by the tide,
or some other factor related to the tide, may play a

role in their delivery to shore. The dif-
ferent results found for different sites
also underscores the importance of
vertical position of zooplankters in
determining which transport mecha-
nisms they are exposed to (Paris &
Cowen 2004, Hare et al. 2005, Lloyd
et al. 2012a).

Larvae cross the surf zone by sev-
eral means, depending on their verti-
cal distribution. Organisms close to
the bottom, such as mussels, barnacle
cyprids, bivalves, foraminifera, and
gastropods, sink in response to turbu-
lence (Fuchs & DiBacco 2011, Fuchs
et al. 2013) and accumulate near the
bottom at the outer edge of the surf
zone. Peaks in abundance in the surf
zone, for those plankters that sink in
response to turbulence inside the surf
zone, have been attributed to a near-
bed transport mechanism driven by
surface breaking waves (Navarrete et
al. 2015, Pfaff et al. 2015, Shanks et al.
2015, Morgan et al. 2017, 2018). On
the other hand, for organisms that re -
main close to the surface, such as some
species of gastropods and foraminif-
era, the results of this study were con-
sistent with those of previous studies
showing that currents generated by
onshore winds or Stokes drift might
help these larvae reach the intertidal
zone (Fujimura et al. 2014, Morgan et
al. 2018).

Internal tidal bores, along with their
interaction with onshore winds in
some cases, explained the variability
of barnacle cyprids, foraminifera, and
late-stage gastropod larvae. Other
studies have found that internal
motions are capable of delivering
zooplankton to reflective shores
(Shanks et al. 2014, Pfaff et al. 2015).
In the case of barnacle cyprids, inter-
nal tides reaching the shore ex -
plained 25% of the variability in
abundance at the study site, where

previous studies found that daily settlement of inter-
tidal barnacles Chthamalus spp. has been correlated
to either the internal tide (Ladah et al. 2005) or on -
shore winds (Valencia-Gasti & Ladah 2016) on differ-
ent occasions. However, an interaction of both mech-
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Estimate SE t-value Pr(>|t|) %

Gastropods
Δ°C 64.93 119.94 0.54 0.59 33
Wns 140.58 716.59 0.19 0.84
Wcs 45.24 40.23 1.12 0.26
T −0.01 0.04 −0.35 0.72
Δ°C × Wns −271.84 762.59 −0.35 0.72
Δ°C × Wcs −169.02 95.75 −1.76 0.08
Δ°C × T −0.08 0.14 −0.61 0.54
Wns × Wcs 495.64 556.99 0.89 0.37
Wns × T −0.13 0.56 −0.24 0.80
Wcs × T −0.02 0.04 −0.44 0.65
Δ°C × Wns × Wcs −1909.91 781.43 −2.44 0.01
Δ°C × Wns × T 1.02 0.88 1.15 0.25
Δ°C × Wcs × T 0.04 0.12 0.32 0.74
Wcs × Wcs × T −0.48 0.45 −1.05 0.29
Δ°C × Wns × Wcs × T 2.35 0.93 2.52 0.01

Foraminifera
Δ°C 5.85 20.78 0.28 0.77 25
Wns 77.72 124.19 0.62 0.53
Wcs 11.05 6.97 1.58 0.11
T −0.01 0.01 −0.31 0.75
Δ°C × Wns −93.36 132.16 −0.70 0.48
Δ°C × Wcs −26.73 16.59 −1.61 0.11
Δ°C × T −0.02 0.02 −0.83 0.40
Wns × Wcs 110.04 96.53 1.14 0.26
Wns × T −0.05 0.09 −0.51 0.60
Wcs × T −0.01 0.01 −0.53 0.59
Δ°C × Wns × Wcs −322.22 135.43 −2.37 0.02
Δ°C × Wns × T 0.17 0.15 1.15 0.25
Δ°C × Wcs × T −0.01 0.02 −0.30 0.75
Wcs × Wcs × T −0.08 0.07 −1.09 0.27
Δ°C × Wns × Wcs × T 0.35 0.16 2.16 0.03

Cyphonautes
(Intercept) −2.59 1.20 −2.07 0.04 10
Δ°C 2.77 2.25 1.23 0.22
T 0.01 0.01 2.41 0.01
Δ°C × T −0.01 0.01 −1.34 0.18

Barnacle cyprids
Δ°C 6.54 3.12 2.09 0.04 25
Wns 9.52 10.29 0.92 0.35
T −0.01 0.01 −0.35 0.72
Δ°C × Wns 18.99 15.59 1.21 0.22
Δ°C × T −0.01 0.01 −1.00 0.31
Wns × T −0.01 0.01 −1.00 0.31
Δ°C × Wns × T −0.01 0.01 −0.37 0.71

Table 3. Results from general linear model analysis of the effect of physical
factors on zooplankton concentrations (gastropods, foraminifera, cyphonautes,
and barnacle cyprids). Significant (p < 0.05) correlations for changes in tem-
perature (Δ°C), cross-shore wind (Wcs), north−south winds (Wns), tidal height
(T), and interaction between factors on the concentration of zooplankton at the
shore are shown in bold; percentage of variability (%) explained by the model 

is also shown
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anisms has not been documented previously. In the
present study, an interaction between onshore winds
and internal waves was found for gastropods and
foraminifera for the first time in this area. Previous
studies collected meroplankton in the water column
far from the surf zone or entailed intertidal settle-
ment surveys at a daily frequency (Ladah et al. 2005,
Liévana MacTavish et al. 2016, Valencia-Gasti &
Ladah 2016), which may be the reason the combina-
tion of mechanisms had not been detected. In the
present study, we may have been able to identify
both mechanisms as important due to the high fre-
quency of sampling and the proximity to the shore, as
this was the first time the abundance of zooplankton
in the surf zone was determined at an hourly scale at
the Bay of Todos Santos. Also, because the vertical
distribution of gastropods and foraminifera species
occurs throughout the whole water column when in
the nearshore, exposure to both mechanisms of
trans port to the coast might have occurred (Kuroy-
anagi & Kawahata 2004, Lloyd et al. 2012b).

The vast majority of larvae collected in the surf
zone in the present study were in the later stages of
development. Larval behavior, related to develop-
mental stage, plays an important role in the horizon-
tal and vertical distribution of these organisms. Lar-
vae can move into different depths to take advantage
of stratified currents, thus controlling their cross-
shore distribution (Tapia et al. 2010). Larvae may also
re spond to different environmental cues to change
their behavior. For example, cyprids (last larval stage
of barnacles) respond to downwelling in the labora-
tory by swimming up in the water column (DiBacco
et al. 2011). This behavior can help them concentrate
in internal bore warm fronts that may transport them
to shore, as other authors have found, where strong
thermal stratification has been re la ted to a greater
abundance of barnacle cyprids closer to shore
(Hagerty et al. 2018). It has also been suggested that
earlier stages of larvae located throughout most of
the water column avoid the surf zone by detecting
turbulence and shear from breaking waves near the
coast (Fuchs & Gerbi 2016, Morgan et al. 2017, 2018),
explaining their low numbers in our samples. On the
other hand, late-stage larvae of many species, in -
cluding barnacles, crabs, and mussels, are more
abundant in surf zones (Morgan et al. 2017, Hagerty
et al. 2018), as was found herein.

Changes in abundance and vertical distribution of
plankton across the shelf have been well documen -
ted (Ladah et al. 2005, Shanks 2006, Shanks et al.
2014, Liévana Mactavish et al. 2016, Valencia-Gasti
& Ladah 2016); however, there is limited information

on the delivery of larvae to and in the surf zone, espe-
cially at reflective shores. In situ sampling and
numerical simulations of larval transport have been
performed to better understand the process (Fuji -
mura et al. 2014, Morgan et al. 2017), yet much is still
unknown. The present study represents a valuable
step in comprehending how internal tidal waves and
onshore winds may assist in transporting different
species of larvae to shore at an hourly scale.

In the present study, delivery processes were con-
sistent with the vertical distributions of zooplankton
in the water column. These patterns may vary sea-
sonally with wind variability and stratification of the
water column, which is necessary for internal tidal
motions during the year. It should be noted that the
data set was only 3 d long; hence, the results, al -
though statistically significant, are an early approach
in understanding the delivery of larvae in the Bay of
Todos Santos shores. The present study supports the
hypothesis that internal tidal bores reaching the
coast in summer (when the water column is strongly
stratified) in concert with onshore winds can accu-
mulate zooplankton nearshore, suggesting that in
many cases and for many organisms these transport
mechanisms do not act alone.
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