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1.  INTRODUCTION

The stratospheric ozone concentration increases
from the equator towards the poles, with an associ-
ated latitudinal and cloud cover variability of ultravi-
olet B (UVB) radiation (280−320 nm) incident on the
sea surface (Sen Mandi 2016). The stratospheric
ozone layer protects all living organisms from excess
ultraviolet radiation (UVR); however, the destruction
of this layer results in an increase in UVR levels
(Molina & Rowland 1974, Weatherhead & Andersen
2006). The discovery of the ozone hole during the

1980s led to great research efforts to understand its
consequences, and to assess the effects of enhanced
UVR on marine organisms and processes (Smith &
Baker 1989, Helbling & Zagarese 2003, Llabrés et al.
2013). The reduction of the ozone layer is asymmetri-
cal between hemispheres, and the stratospheric
ozone concentration in the Southern Hemisphere is
lower than that in the Northern Hemisphere (Seck-
meyer & McKenzie 1992, Agustí et al. 2015). Conse-
quently, the southern part of the world has been re -
ceiving increased UVR for the past 3 decades, since
the Antarctic ozone hole developed (Farman et al.
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1985, Herman 2010). Global evaluations of the ef -
fects of UVR on marine biota show that planktonic
organisms are affected by UVB (280−320 nm) across
different biomes including temperate, subtropical
and polar waters (Llabrés et al. 2013). Indeed, there
is a bias in studies analysing the effects of UVB on
organisms from the Northern Hemisphere (two-
thirds of studies) compared to the Southern Hemi-
sphere (Agustí et al. 2015), and within the latter, most
studies have been carried out in Antarctic waters,
with fewer studies in mid-temperate regions (Agustí
et al. 2015).

Plankton metabolism is a key biological component
of the carbon cycle of the ocean, determining the role
of plankton communities as sinks (gross primary pro-
duction higher than community respiration, GPP >
CR) or sources (GPP < CR) of CO2 in the ocean (del
Giorgio & Williams 2005). Therefore, the main meta-
bolic processes of planktonic communities such as CR
and GPP might be affected by UVB radiation, and
consequently, the difference between GPP and CR,
i.e. net community production (NCP), would also be
affected. UVB radiation is a significant stressor in
aquatic freshwater and marine environments, al -
though its effects on NCP are not simple, possibly be-
cause NCP is an integrative property that brings to-
gether impacts at multiple levels. Studies have shown
that UVB radiation inhibits surface NCP of the At-
lantic, Southern and Pacific Oceans and the coastal
Mediterranean Sea (Godoy et al. 2012, Agustí et al.
2014, Regaudie-de-Gioux et al. 2014, García-Corral
et al. 2015). However, UV increased NCP of Arctic
Ocean surface communities during summer (García-
Corral et al. 2014), and also modified NCP of the
upper global Subtropical oceans, depending on the
metabolic status and the amount of UV irradiance re-
ceived (García-Corral et al. 2017). In surface estuarine
waters, primary production measured with 14C
showed an inhibition rate of 3−33% (Banaszak &
Neale 2001) and 15−47% (Litchman & Neale 2005) in
shallow, eutrophic and turbid temperate estuaries.
However, no reduction in primary production was ob -
served in a hypertrophic Baltic Sea estuary (Forster &
Schubert 2001). Therefore, similar ecosystems re-
sponded differently to UVR, as many other factors
(e.g. temperature, dissolved organic matter [DOM],
community structure, nutrient status) can affect the
diverse planktonic community responses to UVR.

The effect of UV on the NCP in the temperate
coastal waters of the Southern Hemisphere, around
Australia, has not been addressed to date. Here, we
report the results of our studies on the effect of UVR
on the net metabolism of plankton communities in

coastal waters of Western Australia (WA), in which
we examined the NCP of communities exposed to
the ambient light environment and communities ex -
posed to a light field where UVR was removed. To do
so, we measured the incident irradiance and calcu-
lated UV doses received in the sampled areas and
also experimentally tested the effects of artificially
increasing daily UV doses on NCP. Our goal was to
test whether UVR affects plankton net metabolism in
surface waters of WA. Based on the previous litera-
ture, we expected that the strong UVR reaching WA
coasts would affect and decrease the plankton net
metabolic balance.

2.  MATERIALS AND METHODS

2.1.  Observational study

2.1.1.  Sampling sites

We obtained 57 NCP measurements from surface
waters (0.5–3 m) along the coast of WA in the Eastern
Indian Ocean. Samples were subclassified into 4 dif-
ferent regions: (1) Ningaloo area (23° S; 2 stations),
(2) Perth area (31.9−33.6° S) including 1 station at
Rottnest Island, 1 at Busselton and a fortnightly sam-
pled station at 32° S (March 2014 to March 2015) at
Woodman Point beach (23 measurements), (3) a fort-
nightly sampled station at 32°S at the Swan River
Estuary (28 measurements) and (4) at the Southern-
most region in Albany at 35° S (2 stations) (Fig. 1).
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Fig. 1. Sampling sites along the coast of Western Australia
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2.1.2.  Plankton net community production

At each station, surface (0.5–3 m) seawater was
carefully siphoned into 10 calibrated narrow-mouthed
borosilicate glass Winkler bottles and 5 calibrated
quartz bottles (100 cm3) using a silicon tube. Five
glass-bottle replicates were used to measure initial
oxygen concentrations before incubation. The other 5
replicates of glass and 5 replicates of quartz bottles
were incubated in situ at 0.5−1 m depth, except sam-
ples from Woodman Point beach and the Swan River
Estuary that were incubated in outdoor temperature-
controlled tanks at the UWA facilities. Both incuba-
tions received natural solar radiation underwater.
The borosilicate glass bottles allowed 100% transmit-
tance of photosynthetically active radiation (PAR;
400− 700 nm) but removed almost all UVB, allowing
the transmission of 0% at 280 nm up to 60% at 320 nm
and a small part of UVA (320−400 nm), whereas
quartz bottles allowed the transmittance of 100% PAR
and 90% of UVB and UVA radiation (Godoy et al.
2012, Regaudie-de-Gioux et al. 2014). Hence, results
derived from measurements conducted in quartz bot-
tles were characteristic of the ambient light field,
whereas those conducted in Winkler glass bottles
tested the effect of reducing natural UVR.

Samples, both in situ and in the outdoor tempera-
ture-controlled tanks, were incubated for 24 h at the
sampled water temperature and under natural solar
radiation, to mimic the in situ conditions. After incu-
bation, samples were fixed, and the final oxygen con-
centration was determined by automated high-preci-
sion Winkler titration (Carpenter 1965) with a
Compact Titrator G20 (Mettler Toledo) based on a cal-
ibrated redox potentio metric end-point detection
(Oudot et al. 1988). NCP rates, expressed as mmol O2

m−3 d−1, were determined under full solar radiation
and when UVR was ex cluded (hereafter NCP and
NCP−UV, respectively); they were calculated from the
difference between the oxygen concentrations meas-
ured in the incubated bottles for 24 h (glass or
quartz), and concentrations measured in fixed sam-
ples at the beginning of the incubation period.

2.2.  Experimental UV gradient study

We performed 6 experiments, 3 with Swan River Es-
tuary surface waters on 1, 7 and 15 October 2015 and
3 with surface coastal waters from Woodman Point
beach (Fig. 1) on 5, 12 and 20 October 2015 to test
NCP responses to a gradient of increased UVB doses.
NCP was determined under a gradient of UVB light

treatments. Samples were incubated at in situ tem-
perature in a large controlled-temperature water bath
inside a glass greenhouse located in the UWA plant
growth facility. Inside the greenhouse, incident solar
UVB radiation was filtered out by the glass structure.
It is likely that most of the short wavelength UVA ra-
diation was also filtered out, although we did not
quantify this; however, solar PAR was received. UVB
radiation was artificially added by using UVB lamps
(312 nm, Vilber VL-8.M; Fisher biotec). The UVB
lamps were hooked from a metal structure over the
tank at different heights to create 3 underwater UVB
dose treatments: low UVB (16.2 kJ m−2 d−1, 0.09 mW
cm−2, 33 cm from the tank to the lamp), mid-low
(34.2 kJ m−2 d−1, 0.19 mW cm−2, 17 cm), medium
(50.4 kJ m−2 d−1, 0.28 mW cm−2, 11 cm) and high UVB
(66.6 kJ m−2 d−1, 0.37 mW cm−2, 8 cm). The range of
underwater UVB doses were based on the 25th, 50th,
75th and 90th percentiles of the incident solar UVB ra-
diation doses measured in the field. The lamps were
on for 5 h (from 10:30 to 15:30 h), and when the lamps
were switched off, all samples received filtered solar
radiation for the duration of the local photoperiod.
Long-wavelength UVC emissions from the lamps
were filtered out by the water bath. We tested NCP−UV

treatments by incubating samples in glass borosilicate
bottles and with no exposure to UVB radiation, and
NCPPAR+UVB treatments by incubating the samples in
quartz bottles at the different UVB treatments. Five
replicate bottles for each light treatment were incu-
bated for 24 h at in situ water temperature. The oxy-
gen concentration in the light-treatment bottles was
measured after the incubation, and the initial concen-
tration of oxygen was measured in 5 replicates follow-
ing the method described in Section 2.1.2.

2.3.  Biogeochemical and physical parameters

Environmental surface incident PAR and UVB
measurements were obtained with a company-cali-
brated Solar Light radiometer (Model PMA2100), cou-
pled to pre-calibrated digital sensors measuring the
electromagnetic spectrum of PAR (PMA2132; 400−
700 nm) and a UVB band (PMA2106; 280− 320 nm).
Sensors were located at the same height and close to
the incubation point without shading. PAR and UVB
daily doses (kJ m−2 d−1) were calculated as the sum of
the surface radiation received during the incubation
period. UV index values measured in air were ob -
tained from the Australian Radiation Protection and
Nuclear Safety Agency website (https:// www. arpansa.
gov.au) for each sampled day and location.
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Chlorophyll a (chl a) concentration was determined
by filtering a 100−300 ml water sample through a
25 mm GF/F glass microfibre filter (Whatman®;
nominal pore size of 0.7 μm) and extracting chl a
for 24 h within 90% acetone. Chl a concentration
(mg m−3) was derived from the fluorescence of
the extracts measured using a pre-calibrated non-
 acidification module in a Trilogy fluorometer (Turner
Designs). Water temperature, salinity, dissolved oxy-
gen, conductivity and pH were recorded with a cali-
brated YSI EXO1 Multi-parameter Water Quality
Sonde (Agusti et al. 2018).

2.4.  Data analysis and statistics

All data were recorded in Microsoft Excel and
analysed with the statistical package program JMP
version 9.0.1. A Shapiro-Wilk test was conducted to
assess the normal distribution of each set of data; in
all cases, the p-value was found to be less than 0.05.
Nonparametric tests, including all-pairs Steel-Dwass
tests, Wilcoxon paired-sample tests and Kruskal-
Wallis tests, were performed to reveal any signifi-

cant differences between treatments and to test our
initial hypothesis. A Model II regression was fitted
to evaluate the linear relationship between vari-
ables. The software Ocean Data View version 4.6.3
(Schlitzer 2013) was used to create the map of the
sampled areas. Means ± SEM are reported.

3.  RESULTS

3.1.  Environmental parameters

The sampled areas showed higher temperatures
in the tropical northwest region of Ningaloo (23.4 ±
0.44°C), and lower and similar temperatures in the
southwest regions: Swan Estuary (20.67 ± 0.62°C),
Perth area (20.5 ± 0.55°C) and Albany (20.5 ±
0.50°C) (Fig. 1, Table 1). Salinity was uniform for
marine regions (∼35) but varied widely at the Swan
Estuary, exhibiting low salinity (22) after winter
rains, and high salinities (37) during summer, be -
cause of the strong evaporation (Table 1). The max-
imum UV index registered was high across the sam-
pling areas, ranging from 10 to 12, with the lowest
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Variable                                                              Albany                Perth area                Swan River Estuary             Ningaloo

N                                                                               2                            25                                     28                                  2

Latitude (° S)                               Min                    35.07                      33.63                                31.99                            23.16
                                                    Max                    35.03                      31.94                                31.99                            23.11

Longitude (° E)                            Min                  117.69                    115.34                              115.82                          113.76
                                                    Max                  117.92                    115.75                              115.82                          114.1

Dates                                                            November 2014       March 2014                    March 2014               October 2014
                                                                                                      to March 2015                 to March 2015 

Temperature (°C)               Mean ± SEM            20.50                20.50 ± 0.55                     20.67 ± 0.62                       23.40
                                                    Min                    20.00                      15.10                                14.30                            23.00
                                                    Max                    21.00                      25.00                                25.50                            23.80
                                                 Median                 20.50                      21.20                                20.65                            23.40

Salinity                                Mean ± SEM            35.14                35.15 ± 0.29                     32.12 ± 0.97                       35.44
                                                    Min                    35.14                      31.62                                22.03                            35.44
                                                    Max                    35.14                      36.88                                36.97                            35.44
                                                 Median                 35.14                      35.02                                34.35                            35.44

UV index                                    Max                    10.00                      12.00                                12.00                            11.00

UVB dose (kJ m−2 d−1)        Mean ± SEM            51.38                37.78 ± 4.43                     41.41 ± 3.67                       70.48
                                                    Min                    51.38                        7.63                                  7.74                            70.48
                                                    Max                    51.38                      72.37                                75.05                            70.48
                                                 Median                 51.38                      35.07                                39.25                            70.48

Chlorophyll a (mg m−3)      Mean ± SEM              0.35                 1.52 ± 0.15                       3.69 ± 0.33                          0.19
                                                    Min                      0.13                        0.28                                  1.29                              0.16
                                                    Max                      0.58                        3.40                                  8.47                              0.22
                                                 Median                   0.35                        1.55                                  3.21                              0.19

Table 1. Sampled areas in Western Australia: number of measurements (N), latitude and longitude range, sampling dates, water 
temperature, salinity, UV index, UVB doses and chlorophyll a concentration
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maximum value (10) registered at Albany and the
highest at the Swan Estuary and in the Perth area
(12). Overall, UV daily doses ranged from the lowest
winter measurements of 7.63 kJ m−2 d−1 in the Perth
area, to the high levels of 75.05 kJ m−2 d−1 registered
at the Swan Estuary during summer. An analysis of
the entire dataset showed that spring and summer
registered significantly higher (Steel-Dwass test, p <
0.05) UV daily doses, compared to autumn and win-
ter (Table 1, Fig. 2).

Chl a values were significantly higher (p < 0.05) at
the Swan Estuary (ranging from 1.29 to 8.47 mg m−3),
whereas the lowest concentrations were registered
at Ningaloo (0.16−0.22 mg m−3) (Table 1).

3.2.  Observational study results

Mean surface NCP−UV was higher and net auto-
trophic at the Swan Estuary (6.81 ± 1.06 mmol O2 m−3

d−1), followed by the open coast of the Perth area
(1.79 ± 0.66 mmol O2 m−3 d−1) and Ningaloo (1.29 ±
4.48 mmol O2 m−3 d−1), and lower and net heterotro-
phic at Albany (−0.67 ± 4.08 mmol O2 m−3 d−1). Sur-
face NCP under full solar radiation followed a similar
pattern as NCP−UV, with higher values measured at
the Swan Estuary (5.62 ± 0.93 mmol O2 m−3 d−1) in
comparison with the Perth area (1.86 ± 0.57 mmol O2

m−3 d−1), Ningaloo (1.03 ± 4.81 mmol O2 m−3 d−1) and
the heterotrophic region of Albany (−1.79 ± 1.82
mmol O2 m−3 d−1) (Fig. 3). However, within each sam-
pled area, the surface NCP and NCP−UV rates (mmol
O2 m−3 d−1) were not significantly different (Fig. 3).

Although no significant differences were observed
between NCP and NCP−UV in any of the sampled re-
gions, there was a general linear relationship be -
tween NCP−UV and NCP (Fig. 4), with a significant
tendency for NCP−UV to be higher than NCP (Wilcoxon
paired t-test, t = −2.18, df = 56, p < 0.05), as also con-
firmed by the fitted regression equation, NCP = 0.79
(± 0.04) × NCP−UV + 0.25 (± 0.30) (R2 = 0.85, p < 0.0001,
n = 57, Fig. 4). NCP declined on average by 33.4% un-
der UVB radiation, compared with NCP−UV, with a
mean difference between NCP and NCP−UV across re-
gions of −0.6 ± 0.27 mmol O2 m−3 d−1.

No significant differences were observed between
the effect size (i.e. [NCP−UV − NCP]/NCP−UV) and the
differences (NCP − NCP−UV vs. NCP) with the com-
munity trophic status (t-test, p > 0.05). However, a
closer inspection of the linear regression showed that
NCP under full solar radiation tended to be lower
than NCP−UV when the plankton community was net
autotrophic (NCP > 0), whereas NCP tended to be
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equal or slightly higher than NCP−UV when the com-
munity was net heterotrophic (NCP < 0) (Fig. 4). NCP
of heterotrophic communities was close to zero and
only found at 9 stations compared to the 48 auto-
trophic communities, and therefore the results are
not robust enough to confirm a pattern.

3.3.  Experimental UVB gradient results

The experiments tested the responses of surface
NCP to the supplemented gradient of artificial UVB
radiation (Fig. A1 in Appendix 1). PAR daily doses
(kJ m−2) received during the experiments by the Swan
Estuary communities were 7810, 7541 and 6865 kJ
m−2 on the first, second and third experimental day,
respectively. For the coastal Woodman Point commu-
nities, PAR doses were 8491, 6685 and 12 798 kJ m−2,
respectively. The communities tested showed similar
initial exposure conditions: the UV index was 8 at
both sites at the sampling time in all experiments,
except the last sample (3rd experiment) from Wood-
man Point, in which the UV index was 9.

In general, the communities tested showed a ten-
dency for NCP to decrease as underwater UVB doses
increased. Four of the 6 experiments showed a lower
NCP, as a result of an increase in UVB doses; in 2 of
them, NCP changed from autotrophic (NCP > 0) to
 heterotrophic (NCP < 0) when UVB increased (Fig. A1).
The 3 experiments with the Swan Estuary communities
exposed to a gradient of artificial UVB doses showed
a strong pattern of decreasing NCP as UVB doses
 increased. The other set of experimental incubations
with the Woodman Point communities showed larger
variability in NCP responses to in creased UVB levels
(Fig. A1). The third experiment (20 October) with
Woodman Point communities showed a similar
pattern to that ob tained for the Swan Estuary com -
munities, i.e. a linear decrease of NCP
with elevated UVB doses. However, the
previous 2 ex periments (on 5 and 12 Octo-
ber) showed opposite trends.

The effect size of UVB on NCP, i.e.
(NCP−UV − NCP)/(NCP−UV), was strongly
dependent on the UVB dose received
for the Swan Estuary communities (R2 =
0.98, p = 0.008), with the magnitude of
the effect size of NCP increasing at
higher daily UVB doses (Fig. 5). How-
ever, this was not observed in the com-
munities from Woodman Point, where
the effect size was independent from the
doses (p > 0.05) (Fig. 5).

4.  DISCUSSION

The results presented here show that net commu-
nity metabolism in coastal surface waters of WA
tended to be net autotrophic. In our study, the sur-
face waters of the Eastern Indian Ocean coast
showed that NCP was generally higher when UV
radiation was removed (i.e. NCP ≤ NCP−UV) and
therefore our hypothesis is supported. Nevertheless,
the inhibitory effect of UV on NCP was only
observed for those communities with a net auto-
trophic balance (NCP > 0).

This effect has also been described for the Mediter-
ranean Sea (Regaudie-de-Gioux et al. 2014, García-
Corral et al. 2015), Atlantic, Pacific and Antarctic
plankton communities (Godoy et al. 2012, Agustí et
al. 2014, Regaudie-de-Gioux et al. 2014) and for the
global subtropical regions of the Indian, Pacific and
Atlantic Oceans (García-Corral et al. 2017). The
mean difference of NCP − NCP−UV at the WA coast
was −0.6 ± 0.27 mmol O2 m−3 d−1, not significantly dif-
ferent from the mean values reported for Subtropical
Indian, Atlantic and Pacific communities exposed to
lower UVB doses (Table 1 in García-Corral et al.
2017). Indeed, the ultraoligotrophic nature of the
subtropical waters might explain the lower values
found for both NCP and NCP−UV, compared to the
more productive waters of the WA coast sampled in
this study.

The relationship between NCP and NCP−UV had a
slope of 0.79 ± 0.04 (SE) (Fig. 4), not significantly dif-
ferent (ANCOVA F-test p > 0.05) from the slope
described for the surface Indian Ocean of 0.88 ± 0.08
(García-Corral et al. 2017) and 0.61 ± 0.18 (SE) found
for the global tropical and subtropical surface com-
munities (García-Corral et al. 2017). In our study,
NCP of autotrophic communities clearly tended to
decrease under natural UVB radiation (i.e. NCP <
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NCP−UV), whereas the NCP of heterotrophic commu-
nities tended to stay equal or a slightly higher (i.e.
NCP ≥ NCP−UV).

Overall, in situ communities showed, on average, a
decrease of NCP by 33.4% compared to NCP−UV. On
the one hand, a decline in NCP under natural UV
and autotrophic conditions could be due to a reduc-
tion in phytoplankton growth rates and biomass of
UV-sensitive species (Villafañe et al. 2003), as well as
changes in the abundance and community taxo-
nomic composition (Helbling et al. 1992, Behrenfeld
et al. 1993a,b, Weinbauer et al. 1997, Keller et al.
1997, Wängberg et al. 1999, Garde & Cailliau 2000,
Barbieri et al. 2002, Villafañe et al. 2004, Litchman &
Neale 2005). UV-induced inhibition of primary pro-
duction varied from 10−30% in coastal waters (Hel-
bling & Zagarese 2003), 5−44% in Ant arctic phyto-
plankton assemblages (Holm-Hansen et al. 1993,
Boucher & Prézelin 1996), 15−55% in the open ocean
(Helbling et al. 1992, Conan et al. 2008, Li et al. 2011,
Fuentes-Lema et al. 2015) and about 32−42% in the
oligotrophic Mediterranean Sea (Ber toni et al. 2011).
Indeed, the UV-induced inhibition of primary pro-
duction might also be explainable by the cellular
damage caused to the oxygen- electron transport
components of photosystem II, such as D1/D2 pro-
teins (Vass et al. 1996, Sass et al. 1997, Kataria et al.
2014) that cannot be counteracted by cellular repair
(Neale et al. 2014).

On the other hand, NCP can decrease if UVR in -
creases CR. Respiration can be enhanced through
the photolysis of DOM and dissolved organic carbon,
providing more bioavailable and labile carbon and
nutrients for heterotrophic organisms (Moran & Zepp
1997, Zepp et al. 2007, Carrillo et al. 2015, Fuentes-
Lema et al. 2015). UV exposure enhances plankton
community respiration during dark hours (Agustí et
al. 2014). Thus, during the night, bacterioplankton
activity and growth increased, using DOM released
by phytoplankton mortality induced by UVR during
the day (Llabrés & Agustí 2006, Llabrés et al. 2010).

Finally, UV exposure can also reduce NCP when
both processes (GPP and CR) are inhibited, albeit at
a different rate, if inhibition of phytoplankton pro-
duction is proportionally higher than the inhibition of
bacterioplankton activity (Kaiser & Herndl 1997, Og -
be bo & Ochs 2008). UVB can also reduce community
respiration, as it affects the activity and functions of
heterotrophic organisms such as bacterioplankton
and viruses (Jeffrey et al. 1996, Huot et al. 2000,
 Wilhelm et al. 2003). UV can induce cellular and
molecular damage (Mora et al. 2000, Sobrino et al.
2004, Llabrés & Agustí 2006, Llabrés et al. 2010),

changes in the bacterioplankton community com -
position (Arri eta et al. 2000), decreases in bacterial
abundance and inhibition of bacterial production
and respiration (Herndl et al. 1993, Müller-Niklas et
al. 1995, Kaiser & Herndl 1997, Ogbebo & Ochs 2008,
Bertoni et al. 2011), and generally increases mortal-
ity rates in heterotrophic marine microorganisms
(Llabrés et al. 2013).

Regarding the experiments involving exposure to a
UVB gradient, we observed some differences be -
tween days and places. At Woodman Point, during
the first experiment (5 October), the weather was
completely different from the other 2 sampled days.
Therefore, the strong wind, high turbidity and verti-
cal mixing water may have influenced the observed
lower inhibition effect of UVB on NCP (Bertoni et al.
2011). On the second sampling date (12 October), the
NCP showed a typical photoinhibition response
curve (Jokiel & York 1984, Yamamoto 2016), where
NCP increased with UVB; however, above the opti-
mal threshold, NCP decreased. This is consistent
with the repair rate of phytoplankton, which in -
creases gradually with irradiance until a maximum is
reached, and above this maximum, the chronic dam-
age due to high irradiance cannot be counteracted
by the repair rate (Neale et al. 2014). At this stage,
negative effects accumulate, leading to the break-
down of cellular metabolism.

Moreover, the observed different responses be -
tween coastal and estuarine communities with re -
spect to UVB doses are difficult to elucidate, al -
though several effects may partially explain the
differences. Firstly, differences in water turbidity or
transparency are key in determining the attenuation
and penetration of the radiation into the water and
therefore the potential sensitivity and impact of UVB
on the communities (Tedetti & Sempéré 2006). The
Swan Estuary is characterized by more turbid, murky
waters, and the resident communities might be accli-
mated to lower-light conditions and therefore could
be more sensitive to increased doses of UVB (Vil-
lafañe et al. 2004, 2008, Litchman & Neale 2005). In
contrast, communities of the clear waters at Wood-
man Point might be adapted to receive higher UVB
radiation, with more efficient repair processes and
less sensitivity to increased UVB doses.

Secondly, the seasonal light-history of the commu-
nities might influence the NCP response. We ob -
served significant differences in the UVB radiation
measured during the year, with higher UVB doses
during spring and summer (Fig. 2). However, we per-
formed the experiments during springtime (October)
when these communities started to receive higher
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natural UVB radiation, but they would have been
exposed to very low irradiances during the previous
winter and autumn (Fig. 2). Accordingly, we ob -
served that for the in situ Swan Estuary communi-
ties, the strongest response (NCP − NCP−UV) was dur-
ing spring and summer (Fig. 6). The manipulated
estuarine communities likely showed stronger effects
of UVB on NCP than the in situ communities because
of the light-history of the sampled communities.
Therefore, if the experiments were performed in
autumn after the high UVB received during spring
and summer seasons, the estuarine communities
might show lower or no effect of increased UVB
doses on NCP. However, at the coastal Woodman
Point area, NCP was differently and less affected by
the experimentally increased UVB doses, and the in
situ communities showed a similar low response,
such that NCP −NCP−UV was close to zero across sea-
sons (Fig. 6). Moreover, a short exposure to high UVB
irradiance is more cell-damaging than a longer expo-
sure to a lower irradiance (Cullen & Lesser 1991).
Thus, a stronger effect on NCP is expected because
these communities were receiving low UVB radiation
during a long period (winter and autumn). 

Finally, we cannot ignore the differences in trophic
and community composition between ecosystems. On
the one hand, the dissolved nutrient concentrations
are a key environmental factor in the response to UVR
(Häder 2011, Beardall et al. 2014, Cabrerizo et al.
2014). The Swan Estuary waters are nutrient-rich
compared to the nutrient-limited waters of Woodman
Point (Agusti et al. 2018). Nutrient-enhanced waters
can counteract or unmask the inhibitory effects of so-
lar UVR on phytoplankton photosynthesis (Carrillo et

al. 2015, Villafañe et al. 2017); however, we found
stronger negative effects in the nutrient-rich estuarine
waters compared to coastal waters. Indeed, under oli-
gotrophic or low nutrient concentrations, UV can
exert a negative impact on phytoplankton species,
decreasing photosynthesis and quantum yield of pho-
tosystem II (Cabrerizo et al. 2014), and increasing the
sensitivity of photosynthesis as a repair mechanism is
less efficient (Litchman et al. 2002). On the other
hand, community composition can respond differ-
ently; for example, plankton assemblages inhabiting
the open ocean and clear waters can be more adapted
to high UVR than the estuarine communities in darker
and less transparent waters (Fritz et al. 2008, Harrison
et al. 2015). Therefore, Woodman Point communities
might suffer less of a negative inhibitory effect of NCP
under UVR compared to the consistent pattern ob-
served in the Swan Estuary communities.

Since the Antarctic ozone hole was described in the
1980s (Farman et al. 1985), and over the past 3
decades, the Southern Hemisphere has been receiv-
ing higher UVR than the Northern Hemisphere (Her-
man 2010). Thus, surface plankton communities from
the Southern Hemisphere have been exposed to
higher UV irradiances, and the long exposure period
may have resulted in an adaptation and selection of
more resistant organisms (Agustí et al. 2015). Based
on our data, we postulate that plankton communities
from the WA coastal communities might be photoac-
climated and adapted to increased UVR, as de scribed
for similar latitudinal ranges in South Pacific waters
(Montecino & Pizarro 1995). It is known that phyto-
plankton species have the capacity to develop pho-
toacclimation and photoprotective strategies to UVR,
by increasing pigmentation or by developing high
contents of mycosporine-like amino acids, chemicals
that have a high UVR-absorbing capacity and high
antioxidant capacity (e.g. Navarro et al. 2014, Shang
et al. 2018). In addition, strategies such as structural
changes in the community composition and increases
in cell aggregation that provide self-shading con-
tribute to UVR tolerance (Navarro et al. 2008).

Overall, these observations suggest that plankton
communities from WA waters are not as strongly
affected by the high UVR received, compared to the
stronger negative response of plankton communities
over the global ocean receiving much lower UVR
doses (Godoy et al. 2012, Agustí et al. 2014, García-
Corral et al. 2014, 2015, 2017, Regaudie-de-Gioux et
al. 2014). We observed smaller differences between
NCP and NCP−UV than expected, given the high
measured UVR. When UVB was artificially in -
creased, we found a UV dose-dependent inhibition
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of NCP in estuarine communities (i.e. higher inhibi-
tion with higher UVB doses), while NCP of the
coastal communities was less affected by UVB, only
occasionally showing dose-dependent inhibition.

Therefore, based on all of the above, we conclude
that UVR plays an important role in biological pro-
cesses, from an evolutionary perspective. In the case
of marine biota in the Southern Hemisphere, expo-
sure to high UV irradiance (Häder et al. 2007, Her-
man 2010) resulted in the selection of plankton com-
munities that are more resistant and adapted to UV,
compared to those from the Northern Hemisphere
(García-Corral et al. 2014), as described for a variety
of organisms and processes (Agustí et al. 2015). The
most recent scientific assessment concluded that
there is enough evidence showing the negative ef -
fects of the stratospheric ozone depletion on South-
ern Ocean marine ecosystems (Williamson et al.
2019, World Meteorological Organization 2019).
Moreover, the ozone in the lower stratosphere be -
tween 60° S and 60° N, contrary to the upper stratos-
pheric ozone layer, has declined since 1998 (Ball et
al. 2018). Because we cannot ignore the existing
threat, we believe it is essential to perform more UV-
exposure experiments with natural sunlight, increase
monitoring data and incorporate UV photoinhibition
into models of primary production in the world’s
oceans (Neale & Thomas 2017) in order to under-
stand the ultimate overall effects of UVR on marine
ecosystems.
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Fig. A1. Responses of net community production (NCP; mean ± SEM) to an experimental gradient of increasing underwater
UVB daily doses (UVB from lamps + photosynthetically active radiation, PAR), tested on plankton communities from the Swan
Estuary (black dots, upper panel) and Woodman Point (grey dots, lower panel). The solid lines indicate the fitted Type II linear
regression for each experiment and the dotted curves represent the best fitting second-order polynomial regression. NCP at 

dose = 0 represents communities exposed only to PAR (NCP−UV)
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