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1.  INTRODUCTION

Temperate marine ecosystems have a rich history
of study, yet only recently a broader recognition of
their global value to human society has developed.
Predominantly near-shore systems, temperate reefs
are hard-bottomed ecosystems which host a rich
diversity of species, often with macroalgal forests as
the dominant habitat-formers. Globally, these sys-
tems are the basis for billions of dollars of ecosystem
services annually, including more traditional uses
like commercial and recreational fisheries, but also
increasingly tourism (Bennett et al. 2016). More
recently, the potential for these systems in ocean-
based solutions to climate mitigation through carbon
capture and storage (Macreadie et al. 2019, Filbee-
Dexter & Wernberg 2020) and blue growth of eco -

nomies has been noted (Caswell et al. 2020). Temper-
ate reefs are, however, found along some of the most
densely populated and impacted coastal regions of
the world and are becoming increasingly modified
by a range of local and global impacts. Therefore,
over the last two decades research in these systems
has evolved from developing an understanding of
their structure and function to working towards not
only understanding the extent of these impacts but
also mitigating them.

Given that temperate coastlines are densely popu-
lated, support high biodiversity, and provide ecosys-
tem services which drive regional economies, there
is a vibrant and active community of researchers
involved in understanding their structure and func-
tion, and the effects of human activities on their
future. This community gathers every 2.5 to 3 years at
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the International Temperate Reefs Symposium (ITRS)
to share advances in the field (see Wernberg 2016 for
a full list of conferences). The papers in the present
Theme Section (TS) are a selection of the research
presented at the 12th ITRS hosted at the Swire Insti-
tute of Marine Science, The University of Hong
Kong, on the 30th anniversary of the first ITRS. Con-
tributions cover a wide range of topics such as the
current structure of temperate reef systems, current
efforts to enhance the function of urbanised shores,
and experimental assessments of how organisms
may be affected by future ocean heating and acidifi-
cation. Papers span all levels of biological organisa-
tion from individual to ecosystem.

2.  TROPHIC LINKS AND ENERGY TRANSFER IN
TEMPERATE SYSTEMS

Primary productivity underpins the function of
marine ecosystems. Within temperate reef systems
this productivity is predominantly driven by macro-
algae, which form dense stands or forests from the
intertidal through to the deep subtidal. While the
productivity of individual species is relatively well
studied, the data tend to be from a relatively limited
range of environmental conditions. How this produc-
tivity integrates into systems over the full spectrum of
environmental conditions is, therefore, relatively un -
known. Bordeyne et al. (2020, this TS) combine in
situ measures and modelling to quantify the produc-
tivity of an algal community over an annual cycle. By
explicitly incorporating variable light intensity and
temperatures into their models, they show that while
the community has net production over a year, net
respiration in the colder seasons means that extrapo-
lations from measures taken at peak summer produc-
tivity would overestimate annual production. 

When algal biomass is dislodged from the rocky
substrate, it is generally thought to be transported
to soft-sediment environments and rapidly enter
detrital pathways, therefore no longer contributing
to primary productivity (Pederson et al. 2020). This
paradigm was overturned by de Bettignies et al.
(2020, this TS), who demonstrated that kelp frag-
ments that accumulate within nearshore environ-
ments decay slowly and can continue to contribute
to  productivity in these systems for up to 6 mo after
 dislodgement. Interestingly, this accumulated drift
kelp is inhabited by a diverse macrofaunal commu-
nity that develops a diverse food web which is dis-
tinct from those in adjacent soft sediments and plays
an important role in the transport of material into

the detritus through trophic transfer (de Bettignies
et al. 2020).

Benthic herbivory plays an important role not only
in the transfer of energy within food webs but also in
structuring and maintaining temperate reef systems.
Grazing gastropods can determine the succession of
communities (Anderson & Underwood 1997) and also
serve as a compensatory mechanism against ecosys-
tem shifts under altered environmental conditions by
consuming algal turfs (Falkenberg et al. 2014, Ghe-
dini et al. 2015). Suzuki et al. (2020, this TS) add to
this literature by demonstrating how herbivorous
gastropods remove turfs and sediment in heavily
impacted systems, thus facilitating the development
of macroalgal communities. Eger & Baum (2020, this
TS) place these relationships between benthic her-
bivory and ecosystem structure and function in a
global context, using a meta-analysis of 147 studies
to elucidate the strength of top-down control in
coastal benthic systems. They found that top-down
control is substantially modulated in systems where
higher nutrient concentrations or colder tempera-
tures increase net production. Ultimately, however,
the largest populations of primary producers (e.g.
kelps) occurred in marine reserves where predators
reduced herbivore populations (Eger & Baum 2020).

3.  LOCAL DISTURBANCE AND COMMUNITY
STRUCTURE

There is a long history of research to understand the
effects of both natural and anthropogenic disturbances
on temperate marine ecosystems. Yet there are some-
times unanticipated natural events, which can advance
our understanding; Gerrity et al. (2020, this TS) had a
unique opportunity to characterise the devastating ef-
fects of an earthquake, which lifted the height of
~140 km of shore in New Zealand, focussing on popu-
lations of pāua (blackfoot abalone). As could be ex-
pected, widespread mortality of pāua from their habi-
tat being lifted above sea level removed entire cohorts.
However, proactive management through the imme-
diate closure of the fishery and strong recruitment fol-
lowing the earthquake suggest that both pāua pop -
ulations and the fishery will recover rapidly. 

Large-scale damage to ecosystems can also occur
because of human activities. Norderhaug et al. (2020,
this TS) investigated the ecosystem-level effects of
kelp harvesting over areas of 10s of km2. Not surpris-
ingly, removal of the primary habitat-forming species
at this scale reduced diversity and abundance of spe-
cies at multiple trophic levels. Importantly, however,
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these results have relevance to not only the manage-
ment of commercial harvest of this kelp but also pro-
vide insights into the potential ecosystem-level
effects that could occur if this habitat-former suffers
large-scale mortality under climate change (e.g. mar-
ine heatwaves; Wernberg et al. 2016).

The propensity of humans to live in coastal areas
has resulted in the rapid development of coastlines
globally in recent decades (Williams et al. 2016). The
introduction of artificial structures along coastlines,
in particular concrete walls, destroys natural habitats
and has deleterious ecological effects (Thompson et
al. 2002, Huang et al. 2015). Acknowledging that
coastal development is likely to continue into the
future, focus has shifted towards understanding how
to improve the ecological value of manmade struc-
tures. One of the more commonly used eco-engineer-
ing techniques to improve the ‘value’ of walls is to
incorporate or retrofit tiles which introduce greater
habitat complexity (O’Shaughnessy et al. 2020).
Taira et al. (2020, this TS) demonstrate that such eco-
engineering can not only improve habitats for ben-
thic species (Strain et al. 2018) but that enhancement
of food resources increases the diversity and abun-
dance of fish through strengthened trophic links
(Taira et al. 2020). Aside from the physical structure,
the concrete in seawalls is generally thought to be an
inferior substrate for marine organisms because of its
chemical properties. It has been suggested that the
high surface pH of concrete (~13) might inhibit the
development of sessile communities and that con-
crete with a pH closer to that of seawater (~8) could
enhance diversity on seawalls (e.g. Perkol-Finkel &
Sella 2014). Hsiung et al. (2020, this TS) provide the
first evidence that this thinking may be wrong. They
experimentally demonstrate that low-pH concrete
does not enhance abundance or species richness of
organisms on seawalls in temperate or tropical sys-
tems. Therefore, while there are environmental ben-
efits to low-pH concrete, in particular substantially
lower carbon emissions, there is currently little evi-
dence that they will enhance biodiversity on seawalls
any more than other eco-engineering approaches.

4.  RESPONSES TO GLOBAL HEATING

The consequences of global climate change will
manifest from individual physiological to population
levels, and only by integrating these effects can we
predict the potential changes in biological communi-
ties (Russell & Connell 2012). Extreme events such as
marine heatwaves can cause devastating effects on

ecosystems (e.g. Wernberg et al. 2016). With longer-
term ocean heating, however, the physiological plas-
ticity and ability of individuals to acclimate to hotter
temperatures will determine the structure of commu-
nities. For example, the capacity of different species
that coexist in the same habitat to tolerate hotter tem-
peratures will determine which species are more or
less likely to acclimate and persist (Leung et al.
2019). The biological performance of a species is
generally thought to be reduced closer to the warm
edge of its distribution and will decline further with
warming. In contrast, Oróstica et al. (2020, this TS)
show that performance can be more nuanced, with
performance being determined by not only position
in the geographical distribution but also population
density and location-specific conditions. Over decades
of warming, these differences in physiology can man-
ifest at the community level (Mulders & Wernberg
2020, this TS), with more temperature-tolerant species,
or those which can recover faster, persisting (Hemraj
et al. 2020). However, not all population responses
reflected latitudinal gradients but rather were influ-
enced by more local conditions (Mulders & Wern-
berg 2020) as found by Oróstica et al. (2020). There-
fore, any such changes in performance and survival
that manifest differentially across taxa sharing func-
tional roles (e.g. benthic grazers; Minuti & Russell
2020, this TS) or across tropic levels (Mertens et al.
2015) are likely to underpin changes that will propa-
gate throughout the ecosystem. 

5.  CONCLUSIONS

The papers which form this TS cover the spectrum
of knowledge  needed to understand the function of
temperate reef systems not only under current condi-
tions but also into the future. They represent both the
foundational ecological knowledge and the advances
in individual to population-level research to help in -
form managers and policy makers on how to best

protect the future of these systems.
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