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ABSTRACT: Climate change is altering the marine environment at a global scale, with some of
the most dramatic changes occurring in Arctic regions. These changes may affect the distribution
and migration patterns of marine species throughout the annual cycle. Species distribution mod-
els have provided detailed understanding of the responses of terrestrial species to climate
changes, often based on observational data; biologging offers the opportunity to extend those
models to migratory marine species that occur in marine environments where direct observation
is difficult. We used species distribution modelling and tracking data to model past changes in the
non-breeding distribution of thick-billed murres Uria lomvia from a colony in Hudson Bay, Can-
ada, between 1982 and 2019. The predicted distribution of murres shifted during fall and winter.
The largest shifts have occurred for fall migration, with range shifts of 211 km west and 50 km
north per decade, compared with a 29 km shift west per decade in winter. Regions of range expan-
sions had larger declines in sea ice cover, smaller increases in sea surface temperature, and larger
increases in air temperature than regions where the range was stable or declining. Murres
migrate in and out of Hudson Bay as ice forms each fall and melts each spring. Habitat in Hudson
Bay has become available later into the fall and earlier in the spring, such that habitat in Hudson
Bay was available for 21 d longer in 2019 than in 1982. Clearly, marine climate is altering the dis-
tribution and annual cycle of migratory marine species that occur in areas with seasonal ice cover.

KEY WORDS: Thick-billed murre - Uria lomvia - Hudson Bay - Species distribution model -
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1. INTRODUCTION

Climate change is altering the marine environment
worldwide (Hoegh-Guldberg & Bruno 2010), chang-
ing the phenology and distribution of marine flora
and fauna (Poloczanska et al. 2013). Arctic surface
water temperature increased at a rate of 0.5°C
decade™ from 1982 to 2017 (Meredith et al. 2019),
and surface air temperature has increased twice as
fast as the global average in the last 2 decades
(Meredith et al. 2019), leading to the rapid loss of sea
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ice, an important physical stratum for wildlife. Con-
sequently, many Arctic marine species are experi-
encing changes in distribution, abundance, and
phenology, either as a direct response to physical
changes in their habitat or indirectly through trophic
interactions (Sydeman et al. 2015). For highly mobile,
pelagic species, our knowledge of their reaction to
habitat changes has been limited by our ability to
observe animals at sea, especially outside of the
breeding season. Given the strong seasonality in the
Arctic, there is an urgent need to measure how habi-
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tat use and phenology change through the annual
cycle, to understand how climate change is affecting
Arctic marine life.

Ice cover and ocean temperature are important fac-
tors determining the large-scale distributions and
abundance of marine species (Perry et al. 2005, Post
et al. 2013). Ice directly affects polar marine mam-
mals and marine birds by either facilitating or restrict-
ing access to prey (Tynan et al. 2009). Changing sea
surface temperature (SST) and ice cover in the north-
west Atlantic are associated with changes in the
growth of Atlantic salmon Salmo salar (Friedland &
Todd 2012), anadromous Arctic charr Salvelinus alpi-
nus (Michaud et al. 2010), capelin Mallotus villosus
(Carscadden et al. 2001), and Atlantic cod Gadus
morhua (Drinkwater 2005), and, farther north, Arctic
cod Boreogadus saida and zooplankton blooms (Welch
et al. 1992, Beaugrand et al. 2003, Darnis et al. 2012).
Moreover, seasonal sea-ice dynamics also play an
important role in the timing of spring phytoplankton
blooms, which can be a key factor at the end of the
non-breeding season (Coppack & Both 2002, Sgreide
et al. 2010, Gaston et al. 2011, Leu et al. 2011, Post et
al. 2013). Ocean warming could also have significant
effects on the survival and reproductive success of
many polar seabird species, through changes in the
distribution, abundance, and availability or their prey
(Croxall 2002, Sydeman et al. 2015).

Thick-billed murres Uria lomvia (hereafter, mur-
res) are abundant and widespread Arctic seabirds
with a circumpolar distribution. The species is con-
sidered an important indicator of Arctic marine eco-
systems (Mallory et al. 2006, Barry et al. 2010, Michel
et al. 2012). Through much of their range, murres
migrate away from breeding areas as ice forms in
winter, and return as ice recedes in spring. A longer
ice-free period could influence the timing and extent
of migration by murres, allowing them to remain
within their breeding range longer. The decline of
sea ice could also affect the availability of ice-associ-
ated prey (Hop & Gjesaeter 2013), or the timing of
peak prey availability relative to key periods of the
murre annual cycle, such as chick-rearing. Increas-
ing ocean temperature could affect the distribution,
abundance, and size of their prey (Carscadden et al.
2001, Drinkwater 2005, von Biela et al. 2019), while
simultaneously increasing competition with preda-
tory fish species (Holsman & Aydin 2015). This type
of complex trophic interaction has been suggested as
the cause of mass mortality and breeding failure for
common murres U. aalge in the northeast Pacific in
response to an extended marine heatwave (Piatt et
al. 2020). Increased frequency and intensity of storms

could increase foraging costs for murres. Many sea-
bird species have been shown to spend more time
foraging or have lower feeding rates during inclement
weather (Finney et al. 1999, Daunt et al. 2006, Elliott
et al. 2014), and winter mortality events have been
associated with periods of high wind (Harris & Wan-
less 1996, Frederiksen et al. 2008).

Species distributions models (SDMs) are important
tools for predicting the current, past, and future distri-
butions of wildlife (Elith & Leathwick 2009, Dambach
& Rodder 2011, Robinson et al. 2011, Guisan et al.
2013) and have been used widely in terrestrial ecol-
ogy for the last 30 yr. They have been used less in
marine ecology (Robinson et al. 2011), most com-
monly for fish and marine mammals (Dambach &
Rodder 2011). The proliferation of tracking studies on
seabirds provides an opportunity to use SDMs to
expand our understanding of habitat use of marine
birds at sea (Engler et al. 2017). Species with high
dispersal ability, such as seabirds, are more capable
of tracking climate changes than more sedentary
species, facilitating modelling of shifts in distribution
(Aratdjo & Pearson 2005). Data from tagging studies
provide continuous sampling of a species' distribu-
tion and habitat preference with less spatial and tem-
poral bias than other visual surveys, especially in
remote habitats where direct observation is difficult
(Dambach & Rodder 2011, Engler et al. 2017).

We used SDM and global location sensor (GLS)
tracking data to model habitat use and examine past
changes in the non-breeding distribution of murres
from Coats Island, Nunavut, Canada. An SDM was
developed for the non-breeding period (September
to May) using tracking data collected over 4 non-
breeding periods (2007/08, 2008/09, 2017/18, and
2018/19). We used climate and physical oceanogra-
phy variables to model the non-breeding distribution
of murres. From this model, we predicted the histori-
cal distribution of murres from 1982 to 2019 using
remotely sensed climate data. We used these predic-
tions to map murre distributions during 4 non-breed-
ing stages of the murre annual cycle (moult, fall
migration, winter, and spring migration) and to test
for long-term changes in these distributions. We ex-
pected to find that non-breeding distributions have
shifted north as a result of warming ocean tempera-
tures and declining sea ice cover, which are known
to be occurring within the range of this population.
We also tested for changes in the phenology of habi-
tat availability within Hudson Bay. We expected that
more habitat would be available for murres within
Hudson Bay in fall and spring, due to declining sea-
ice cover in Hudson Bay. Exploring the extent, mag-
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nitude, and direction of these past changes is an
important first step to understanding how sensitive
this species will be to future climate change.

2. MATERIALS AND METHODS
2.1. GLS tracking

Tracking was conducted at Coats Island, in Hud-
son Bay, Nunavut, Canada (62.95°N, 82.01°W), a
colony of 30000 breeding pairs of thick-billed mur-
res (Gaston et al. 2012). As part of earlier tracking
studies (Gaston et al. 2011, McFarlane Tranquilla et
al. 2013), 3 types of geolocators (British Antarctic
Survey), namely Mk5 (3.6 g), Mk7? (3.6 g), and
Mk13 (1.8 g), were deployed at Coats Island in 2007
(n = 20) and 2008 (n = 20). All Mk loggers recorded
maximum light levels at 10 min intervals, and a sub-
set of these loggers also recorded temperature at
10 min intervals. In 2017 (n = 48) and 2018 (n = 45),
we deployed LAT2800S geolocator-temperature—
depth recorders (Lotek; 36 mm x 11 mm x 7.2 mm,
5.5 g) at the same colony. LAT 2800 loggers were
programmed to collect light level, temperature,
depth, and wet/dry state at 10 s intervals. All log-
gers were deployed during the summer on breeding
adults captured on the nest, using a noose pole,
while attending an egg or chick. Loggers were
retrieved and data downloaded 1 to 2 yr later, dur-
ing subsequent breeding seasons.

2.2. Location estimates

For LAT2800S loggers, we summarized maxi-
mum-recorded light levels at 5 min intervals prior to
estimating twilight. Twilight was estimated using
the threshold method in the 'TwGeos' package
(Lisovski et al. 2016). We defined 2 behavioural
modes: flying and on water. Flying was defined as
any period where the sensor was dry and tag tem-
perature was <5°C; this temperature threshold was
used to prevent periods of leg-tucking from being
falsely classified as flying (Linnebjerg et al. 2014).
Location estimates were calculated using a proba-
bilistic algorithm with the ‘probGLS' package in R
(version 0.9.5, Merkel et al. 2016). The ‘probGLS’
method estimated 2 locations daily, at sunrise and
sunset. At each time step, 1000 random particles
were generated within the defined study area based
on the observed twilight, random solar angles be-
tween —-6° and -1°, and twilight error following a

log-normal distribution (shape = 2.49, scale = 0.94).
Using '‘probGLS’, we also incorporated additional
information about habitat use and murre behaviour
by weighting each random particle based on a land
mask, sea ice cover, SST, and movement speed. Be-
cause murres do not use, or travel over, land during
the non-breeding period, random particles over
land received a weight of 0. Because murres cannot
remain in areas with complete ice cover, random
particles with greater than 90% ice cover (NOAA
high-resolution ice cover, NOAA/OAR/ESRL PSL,
https://psl.noaa.gov/) were also assigned a weight
of 0. For loggers with a temperature sensor (LAT
2800 and MKSY), particles were weighted according
to the similarity between remotely sensed SST and
internal logger temperature (NOAA high-resolution
SST, NOAA/OAR/ESRL PSL, https://psl.noaa.gov/;
Reynolds et al. 2007). Finally, random particles were
weighted according to a movement model limiting
the distance travelled between consecutive locations
based on realistic movement rates for murres; the
movement model used different parameters for log-
gers with wet/dry sensors (LAT2800) that could esti-
mate time spent in flight (Table S1 in the Supple-
ment at www.int-res.com/articles/suppl/m6790p163
_supp.pdf). One particle was randomly selected from
the possible particles based on the assigned
weights. These steps were repeated at each time
step until an entire track was generated. The pro-
cess was repeated to generate 100 possible tracks
for each deployment. The most probable track was
calculated as the geographic median of possible
locations at each time step, and this track was used
in mapping and estimates of migration timing. Full
details of the parameters used in the probabilistic
algorithm are provided in Table S1. We present
maps of estimated tracks for each year, based on the
most probable tracks estimated above (see Fig. 1).

To compare the timing of migration across tracking
years, we calculated the latest date when each bird
crossed 70°W in fall and spring. Murres from Coats
Island migrate through Hudson Strait, and 70° W rep-
resents the halfway point of movement through this
corridor. We used mixed effects models to test for dif-
ferences in migration timing among years, with indi-
vidual identity as a random factor to account for mur-
res tracked over 2 yr. Mixed effects models were
constructed using the ‘Ime4’ package, version 1.1-27
(Bates et al. 2015). Residual and g—q plots were used
to check assumptions. The minimum and maximum
dates when 95% of tracked birds migrated across
years were used to summarize the fall and spring
migration stages, respectively.
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2.3. SDMs

We developed an SDM for the non-breeding
period (September to May). SDMs assume that spe-
cies are at an equilibrium with their environment and
that all relevant environmental gradients have been
sampled (Elith & Leathwick 2009). Tracking of
smaller species is often limited to using GLS devices,
which have lower spatial accuracy than other track-
ing methods (Phillips et al. 2004). Using paired de-
ployments of satellite platform terminal transmitters
(PTTs) and GLS loggers on black-browed albatrosses
Thalassarche melanophris, Quillfeldt et al. (2017)
found that device type (PTT versus GLS) had less
influence on SDM accuracy and overlap in predicted
distributions than the choice of SDM algorithm.

We considered 7 predictor variables in the model:
bathymetry, slope, distance from colony (distance),
day of year (DOY), SST, air temperature (air), sea ice
cover (ice), and wind speed (wind). The 3 static envi-
ronmental variables, i.e. bathymetry, slope, and dis-
tance from colony, were included in the model be-
cause they are likely biologically relevant to the
species’ distribution (Stanton et al. 2012). Bathymetry
and slope are both likely to influence the distribution
of prey, even with changing marine climate. Murres
are primarily constrained to areas close to the colony
during moult and spring migration; therefore, distance
from the colony was included to ensure this pattern
was included in the model. DOY was included as a
temporal variable to allow habitat preferences to
change through the non-breeding period. Other static
variables, i.e. longitude, latitude, and day length,
were not included because we were interested in how
the species responds to variation in climate (Stanton
et al. 2012). Bathymetry data used the ETOPO1 Global
Relief Model (www.ngdc.noaa.gov/mgg/global/).
Slope was calculated from the bathymetry layer using
the terrain function in the 'raster’ package in R (Hij-
mans & Van Etten 2016). Daily-mean SST and ice
were obtained from the European Space Agency Re-
processed Sea Surface Temperature Analysis (Mer-
chant et al. 2019). Daily mean air temperature (2 m)
and surface wind speed were obtained from NOAA
Physical Sciences Laboratory NCEP/NCAR Reanalysis
1 (https://psl.noaa.gov/data/gridded/data.ncep.reanal-
ysis.pressure.html). Bilinear interpolation was used to
resample environmental variables to a standard 0.25°
spatial resolution, using the ‘raster’ package (Hijmans
& Van Etten 2016).

Our SDM compared environmental predictors at
observed locations from murre GLS tracks to available
environmental conditions at pseudo-absence locations

(Barbet-Massin et al. 2012). To incorporate uncertainty
in GLS location estimates into the modelling, all 100
possible tracks generated for each deployment using
the '‘probGLS' algorithm were included as observed
locations. Including all possible locations gives more
weight to portions of the tracks where the location is
more certain (because all possible locations are more
clustered) and less weight to portions of the tracks
where the location is less certain (because all possible
locations are more dispersed). The mean standard
deviation across iterations for any location estimate
was 2.1° longitude and 2.0° latitude. Pseudo-absences
were randomly sampled from ocean areas within
1000 km of any location collected within each tracking
year. Pseudo-absences were sampled at a 1:1 ratio
with observed locations (Barbet-Massin et al. 2012).
Areas within 200 km of used locations collected
within the same month were excluded from the selec-
tion area to ensure that pseudo-absences were out-
side of areas known to be occupied by murres at that
time. For each tracking year, entire tracks from 70 %
of individuals were randomly assigned as training
data and entire tracks from the remaining 30 % of in-
dividuals were used as test data. Selection areas for
pseudo-absences were determined separately for test
and training data. Fig. S1 provides example maps of
used locations and pseudo-absences.

We used random forests for our SDM, using the
‘ranger’ package in R (Wright & Ziegler 2017). The
model was fit using the train function in the ‘caret’
package (Kuhn et al. 2021). We first ran hyper-
parameter tuning on a subsample of 5% of the data,
considering combinations of the split rule (‘gini' and
‘extratrees’), minimum node size (5, 10, and 15), and
‘mtry' (1-7). The area under the receiver operating
characteristic curve (AUC) was used to identify the
best combination of hyper-parameters on the sample
data, and the selected hyper-parameters (mtry = 1,
splitrule = extratrees, node size = 5) were used on the
full model. The model was fit to the training data
using repeated 4-fold cross-validation with 10 repeats,
where each fold used 3 tracking years for model
training and 1 tracking year for model testing.

Model accuracy was assessed using the AUC, F;
scores (F1), and the Continuous Boyce Index (CBI).
Model accuracy statistics (AUC and F1) are pre-
sented from cross-validation used in model fitting,
which represents the accuracy in predicting proba-
bility of occurrence to unobserved years. We also
present model accuracy for withheld test data, which
represents accuracy in predicting to tracks of new
individuals. AUC and F1 scores were calculated using
the ‘pROC' package (Robin et al. 2011), and CBI was
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calculated using the ‘ecospat’ package (Broenni-
mann et al. 2021).

Variable importance measures were used to assess
the relative contribution of each predictor to the model.
Variable importance was calculated separately within
each stage (moult, fall, winter, and spring), using the
‘vip' package (Greenwell et al. 2020), to examine
how habitat preferences changed through the non-
breeding period. Variable importance measures for
each stage were scaled to values between 0 and 100.
We calculated accumulated local effects (ALEs) to
examine how each environmental variable influenced
the predicted probability of use. The ALE shows the
relative effect of each predictor variable on the model
predictions, and this measure is not biased by corre-
lation among predictor variables (Molnar 2019); pos-
itive values indicate an increase in mean probability
of use and negative values indicate a decrease in the
mean probability of use. ALEs were calculated using
the ‘ilm' package in R (Molnar 2018); ALE values for
each predictor variable are reported for each non-
breeding stage, in order to examine how habitat use
changes among stages of the annual cycle.

In 2017 and 2018, tracked murres were included in
a separate study examining the effects of increased
reproductive investment on non-breeding behaviour.
Prior to developing the SDM described above, we
tested if treatments applied in that study had any in-
fluence on the SDM (see Text S1, Table S2). After con-
firming that there was no effect of treatment, all tracks
from 2017 and 2018 were included in the final model.

2.4. Distributions by non-breeding stage

We compared predicted distributions for the 4 life-
history stages: moult, fall migration, winter, and spring.
Stage-specific distributions were calculated by pre-
dicting murre occurrence from the SDM at 3 d inter-
vals over the period 1982-2019, then calculating the
median predicted probability of use for each raster
cell in each stage for each year. To quantify changes
in the distribution of habitat, the stage-specific range
areas were defined using the probability cut-off that
included 90 % of used locations. To quantify changes
in the predicted distributions over time, we calculated
a baseline range based on the mean distributions for
the period 1982-1989. For each stage, we estimated 8
distribution measures: the total area, percentage
overlap with the baseline distribution, median longi-
tude, median latitude, western edge, eastern edge,
northern edge, and southern edge. All distribution
measurements were made using an Albers equal area

projection with central meridian at 60° W and standard
parallels at 45° N and 65° W. Range edges were calcu-
lated as the 5™ and 95™ percentiles of eastings (west-
ern and eastern edges) and northings (southern and
northern edges) of all raster cells within the range. We
used linear regression, with year as a predictor, to test
for changes in distribution measures over time. Resid-
ual and q—q plots were used to check assumptions of
the linear regression; Spearman's correlation tests
were used to confirm linear regression results if nor-
mality assumptions were not met. A Bonferroni cor-
rection was used to account for multiple comparisons
on the same seasonal distributions.

To investigate how changes in climate variables
contributed to changes in stage-specific distribu-
tions, we compared mean values of ice cover, SST, air
temperature, and wind speed between the 1980s
(1982-1989) and the 2010s (2010-2019). We calcu-
lated the predicted distribution within each period,
and identified regions where the predicted distribu-
tion declined, remained stable, or increased. We ran-
domly sampled 50 points within these regions for
each season, extracted the mean climate values for
the 2 periods, and calculated the change in mean cli-
mate values from the 1980s to the 2010s. We used
generalized least squares regression to determine
how the change in climate varied among regions
where the predicted range had declined, remained
stable, or increased. Fixed variance weights for each
region were used to account for unequal variance
among regions. Residual and q—q plots were used to
check assumptions of the regressions.

2.5. Fall and spring habitat phenology

Murres that breed in Hudson Bay migrate annually
to the northwest Atlantic Ocean. To examine changes
in the timing of habitat availability in Hudson Bay in
spring and fall, we predicted the amount of suitable
habitat in Hudson Bay at 3 d intervals for the years
1982 to 2019. Habitat area was quantified as the area
of suitable habitat within the Hudson Bay marine
ecoregion (Spalding et al. 2007); suitable habitat was
defined as above, using the probability cut-off from
model predictions that included 90% of used loca-
tions. We used a non-linear logistic regression curve
to model the seasonal decline in habitat availability
in fall and the increase in habitat available in spring
as a function of DOY. Analysis was performed using
the 'nls’ function in R. We compared a null model
with no effect of year to a model that included a trend
with year.
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All analysis was done using R version 4.1.0 (R Core
Team 2021); p-values < 0.05 were considered signifi-
cant for all parametric tests.

3. RESULTS
3.1. Tracking

We recovered data from 90 individuals during the
non-breeding seasons over the 4 years of tracking
(Table 1). Tracked murres followed a similar migra-
tion route and used the same wintering area during
each year of tracking (Fig. 1; Figs. S2-S5). Immedi-
ately following breeding, murres remained in Hud-
son Bay through the moult in September and Octo-
ber. Murres migrated through Hudson Strait to the
Northern Labrador Shelf in November and Decem-
ber. During winter, murres spread out within the
Labrador Sea, also reaching the Gulf of St. Lawrence,
the Eastern Scotian Shelf, the East Greenland Shelf,
and the Irminger Sea. They began migrating back
through Hudson Strait and into Hudson Bay in April.
The track for 1 murre was excluded during moult,
because this individual stopped breeding in early
August and migrated to the wintering area before
moulting.

Mean fall and spring migration occurred on DOY
333 and 117, respectively. There was no difference in
migration timing among the 4 years for fall (x2 = 2.15,
p = 0.542) or spring (x? = 1.39, p = 0.707). There was
significant variation in the timing of migration among
individuals each year (Fig. S6). Murres migrated over
a period of 50 d in fall and 42 d in spring. Across the
year, 95% of all tracked murres migrated between
DOY 308 and 362 in fall and between DOY 90 and
141 in spring. We used these dates to summarize
habitat use in 4 stages of the non-breeding period:
moult (DOY 245-307), fall migration (DOY 308-362),
winter (DOY 363-88), and spring migration (DOY
89-152).

3.2. SDMs

The SDM had good predictive performance across
years and individuals. Cross-validation AUC was
98.7 % and the F1 score was 94.2 %. For the withheld
test tracks from 30% of individuals, the AUC was
97.2%, the F1 score was 91.2%, and the CBI was
0.82. Ninety percent of used locations were located
in areas with a predicted probability of use of 0.7 or
higher; therefore, a probability of use of 0.7 was used
as a cut-off for estimating suitable habitat.

SST and distance from colony were the 2 most
important variables across all 4 stages (Fig. 2). In fall,
winter, and spring, the probability of use was higher
for SST <4°C (Fig. 3); during moult there was very lit-
tle effect of SST on probability of use. Probability of
use declined with distance from the colony in all
stages, with the strongest effects occurring during
moult and spring. Bathymetry was an important pre-
dictor in all stages; shallow water (<500 m) was pre-
ferred during moult, when murres are using shallow
areas in Hudson Bay, and deeper water (>2000 m)
was preferred in fall, winter, and spring. Air temper-
ature was an important predictor in fall, winter, and
spring, with probability of use higher for tempera-
tures <4°C. In winter, probability of use declined
with air temperatures less than —12°C. Probability of
use declined with increasing ice cover. Slope, DOY,
and wind speed contributed the least to the model
predictions.

3.3. Predicted distributions within each
non-breeding stage

The non-breeding distribution of murres closely
follows the receding ice, which ‘pushes’ murres out
of Hudson Bay and Hudson Strait into the North
Atlantic each year, and which murres then follow
back into Hudson Bay each spring following melt
(Fig. 4; Figs. S7 & S8). Using the SDM to estimate

Table 1. Sample sizes of thick-billed murres tracked from Coats Island, Nunavut, Canada, during each non-breeding period
and a summary of fall and spring migration timing; migration was measured as the date each individual track crossed 70°W.
DOY: day of year

Year Recovery Individuals tracked Fall migration (DOY) Spring migration (DOY)
rate (%) (no. of locations) Mean (+SD) Range Mean (+SD) Range
2007/08 90 18 (9679) 335+15.2 304-361 119 + 6.45 104-132
2008/09 57 10 (4208) 336 + 13.5 317-356 116 + 18.7 87-136
2017/18 71 35 (17521) 329+ 11.4 310-359 117 £ 15.3 96-145
2018/19 60 27 (9485) 334 £ 17.0 308-364 117 £ 14.6 100-141
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Fig. 1. Geolocator tracks of thick-billed murres from Coats Island, Nunavut, Canada. Each line shows the most probable track
of 1 individual, with lines coloured to show month of the tracking year (September to May). The red points show the location of
the colony. Monthly distribution maps for all 4 years of tracking are provided in Figs. S2-S5

suitable non-breeding habitat from 1982 to 2019, we
found significant changes in predicted distributions
in fall and winter, with the greatest changes occur-
ring in fall (Fig. 5; Table S3). Overlap with the base-
line range in fall declined by 0.7 + 0.1 % yr~! (mean +
SE) (Table S3). The fall range shifted west by 21.1 £
4.1 km yr™', occupying all of Hudson Bay by the
2010s, and north by 5.0 + 1.0 km yr‘l, with increased
use of Hudson Strait, Foxe Basin, and Davis Strait
(Fig. 4). Overlap in the winter distribution declined
by 0.3 + 0.08% yr'!, and the winter distribution
shifted west by 2.8 + 0.7 km yr~! (Table S3). The
spring range shifted north by 3.8 + 1.3 km yr~!; how-
ever, this trend was marginally non-significant (p =
0.06; Table S3). The most notable changes in spring
distribution came from increased use of Hudson

Strait and northern Hudson Bay. Results for all distri-
bution measures are provided in Table S3.

Ice cover declined, while SST and air temperature
increased between the 1980s and the 2010s (Fig. 6;
Table S4). The largest changes in ice cover occurred
within the fall distribution, where the region of
increasing suitable habitat had mean declines of 21.5
+ 0.51%. For fall, winter, and spring, ice cover de-
clined more in regions of stable and increasing suit-
able habitat than in regions of declining suitable
habitat. Regions of declining fall suitable habitat had
the largest increases in SST (fall: 1.11 + 0.03°C),
while regions of increasing winter and spring suit-
able habitat had the smallest change in SST (winter:
0.27 = 0.02°C; spring: 0.05 + 0.01°C). The largest
increases in air temperature occurred in areas of
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increasing suitable habitat during fall (4.83 £ 0.15°C).
For fall, winter, and spring, regions with declining
suitable habitat had less change in air temperature
than regions with stable or increasing suitable habitat.
For moult, air temperature increased more in regions
of increasing suitable habitat than in areas with sta-
ble or declining suitable habitat. Overall changes in
air temperature during moult and spring were of a
smaller magnitude than during fall and winter. For
winter and spring stages, wind speed tended to in-
crease in areas of increasing suitable habitat and
decrease in areas of declining suitable habitat.

3.4. Fall and spring habitat phenology

Fall habitat is available later than in the 1980s (Fy;, 3
=126.8, p < 0.001, Fig. 7). The date when suitable fall
habitat reaches the midpoint of decline has increased
by 0.38 +0.03 d yr! (t = 12.83, p < 0.001). There was
no evidence that the amount of suitable habitat avail-
able at the start of fall (237 + 1199 km?, t=0.20, p =
0.84) or the rate of habitat decrease through fall (0.01
+ 0.02, t = 0.42, p = 0.67) have changed. According
to this model, there were 200000 km? of suitable
habitat available until DOY 344 in 1982, whereas in

2019, the same amount of habitat was available until
DOY 358 (mean change: 0.38 d yr'}).

More spring habitat is now available earlier than in
the 1980s (Fi141,3 = 20.3, p < 0.001, Fig. 7). The mean
asymptote for spring suitable habitat increased by
3846 + 778 km? yr~! (t=4.94, p < 0.001). There was no
evidence that the date when habitat reaches its mid-
point (-0.004 + 0.06 d; t = —0.06, p = 0.95) or the rate
of habitat increase through spring (0.07 = 0.05; ¢t =
1.48, p = 0.14) have changed. According to this
model, 200 000 km? of suitable habitat were available
on DOY 112 in 1983 and on DOY 106 in 2019 (mean
change: -0.16 d yr!).

4. DISCUSSION

Since 1982, the predicted distribution of murres
from Coats Island during fall and winter has shifted
north and west. SST, air temperature, and ice cover
were important climate variables within our SDM,
which accurately predicted the distribution of murres
during the non-breeding period. Range expansion
was associated with declining sea ice cover and
warmer air temperatures, while range contraction was
associated with increasing SST. The greatest changes
in distribution have occurred in the fall, where habi-
tat available in Hudson Bay has increased substan-
tially. Other recent studies have predicted that un-
checked anth ropogenic climate change will result in
a northward shift in the winter distribution of multi-
ple seabird species in the North Atlantic (Clairbaux
et al. 2021); our study shows that climate change has
already contributed to shifts in the non-breeding dis-
tribution of murres from Coats Island.

Our SDM approach assumes that the murre niche
is at equilibrium and that we characterized the rele-
vant components of the niche, and, thus, that the sta-
tistical relationship between environmental variables
and murre distribution measured by our SDM can be
extrapolated backward in time (Elith & Leathwick
2009). This latter assumption may not be valid if mur-
res have more phenotypic flexibility than is captured
in our training data, or if murres have adapted their
habitat preferences in response to changing climate
conditions. The SDM was developed using a limited
set of climate predictors that are available for the
entire period 1982-2019; these variables likely do
not capture all elements of the niche of murres dur-
ing the non-breeding period. In particular, non-
breeding distributions are likely driven by biotic
interactions, like the distribution of prey, for which
we did not have the relevant information (murre non-
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breeding season diet and the relevant fish and inver-
tebrate distributions at depth are poorly known).
Nonetheless, many fish and invertebrate distribu-
tions are strongly associated with SST and sea ice
cover (Perry et al. 2005, Sereide et al. 2010); as such,
a central assumption is that our model should capture
these biotic interactions indirectly.
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Fig. 3. Accumulated local effects for each environmen-

tal predictor. Positive values indicate a positive effect on

the mean probability of occurrence of thick-billed mur-

res and negative values indicate a negative effect; SST:
sea surface temperature

SDMs based on climate data are best suited for
coarse-scale modelling of widely distributed, mobile
species (Robinson et al. 2011). Finer-scale modelling
of habitat use and ecological interactions by murres
will require more precise tracking methods (e.g. GPS
loggers), which are not yet feasible for year-round
deployment on this species. However, despite the
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uncertainty inherent in the GLS loca-
tions, we believe this SDM provides
useful information on current and his-
toric distributions of murres because
the predicted distributions and habi-
tat associations identified using this
model agree with current knowledge
of the species’ biology (Moody & Hob-
son 2007, Fort et al. 2013, Gaston &
Hipfner 2020).

There have been substantial changes
in the timing of modelled habitat avail-
ability for murres in Hudson Bay over
the last 38 yr. The average date when
fall habitat declines to less than
200 000 km? has increased by 3.8 d de-
cade™!, and the date when spring habi-
tat reaches 200 000 km? has advanced
by 1.6 d decade!. Therefore, murres
could spend 21 more days in Hudson
Bay in 2019 than in 1982. The murres
tracked in our study demonstrated sig-
nificant among-individual variation in
the timing of migration in and out of
Hudson Bay in the fall (range: 50 d)
and spring (range: 42 d). This indicates
that individual condition or preference
play an important role in the timing of
migration for this species. Increased
availability of habitat within Hudson
Bay could have a positive effect on
murres, by allowing greater flexibility
in the timing of migration. Any poten-
tial benefit of increased access to Hud-
son Bay, however, could be offset by
changes in the food web associated
with on-going changes to the marine
climate (Hoover et al. 2013a,b) or in-
creased competition (Piatt et al. 2020).
Transient benefits of climate change
and sea-ice loss have been docu-
mented for other ice-associated Arctic
species (Laidre et al. 2020).

Studies of climate change impacts on
phenology tend to focus on changes to
spring phenology (Askeyev et al. 2007,
Wolkovich et al. 2012, Parmesan et al.
2013, Gallinat et al. 2015, Kolatova &
Adamik 2015). Our study highlights an
example of an Arctic population that
is experiencing the greatest climate
change induced impacts on phenology
during the fall. Conditions during fall
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can play an important role in population demograph-
ics by influencing juvenile survival and determining
condition of both adults and juveniles at the onset of
winter, when many species face harsh environmental
conditions. For murres, delayed fall migration could
provide post-breeding adults with more time to com-
plete their flightless moult and gain body reserves,

while also providing juvenile murres more time to
grow and gain experience flying and foraging before
undertaking their first migration. It takes breeding
murres approximately 50 d after egg-laying to raise a
chick to nest departure (Gaston & Hipfner 2020) and
an additional 35 d at sea before chicks are independ-
ent (Elliott et al. 2017). This limits the time during
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which murres can begin nesting and successfully
raise young. Increased time with suitable habitat
within the breeding range could increase the window
when murres can successfully breed. Our study sup-
ports the growing consensus that autumn phenology
can be as sensitive as spring phenology to changing
climates, especially for species which must undergo a
feather moult before migration (Jenni & Kéry 2003,
Brisson-Curadeau et al. 2020).

Many migratory species depend on matching the
timing of breeding with seasonal peaks in resource
availability in order to achieve successful breeding
(Perrins 1970, Cushing 1990). The timing of ice-off is
an important determinant of peak production in Arc-
tic regions (Legendre et al. 1981); therefore, the
changing spring conditions could influence the ideal
timing of breeding. The modelled habitat conditions
that correspond to migrating back to Hudson Bay are
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occurring earlier now than 38 yr ago. Murres at Coats
Island breed earlier in years with less ice cover in
Hudson Bay (Gaston et al. 2005), and the mean lay-
ing date has advanced by 0.25 d yr~! since 1990
(S. Whelan unpubl. data), indicating that murres are
able to advance breeding in response to changing
climate conditions. As murres now have 21 more
days of suitable habitat available within Hudson Bay,
and seem to be tracking the increased availability
of spring habitat to avoid a mismatch, it may ap-
pear that climate change is advantageous. However,
changing marine climate in Hudson Bay has altered
prey composition during the chick-rearing period
(Gaston et al. 2003) and may bring in competitors
(Gaston & Woo 2008), leading to lower chick growth
rates and ultimately fitness.

Our model identified important non-breeding re-
gions for murres from Coats Island, which show con-
sistently high use at a multi-decadal scale, and could
be important for marine spatial planning to mitigate
the impacts of increased marine activities. During the
non-breeding period, murres from Coats Island were
most concentrated during moult when their range
was restricted to central Hudson Bay. This is a critical
stage in their annual cycle, when they are flightless
and the males are caring for their dependent off-
spring. Moult is the time of year when distribution is
determined more by the static variable distance from
colony than by climatic variables, and also the period
(outside of the breeding season) when, because of
temporary flightlessness, murres have the least flexi-
bility to alter their distribution in response to chang-

ing conditions. This could make murres sensitive to
changes in prey conditions at this time of year. Hud-
son Bay has relatively low levels of human activity,
specifically shipping, which could pose risks to
moulting murres through by-catch or oil pollution.
However, shipping in Hudson Bay and Hudson Strait
is expected to increase, including in regions that
overlap with the moult distribution (Pizzolato et al.
2016, Dawson et al. 2018).

The wintering habitat that we have identified for
murres from Hudson Bay includes habitat for a sig-
nificant portion of the global population of thick-
billed murres (Frederiksen et al. 2016) as well as
many other seabird species (Mallory et al. 2008,
Frederiksen et al. 2012, Hedd et al. 2012, Linnebjerg
et al. 2013, Fifield et al. 2017, Amélineau et al. 2018).
Conditions during winter probably play an important
role in population regulation of murres (Gaston
2003). Across their annual range, the wintering area
is the region where murres from Coats Island experi-
ence the greatest overlap with anthropogenic threats
such as shipping, fisheries by-catch (Davoren 2007),
chronic and acute oil pollution (Wiese & Ryan 2003),
and hunting (Gaston & Robertson 2010). Modelling
winter habitat use, as we have done here, is an im-
portant step in developing marine spatial planning of
offshore wintering areas for seabirds. The extent to
which murres can shift their winter distribution
northward may be affected by day length. As murres
forage primarily, though not exclusively, during day-
light (Regular et al. 2011, Dunn et al. 2020), northern
range shifts would involve a decrease in the amount
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of time available for foraging in daylight. A compari-
son of winter energy expenditure and dive behaviour
of thick-billed murres and common murres wintering
in regions with and without polar night showed that
wintering in an area with polar night resulted in
higher daily energy expenditure and reduced for-
aging opportunities for common murres (Fort et al.
2013).

Diversity of responses among populations within a
species can enhance its resilience (Sydeman et al.
2015). Our analysis focussed on habitat changes for a
population of murres close to the southern edge of
their range. Other populations in northern parts of
the range faced with similar environmental changes
may experience a different response. For example,
colonies in the Canadian High Arctic are more con-
strained by sea ice during the breeding season (Gas-
ton et al. 2005). Earlier ice-off dates around these
colonies could lead to improved reproductive success
for these populations. Negative effects for popula-
tions within some portions of the breeding range may
be offset at the species level by positive effects in
other regions. However, to the extent that large por-
tions of the murre population share common winter-
ing areas, and conditions during the winter play an
important role in adult survival (Frederiksen et al.
2016), this could create greater sensitivity to climate
change at the species level.

Mapping the distribution of populations outside of
the breeding season is a key priority for the conser-
vation of marine birds. Long-term data on winter dis-
tributions of pelagic seabirds were, until recently,
limited to data collected from band recoveries and
vessel surveys, which are biased in the Arctic by low
spatial and temporal coverage. In contrast, our SDM
was effective at predicting stage-specific distribu-
tions of murres across years and individuals and is
an improvement over the more common approach
using utilization distributions to map species' ranges,
which are limited by the relatively small number of
tracked individuals. The SDM approach is more
likely to identify the entire distribution, which could
otherwise be missed. In dynamic marine environ-
ments, an SDM can account for significant inter- and
intra-annual variation in habitat by predicting distri-
butions over multiple time periods. Our study de-
monstrates the advantage of including year-round
tracking as part of long-term monitoring pro-
grammes to facilitate improved understanding of
non-breeding distributions, habitat requirements,
and the effects of environmental variability and cli-
mate change on population demographics (Carneiro
et al. 2020).

Data availability. The GLS tracking data used in the current
study are available in the Movebank Data Repository, https://
doi.org/10.5441/001/1.p1m?75gn1 (Patterson et al. 2021a). The
species distribution model and predicted distributions from
this study are available in Dryad, https://doi.org/10.5061/
dryad.4qrfj6gbk (Patterson et al. 2021b).
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