NOTE

Using the background of fish photographs to quantify habitat composition in marine ecosystems

Madison H. Bolt1,4,*, Corey T. Callaghan2,3, Alistair G. B. Poore1,2, Adriana Vergés1,2, Christopher J. Roberts1,2

1Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney 2052, NSW, Australia
2Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney 2052, NSW, Australia
3German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
4Present address: Department of Botany and Zoology, UBC Vancouver, Vancouver, BC V6T1Z4, Canada

ABSTRACT: Citizen science initiatives that collect opportunistic photos, or recordings, of living organisms (e.g. iNaturalist) are increasingly recognized for their importance in monitoring biodiversity. These projects are focussed primarily on recording the occurrence of individual species in space and time. Each photo potentially also contains additional valuable information. Here, we explored the amount and potential value of background information captured in fish photographs as a method to characterise reef habitats. The habitat in the background of fish photographs shared on iNaturalist was analysed for 6 sites across Australia. To measure accuracy of the habitat data captured in the iNaturalist photos, the habitat composition of each site was compared to standardised photo-quadrats from the citizen science project Reef Life Survey (RLS). Across all sites, 70–85% of the fish photographs from iNaturalist contained discernible biotic habitat in the background. Habitat composition as measured from the background of opportunistic fish photographs was similar to those of standardised surveys from RLS. In the face of rapid environmental change, opportunistic photographs collected by recreational divers represent a complementary way to rapidly and cost-effectively collect habitat data at more reefs and more frequently than is generally feasible with standardised scientific surveys.

KEY WORDS: Citizen science · Community science · iNaturalist · Opportunistic data · Biodiversity · Temperate reefs · Coral reefs

1. INTRODUCTION

The quantity and diversity of citizen science projects, also referred to as community science or contributory science, has increased dramatically in recent decades with an associated growth in use for monitoring biodiversity (Pocock et al. 2017, McKinley et al. 2017). Citizen science can provide a cost-effective supplement or alternative to often expensive and time-consuming data collection by professional scientists (Thornhill et al. 2016, Poisson et al. 2020).
iNaturalist (www.inaturalist.org) is a successful citizen science project with more than 89 million opportunistic observations of over 344,000 species (as of February 2022). iNaturalist data have been used for vegetation mapping (Uyeda et al. 2020), monitoring urban biodiversity (Callaghan et al. 2020), detecting range extensions of alien species (Agarwal 2017) and the rediscovery of ‘lost’ species (Richart et al. 2019). These advances are largely focussed on species occurrences, but each photo potentially contains additional ecological information including interspecific interactions, phenotypic traits, breeding status and habitat associations (Callaghan et al. 2021).

Due to their charismatic nature, fish are often the primary subject of many underwater photos (Troudet et al. 2017). However, important ‘incidental’ habitat information is often captured in the background of these photographs (Fig. 1a,b), reflecting a possible alternative, complementary, method to identify major habitat-forming organisms such as macroalgae, seagrasses and corals. Here, we investigated whether iNaturalist fish photographs could contain valuable additional data for cost-effective monitoring of reef habitats.

To demonstrate the potential value of incidental habitat data available in citizen science photographs, we quantified the proportion of iNaturalist fish photographs with identifiable benthic habitats in the background for 6 sites from temperate to tropical Australia. To assess the accuracy of iNaturalist in determining broadscale habitat composition, we compared the presence/absence of several habitat forming benthic organisms (macroalgae, sponges etc.) between iNaturalist photographs and standardised photo-quadrats from Reef Life Survey (RLS; https://reeflifesurvey.com) (Edgar & Stuart-Smith 2014).

2. MATERIALS AND METHODS

2.1. Data sources

iNaturalist is a citizen science platform for participants to share opportunistic observations of any

Fig. 1. Example photographs from iNaturalist and Reef Life Survey (RLS). (a,b) iNaturalist fish photographs with usable habitat information in background. (c) iNaturalist image with no information on benthic habitat in the background. (d) RLS standardised photo-quadrat of benthic habitat. Photo credits: (a) Jeyre, (b) John Turnbull, (c) Geoff Shuetrim
organisms, which are then identified to the lowest possible taxonomic resolution by iNaturalist users. RLS is a citizen science initiative which trains volunteer divers to conduct standardised scientific surveys, and all survey data are made publicly available (Edgar & Stuart-Smith 2014). RLS monitors the benthic habitat by taking 20 photographs of approximately 0.3 × 0.3 m of seabed (i.e. photo-quadrats) along a 50 m transect.

The 6 study sites in Australia (Fig. S1 in the Supplement at www.int-res.com/articles/suppl/m688p167_supp.pdf) were chosen based on having at least 200 iNaturalist fish observations from a 5 km² area and data from at least 4 RLS surveys. Fifty random fish photographs from each site were downloaded on 21 June 2019 from the iNaturalist project Australasian Fishes (www.inaturalist.org/projects/australian-fishes). Four RLS transects from between 2015 and 2019 were randomly selected for each site, and 15 images were randomly selected for each survey. The 60 photo-quadrats for each site were downloaded on 19 December 2019 from the RLS database (https://reeflifesurvey.com/survey-data/).

2.2. Image classification

The background of each iNaturalist image was first classified as ‘usable’ or as ‘unusable’, based on whether habitat-forming organisms could be distinguished in the background. The background of unusable images was further categorised as (1) blurry, (2) dark, (3) sand only, (4) water only, or (5) the subject only (i.e. the fish filled the whole photo) (Fig. S2). For ‘usable’ images, the background was scored for the presence/absence of the following biotic habitats: turf algae, encrusting algae, macroalgae, seagrass, coral, soft coral and sponge/ascidian (Fig. S3). These broad taxonomic groupings were chosen as they were likely to be distinguishable in the background of both close-up and wide-angle photographs. The image classification was done in the software package photoQuad version 1.4 (Trygonis & Sini 2012).

The RLS photo-quadrats were scored for the presence/absence of each habitat using the same method as the iNaturalist images. The presence/absence of each habitat type was used instead of the more conventional measure of percentage cover within photo-quadrats due to the highly variable area of habitat captured in fish photographs making percentage cover an inconsistent measure (Fig. 1a,b). We then calculated the relative occurrence of each habitat type (how often each habitat was seen relative to all habitats combined), as a measure of how common each habitat type was at a site-wide scale.

2.3. Analyses

The relative frequency of each habitat type recorded in the background of iNaturalist photographs was contrasted to RLS photo-quadrats using a linear model, with habitat types pooled, run in the R package ‘emmeans’ (Lenth 2021). The 95% confidence interval for the slope of the linear model was obtained using the ‘confint’ function to test for a 1:1 relationship.

To test how robust the relationships between iNaturalist and RLS were to sampling effort (i.e. number of photographs included), the photographs were resampled 1000 times for random subsets of 15, 20, 25 and 30 photographs, and the R² values from the linear models were recalculated for each run.

A second linear model was run including the interaction between site and habitat to test whether the relationship between iNaturalist and RLS was consistent across the replicate sites regardless of habitat types. The confidence interval for each site was extracted using the ‘lstrends’ function of ‘emmeans’ to test for a 1:1 relationship between iNaturalist and RLS at each site.

3. RESULTS

Habitat-forming organisms could be identified in the background of between 68 and 86% of iNaturalist fish photographs (Fig. 2). The main reasons for photographs not having usable biotic habitat data were that the background contained sand only (6.4% of photos on average) or water only (5%), or the background was out of focus (6%).

Within the usable iNaturalist photographs, the relative occurrence of major habitat types per site was strongly correlated to the standardised RLS photo-quadrats at the same sites (p < 0.001, R² = 0.71). In addition, the relative occurrence of the different habitat types had a slope close to 1 (β = 0.81 ± 0.17 95% CI), indicating only a slight deviation from a 1:1 relationship between RLS and iNaturalist for all sites combined (Fig. 3a). Resampling of the iNaturalist photographs showed that the positive relationship between data sources was relatively robust, with similar R² values obtained when the number of photographs was reduced to both 30 and 25 (Fig. S4).
Some habitat types appeared to be consistently over- or under-represented by iNaturalist. For example, ascidians and sponges were on average recorded 6.9% more frequently by iNaturalist than RLS, while turf algae were recorded 5% more (Fig. 3). In contrast, macroalgae were recorded 6.4% less frequently by iNaturalist than RLS, while soft corals were recorded 3.3% less and encrusting algae 3.0% less.

When site was included in the model, the interaction term was not significant ($F_{5,30} = 0.795, p = 0.56$), indicating that the habitat occurrence frequency relationship between iNaturalist and RLS was consistent among study sites (Fig. 3b). The relationship between iNaturalist and RLS was close to 1:1 at most of the study sites, with slopes ranging between 0.779 and 1.025, with confidence intervals overlapping a slope of 1. The only exception was Carrickalinga, which had a slope of 0.46 and a confidence interval of between 0.004 and 0.915.

4. DISCUSSION

Citizen science databases are continually increasing (Pocock et al. 2017); for example, iNaturalist alone averaged 68,000 observations per day in 2020. Maximizing the information extracted from this
shown correlations between the abundances re-
standardised surveys are limited, some studies have
comparisons between opportunistic observations and
ised methods (Aceves-Bueno et al. 2017). Although
parable data to professionals when using standard-
ing that trained citizen scientists can generate com-
habitat.
reliability of using underwater photographs to assess
would be needed to thoroughly test the accuracy and
ery 2022). If a substantial portion of these photo-
graphs contain useful habitat data, as demonstrated
by this study, this is a considerable amount of habitat
information which is not currently being used. How-
ever, before such techniques can be implemented
into marine monitoring, larger-scale comparisons
would be needed to thoroughly test the accuracy and
reliability of using underwater photographs to assess
habitat.
To date, there have been many comparisons show-
ing that trained citizen scientists can generate com-
parable data to professionals when using standard-
isated methods (Aceves-Bueno et al. 2017). Although
comparisons between opportunistic observations and
standardised surveys are limited, some studies have shown
correlations between the abundances recorded by these approaches (Snäll et al. 2011, Kamp et al. 2016). However, some discrepancies have also been noted, such as observer biases toward photo-
genic species (Prudic et al. 2018) or common species not being regularly reported (Snäll et al. 2011). By focussing on the background of photographs, rather than the subject, many of these biases and selectivity issues are likely avoided. That is, the habitat captured in the iNaturalist photographs is likely to be a ‘random sample’ of the reef, hence the similarity to habitat captured by the random photo-quadrats, even with the relatively small sample of fish photographs used in this study. However, subject biases may still have some influence on habitat captured incidentally due to potential fish–habitat associa-
tions. For example, if parrotfish are photographed
more often than less colourful fish, the habitats they
associate with may also be over-represented. Such
subject biases could potentially have contributed to
some habitats being over- or under-represented
in this study compared to the standardised photo-
quadrats, and this is an area that should be explored
further before this technique is broadly implemented.
We suggest that extracting incidental data could be
an important ecological monitoring tool, particularly
for taxa that are rarely the subject of citizen science
photographs. In iNaturalist, for example, as of Janu-
ary 2022 there are 292 000 algae, 39 000 hard coral,
37 000 sponge and 25 000 ascidian photographs glob-
ally, in contrast to over 854 000 fish photographs. Here
we demonstrated that many of these less-targeted
taxa are regularly captured incidentally in the back-
ground of popular photographic subjects, such as
fish, substantially increasing the observation data
available for less charismatic species. While our
study highlights the potential of using ‘background’
data for monitoring marine habitats, our findings
could also be applied to many other ecosystems. For
example, a similar application of ‘background data’
was used to investigate plant–pollinator associations
by assessing the flowers captured in insect photo-
graphs (Bahlt & Landis 2016). Some further exten-
sions of ‘incidental’ data from citizen science photo-
graphs include assessing bird plumage colour (Laitly
et al. 2021) and damselfly wing phenotypes (Drury et
2019).

The results of this study, while promising, were
based on a small selection of sites and a relatively
limited number of fish photographs. The slight devi-
ation in the habitat composition captured in oppor-
tunistic photographs and standardised surveys at
Carrickalinga, for example, could be due to the low
number of photographs used in this study. To con-
firm the validity of using incidental habitat data to
monitor reefs, this work should be expanded to
include more photographs, sites and times. Ulti-
mately, machine learning should be used to analyse
large numbers of photographs to monitor for change
in composition or reef health through time at broad
ispatial scales, with considerable work already under-
way on automated classification of marine benthic
habitats from standardised surveys (e.g. Raphael et
al. 2020). In a rapidly changing world, these growing
databases, powered by citizen science and machine
learning, represent highly promising new tools that
can greatly advance environmental monitoring. Here
we demonstrated just one of the many potential uses
of opportunistic databases such as iNaturalist, with
other potential uses including assessing biodiversity,
detecting invasive species and determining habitat associations. Ultimately, combining data from opportunistic observations with standardised monitoring (Snäll et al. 2011, Kamp et al. 2016), or with satellite mapping (Leung & Newsam 2010), could allow reef habitats to be monitored rapidly and accurately at broader spatial scales and more frequently than is currently achievable.

Acknowledgements. We thank the Australasian Fishes community for their ongoing contributions to iNaturalist and Mark McGrouther and Amanda Hay (Australian Museum) for their work managing the project and for providing the unobscured dataset used for this research. We also thank the Reef Life Survey team and their volunteer divers for collecting the photo-quadrats used in this research. This research was supported by an Australian Government Research Training Program (RTP) Scholarship to C.J.R. and by grant SWR/10/2020 provided by Sea World Research & Rescue Foundation Inc (SWRRFI) and the Winifred Violet Leung Scholarship. This work was further supported by a Marie Skłodowska-Curie Individual Fellowship (no. 891052).

LITERATURE CITED

Uyeda KA, Stow DA, Richart CH (2020) Assessment of volunteered geographic information for vegetation mapping. Environ Monit Assess 192:554

Submitted: September 22, 2021
Accepted: February 28, 2022
Proofs received from author(s): April 13, 2022