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1.  INTRODUCTION 

Marine mammals play diverse and important eco-
logical roles, ranging from consumers to food for 
other species and sources of nutrient enrichment, 
which can affect the dynamics of aquatic ecosystems 
from rivers and lakes to the open ocean (Bowen 1997, 

Williams et al. 2004, Wirsing et al. 2008, Roman et al. 
2014, Kiszka et al. 2015). For example, sea otters 
Enhydra lutris structure nearshore kelp ecosystems 
from the top down by suppressing sea urchin her-
bivory (Estes & Duggins 1995). Blue whales Balaeno -
ptera musculus, on the other hand, stimulate ecosys-
tem productivity in the Southern Ocean from the 
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bottom up by defecating iron-rich feces (Lavery et 
al. 2014). Increasing recognition of these roles has 
sharpened the focus on marine mammal conserva-
tion and recovery in many parts of the world (Magera 
et al. 2013), but the interactions and impacts of many 
marine mammal species remain poorly understood 
(Kiszka et al. 2015). This data deficiency is especially 
acute for members of the order Sirenia (i.e. manatees 
Trichechus spp. and dugongs Dugong dugon; Ara -
gones et al. 2012), impeding prediction of how 
changes to the abundance and distribution of these 
species are likely to impact aquatic ecosystems and, 
consequently, limiting the scope of discussions per-
taining to their conservation. 

The sirenians are a group of large-bodied, or 
‘mega’, herbivores that are, for extant species, tied to 
tropical and subtropical shallow-water riverine and 
coastal habitats offering abundant plant resources 
(Short et al. 2007, Marsh et al. 2011, Aragones et al. 
2012, Velez-Juarbe et al. 2012). Today, the order 
comprises 4 species — the Amazonian T. inunguis, 
Afri can T. senegalensis, and West Indian T. manatus 
manatees, and the dugong. A fifth species, Steller’s 
sea cow Hydrodamalis gigas, was hunted to extinc-
tion by ca. 1768 (Stejneger 1887, Domning 1978). All 
of the extant sirenians are thought to be vulnerable 
to extinction (Marsh et al. 2011, IUCN 2018), raising 
concern about not only the long-term viability of the 
entire order but also whether current populations are 
large enough to perform their normal ecological 
functions (Lefebvre et al. 2001). However, data on 
the status and ecology of sirenians are generally defi-
cient outside of some coastal areas of Australia and 
the United States (Marsh & Lefebvre 1994, Marsh et 
al. 2011, Magera et al. 2013). This information gap 
has hindered assessments of the future trajectories of 
many sirenian populations, limited our understand-
ing of how contemporary aquatic ecosystems have 
been shaped by these megaherbivores, and inhibited 
prediction of how shallow-water environments are 
likely to change in the face of continued sirenian de -
clines or recovery (Marsh & Lefebvre 1994, Marsh et 
al. 2011). Accordingly, aside from more geographi-
cally extensive population monitoring, there is a 
need for synthesis of what we do know about the 
roles played by sirenians — and the importance of 
these roles in maintaining ecosystem structure, func-
tion, and resilience — that will help to predict the 
ecosystem effects that are likely to accompany future 
changes to their numbers and distribution and guide 
research aimed at filling key knowledge gaps. Here, 
we present the results of a review and synthesis of 
the roles and importance of sirenians and, based on 

our findings, an outlook for both the ecological con-
sequences of changes to their abundance and distri-
bution, and future research needs. 

2.  DEFINING ECOLOGICAL ROLES  
AND IMPORTANCE 

The role of a species within a community is typi-
cally defined as its trophic relationships, i.e. what it 
eats and what eats it. However, a species’ role can 
include a range of non-feeding relationships, includ-
ing behavioral (or foraging) facilitation (e.g. species 
A facilitates access to resources for species B), habi-
tat modification (including bioturbation), and the 
translocation of nutrients within and across ecosys-
tems (Paine 1980, Heithaus et al. 2010, Kiszka et al. 
2015). Here, we define a species’ ecological role as its 
trophic position (its role as consumer and prey) and 
interactions with other components of the ecosystem 
(biological and chemical). We distinguish species’ 
ecological roles from their ecological importance, 
defining the latter as the consequences of a marked 
change in a species’ abundance for community and 
ecosystem properties (Heithaus et al. 2010, Kéfi et al. 
2012, Kiszka et al. 2015). 

3.  LITERATURE REVIEW 

We reviewed the literature using 4 major search en-
gines (BIOSIS Previews, Google Scholar, JSTOR, Web 
of Science) using the search terms Sirenia*, Dugong, 
Hydrodamalis, manatee, sea cow, Steller’s, and Tri -
che chus, and extracted all peer-reviewed papers 
dealing explicitly with ecological interactions involv-
ing sirenians (i.e. their roles) and the effect sizes of 
those interactions (i.e. their importance). We generally 
restricted our literature review to publications ad-
dressing the 4 extant sirenian species but, where rele-
vant, also included efforts to characterize the roles 
and importance of the recently extinct Steller’s sea 
cow. In total, we extracted 240 papers either germane 
to or directly addressing sirenian ecological roles and 
importance (see Text S1 in the Supplement at www.
int-res.com/articles/suppl/m689p191_supp.pdf). Of 
these, 19 focused on T. inunguis, 116 on T. manatus, 
13 on T. senegalensis, 107 on D. dugon, and 9 on H. 
gigas (Fig. 1). Given that much of what is known 
about T. manatus comes from studies of the Florida 
subspecies T. m. latir ostris, where appropriate we dis-
tinguish be tween studies pertaining to this and the 
Antillean subspecies T. m. manatus. 
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4.  TROPHIC INTERACTIONS AND EFFECTS 

4.1.  Diet 

Sirenians are herbivores that subsist on a wide vari-
ety of marine, estuarine, and freshwater aquatic 
plants (Best 1981, Johnstone & Hudson 1981, Marsh 
et al. 1982, Hurst & Beck 1988, Mignucci-Giannoni 
& Beck 1998, Colares & Colares 2002, Borges et al. 
2008, Castelblanco-Martínez et al. 2009a, Keith-
 Diagne 2014, Allen & Keith 2015) and algae (Best 
1981, Hurst & Beck 1988, Mignucci-Giannoni & Beck 
1998, Borges et al. 2008, Allen et al. 2017). They rely 
primarily on angiosperms and, at least where Dugong 
dugon is concerned, consume large amounts of algae 
only when the former are scarce (Heinsohn et al. 
1977, Marsh et al. 1982, Domning & Beatty 2007). 

Trichechus inunguis is confined entirely to fresh-
water environments (Rosas 1994), where it exploits as 
many as 49 different macrophytes (Guterres-Pazin et 
al. 2014), including submerged and emergent aquatic 
plants, parts of floating meadows, and terrestrial spe-

cies (Colares & Colares 2002, Marshall et al. 2003, 
Guterres-Pazin 2014). Unlike T. inunguis, T. manatus 
occupies a diversity of marine, estuarine, and fresh-
water aquatic environments (O’Shea & Kochman 
1990, Lefebvre et al. 2001, Castelblanco-Martínez et 
al. 2021a). Accordingly, this species ex hibits a broad 
diet (Campbell & Irvine 1977, O’Shea & Kochman 
1990, Lefebvre et al. 1999, Alves-Stanley et al. 2010, 
Ponce-García et al. 2017) that, while dominated by 
submerged vegetation and to a lesser ex tent emergent 
and floating plants (Reynolds 1981, Alves-Stanley et 
al. 2010, Allen & Keith 2015), can include upwards of 
60 species (Best 1981, Bengtson 1983, Etheridge et al. 
1985, Hurst & Beck 1988, Flores-Cascante et al. 2013). 
These include green algae Ulva sp. (Lewis et al. 
1984), red mangrove Rhizo phora mangle (Mignucci-
Giannoni & Beck 1998, Castelblanco-Martínez et al. 
2009a, Flores-Cascante et al. 2013, Allen et al. 2017), 
salt marsh cordgrass Spartina alterniflora (Baugh 
1989), invasive aquatic plants (Allen & Keith 2015), 
fruits (e.g. mango; Ramírez-Jiménez et al. 2017), and 
mast (O’Shea 1986). Similarly, T. senegalensis moves 
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Fig. 1. Peer-reviewed publications since 1970 addressing sirenian ecological roles and importance, grouped into topic areas: 
feeding ecology (i.e. trophic relationships), habitat use/movement, interactions with predators (‘predator−prey’), top-down 
impacts (e.g. effects on macrophyte communities as herbivores), and other (e.g. roles and impacts as disturbance agents or as  

habitat for other taxa)
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among marine, estuarine and freshwater habitats and 
feeds on aquatic angiosperms in each system (Bertram 
& Bertram 1973, Husar 1978, Best 1981, Marsh & 
Lefebvre 1994, Silva & Araújo 2001, Bakker et al. 
2016). This species relies heavily upon emergent and 
floating vegetation in freshwater environments (Mar-
shall et al. 2003) and has been shown to exploit as 
many as 36 species in the same system (Takoukam et 
al. 2021). In summary, then, 2 of the 3 ex tant manatees 
(T. manatus and T. senegalensis) are components of 
both marine and freshwater food webs, and all 3 feed 
on a wide variety of aquatic macrophytes. 

Dugongs D. dugon are restricted to coastal marine 
environments (Heinsohn et al. 1977, Anderson 1986) 
and are benthic feeding specialists, consuming al -
most exclusively seagrasses (Heinsohn & Birch 1972, 
Johnstone & Hudson 1981, Marsh et al. 1982, Mar-
shall et al. 2003). D. dugon do include algae in their 
diets, but typically when their main food source is 
unavailable. For example, Spain & Heinsohn (1973) 
found that the brown algae Sargassum be came an 
important dietary item for D. dugon after a cyclone 
had destroyed large portions of the area’s seagrass 
beds, and Whiting (2002) observed D. dugon feeding 
on algae-covered rocky reefs in northern Australia 
where no seagrasses were present. 

Steller’s sea cow Hydrodamalis gigas likely special-
ized on macroalgae (Phaeophyceae and Rhodo  phy -
ceae) (Steller 1751, Domning 1976, Anderson 1995, 
Clementz et al. 2007, Rothauscher 2011, Estes et al. 
2016, Bullen et al. 2021). Now extinct, the interactions 
and impacts of this algivore in the North Pacific kelp 
forest ecosystems it once occupied re main a matter of 
speculation (Estes et al. 1989, Bullen et al. 2021). What 
is certain, however, is that they differed markedly 
from those of any extant sirenian (Domning 1976, Best 
1981, Anderson 1995, Clementz et al. 2007). 

In their capacity as herbivores, all of the extant sire-
nians exhibit some intra- and inter-population varia-
tion in diets. This variation is modest in T. inunguis, 
given its restriction to freshwater habitats, and can 
stem from differences in water chemistry (e.g. white- 
vs. blackwater; Colares & Colares 2002). By contrast, 
the plants exploited by T. manatus often vary 
markedly across populations. For example, T. mana -
tus populations in Belize, Cuba, Mexico, and Puerto 
Rico (i.e. those of the Antillean subspecies T. m. man-
atus) rely primarily on seagrasses (Lefebvre et al. 
1999, Alves-Stanley et al. 2010, Flores- Cascante et 
al. 2013, Navarro Martinez et al. 2014), but T. m. man-
atus populations elsewhere (e.g. Colombia, Vene zu -
ela) target freshwater species more heavily (Castel-
blanco-Martínez et al. 2021a), and those in Florida 

(subspecies T. m. latirostris) exhibit varying degrees 
of reliance on estuarine and freshwater plants that 
 depend on access to habitat types where they grow 
(Reich & Worthy 2006). There is also indication that T. 
senega lensis diets can vary considerably among pop-
ulations across the species’ diverse range (Takoukam 
et al. 2021). Given its specialization on benthic sea-
grasses, D. dugon is less known for inter-population 
dietary variation than T. manatus, but differences in 
the seagrass species targeted have been documented 
across this sirenian’s distribution. Namely, D. dugon 
populations in tropical areas, where seagrass species 
diversity is high, appear more likely to target foraging 
patches with elevated biomass rather than particular 
species (e.g. Johnstone & Hudson 1981, Aragones 
1994, André et al. 2005, Tol et al. 2016), whereas those 
in regions closer to the dugong’s range edge tend to 
select early pioneering species with high nitrogen 
content (Halodule sp. and Halophila sp.; e.g. Preen 
1995a, Sheppard et al. 2007, 2010). 

All extant sirenians have shown signs of omnivory 
(Table 1). Much of the evidence for omnivory in sire-
nians suggests that animals are often ingested inci-
dentally during bouts of herbivory. For example, T. 
 inunguis has been found to ingest arachnids and zoo-
plankton (Guterres-Pazin et al. 2012), T. manatus may 
consume a variety of animals including ascidians (e.g. 
O’Shea et al. 1991), crustaceans (e.g. Courbis & Wor-
thy 2003), fishes (e.g. Powell 1978), and sponges (e.g. 
Allen et al. 2017), and T. senegalensis is known to 
 ingest fishes and mollusks (e.g. Keith Diagne 2014). 
Similarly, D. dugon sometimes consumes ascidians, 
mollusks, and polychaetes (e.g. Spain & Heinsohn 
1973, Heinsohn et al. 1977, Marsh et al. 1982, Preen 
1995b). By contrast, although a definitive assessment 
has not been undertaken, evidence from stable isotope 
analyses does not support the idea of omnivory in H. 
gigas (Clementz et al. 2007, Newsome et al. 2010). 

In some cases, however, sirenians appear to target 
animals intentionally. For instance, high numbers of 
tunicates in the stomachs of T. m. latirostris after a 
red tide event led O’Shea et al. (1991) to suspect 
deliberate ingestion, and this species has been ob -
served actively consuming invertebrates growing on 
docks (O’Shea et al. 1991, Courbis & Worthy 2003). 
Similarly, roughly half of the diet of T. senegalensis 
in both freshwater and marine systems in Senegal 
consists of clams, mussels, and fish, and there is evi-
dence that these prey species are targeted (e.g. fish 
are taken from fishing gear), underscoring their im -
portance to this species’ diet (Keith-Diagne 2014). 
Anderson (1989) observed deliberate foraging by D. 
dugon on macroinvertebrates, and Preen (1995b) 
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found that this species’ feeding trails 
targeted ascidians. Some authors, such 
as Preen (1995b), have hypo thesized 
that sirenians deliberately exploit ani-
mals as food to compensate for nutri-
tional deficits, but the reasons for this 
be havior re main unclear. Irrespective of 
the underlying mechanism(s), the exis-
tence of omnivory in sirenians implies 
that the trophic interactions of, and in -
deed the factors that influence habitat 
suitability for, these species may be 
more diverse than is appreciated. 

4.2.  Impacts on macrophyte 
 communities 

As large-bodied herbivores, sirenians 
can affect macrophyte biomass and dy -
na mics, both consumptively via the phy -
si cal removal of vegetation and non-
 consumptively via fertilization (excretion 
and egestion) (Packard 1984, Ara gones 
& Marsh 1999). Collectively, these effects 
may also indirectly impact other organ-
isms that rely on macrophytes for food 
(e.g. macro-herbivores) and shelter (e.g. 
invertebrates and teleosts). Accordingly, 
a comprehensive understanding of the 
impacts of sirenian herbivory is crucial to 
predicting the implications of changes to 
numbers, distributions, and possibly be-
haviors of these marine mammals for 
aquatic plants and the communities they 
support. 

Sirenians can consume large amounts 
of seagrass. Manatees, for example, are 
estimated to consume be tween 4 and 
13% of their body mass daily (Best 1981, 
Bengtson 1983), and D. dugon individu-
als can consume 10−15% of their body 
mass daily and re quire up to 3.5 ha sea-
grass annum−1 for sustenance (Heinsohn 
et al. 1977, Best 1981). Moreover, D. du -
gon can create feeding trails up to 8 m 
long, 6 cm deep, and 30 cm wide within 
which seagrass plants are largely elimi-
nated (Marshall et al. 2003). As a result, 
sirenian populations have the capacity to 
markedly alter macrophyte biomass and 
spatial coverage and therefore to affect 
benthic habitats (Table 2). For instance, 
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T. m. latirostris feeding has been 
shown to remove up to 89% of 
aboveground, 67% of belowground, 
and 89% of overall seagrass bio-
mass, and to reduce seagrass cover-
age by up to 90% (Table 2). Simi-
larly, D. dugon feeding can re duce 
aboveground seagrass biomass by 
up to 96%, belowground biomass 
by as much as 73%, overall biomass 
by up to 86%, and coverage (as 
measured by aboveground shoot 
density) by as much as 94.5% 
(Table 2). When sustained, sirenian 
herbivory can be intensive enough 
to inhibit macrophyte distribution 
and biomass (e.g. T. m. latirostris; 
Hauxwell et al. 2004a,b). Moreover, 
these impacts can manifest over 
large spatial scales. Lefebvre et al. 
(2017) observed that T. m. latirostris 
reduced seagrass biomass by up to 
89% within large control plots 
(169 m2) relative to exclosures, and 
Preen (1995a) found that intensive 
D. dugon herbivory reduced sea-
grass shoot density by 92% after 6 
mo in an area covering 41 ha. 

Though sirenians can rapidly re -
move macrophyte biomass, the lat-
ter appear to be resilient and can 
recover over relatively short time 
periods (typically <1 yr, Peterken & 
Conacher 1997). Indeed, seagrass 
re covery times can be approxi-
mately 6 mo after T. manatus graz-
ing and to range from 3 to 8 mo 
 following D. dugon exploitation 
(Table 2). Notably, however, recov-
ery rates vary considerably both 
among seagrass species in the same 
system and across ecosystems. 
Preen (1995a), for example, found 
that seagrass meadow recovery can 
be inhibited if even low levels of 
D. dugon grazing are sustained. 
Macrophyte recovery rates after 
foraging by manatees have only 
rarely been assessed rigorously 
(e.g. Lefebvre et al. 1999). Thus, a 
more encompassing framework for 
understanding when, where, and 
by what magnitude sirenian herbi -
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vory is likely to suppress biomass and/or coverage of 
particular macrophyte species will require studies 
that explicitly address macrophyte- and system-spe-
cific drivers coupled with spatiotemporal patterns of 
sirenian foraging intensity. 

A few studies have asked whether macrophytes 
respond to aboveground grazing with increased net 
primary productivity (Valentine & Heck 1999). Off 
the coast of Thailand, Nakaoka & Aioi (1999) found 
that net production, leaf production, and rhizome 
elongation did not differ between patch centers and 
edges of D. dugon feeding trails, whereas branching 
frequency of new rhizomes was higher along trail 
edges. By implication, sirenian feeding pressure may 
not always elicit increased plant production, and 
plant responses to such pressure may vary across 
morphological dimensions. In an experiment simu-
lating D. dugon herbivory on seagrass meadows in 
Australia, Aragones & Marsh (1999) documented 
increased net aboveground primary biomass produc-
tion in Halophila ovalis, but decreased production of 
Zostera capricorni. The magnitudes of these trends 
increased with grazing intensity, underscoring the 
capacity of macrophytes to compensate for tissue re -
moval with increased growth, but their disparate 
directions also indicate that plant growth responses 
to sirenian herbivory can depend on the species 
being targeted. Similarly, Masini et al. (2001) noted 
that increased productivity of Halodule uninervis in 
subtropical Australia followed intensive D. dugon 
herbivory but did not address the relationship exper-
imentally. The impacts of herbivory by manatees on 
plant primary productivity have not been assessed 
rigorously, though Lefebvre et al. (2017) postulated 
that seagrass recovery after intensive T. m. latirostris 
activity was driven by increased production post-
grazing. Evidence from terrestrial systems suggests 
that plant productivity might increase in the pres-
ence of herbivory, but as herbivory intensity in -
creases productivity will decline (e.g. Milchunas & 
Lauenroth 1993, Schoenecker et al. 2004, Holdo et al. 
2007). This pattern, which has yet to be assessed in 
relation to sirenian foraging, may help to explain the 
complex macrophyte productivity responses that 
have been observed. 

Sirenian herbivory may alter plant chemical com-
position. For example, Aragones et al. (2006) found 
whole-plant nitrogen concentrations of H. ovalis 
and H. uninervis in tropical north Queensland, Aus-
tralia to be higher (by 35 and 25%, respectively) 
1 yr after simulated intensive grazing by D. dugon; 
these changes were also relatively long-lasting (i.e. 
they re mained after 11 and 13 mo, respectively). In 

subtropical Western Australia, however, exclusion 
of D. dugon herbivory with cages did not affect sea-
grass nutrient content, save to increase phosphorus 
(Burkholder et al. 2013). Though this latter study 
did not separate the impacts of sirenians and green 
sea turtles Chelonia mydas, it nevertheless empha-
sizes the need for more work exploring the species- 
and system-specificity of plant chemical composition 
re sponses to D. dugon herbivory. Studies asking if 
Triche chus sp. can exert impacts on plant chemistry 
similar to those observed in D. dugon are warranted 
as well. 

Several studies have shown that sirenian herbi vory 
can alter macrophyte community composition. For 
ex ample, Provancha & Hall (1991) found that exclu-
sion of T. m. latirostris grazing led to a de crease in 
the relative abundance of Halodule wrightii com-
pared to grazed plots. In general, T. manatus grazing 
promoted coexistence of Syrin godium filiforme and 
H. wrightii (Lefebvre et al. 2017). Similarly, simu-
lated intensive grazing by D. dugon shifted sites 
originally dominated by Z. capricorni (a perennial) to 
H. ovalis and then Halophila spinulosa (pioneering) 
(Preen 1995b). After an 11 mo field experiment in 
which mixed beds of seagrasses were subjected to 
simulated herbivory by D. dugon, both light (70−
85% of aboveground material removed) and inten-
sive (all aboveground material removed) grazing 
treatments resulted in a shift from dominance of Z. 
capricorni and Cymodo cea sp. to that of the pioneer-
ing species H. ovalis (Aragones & Marsh 1999). Sea-
grass meadows ex posed to heavy D. dugon foraging 
exhibited a mix of Cymodocea angustata and H. 
uninervis, but shifted toward dominance by C. 
angustata (tripled) and away from H. uninervis, 
which nearly disappeared, when du gongs were 
excluded from foraging (Burkholder et al. 2013). 
Finally, in kelp forests in the waters of California and 
Baja Cali fornia, H. gigas grazing of the surface 
canopy of Macro cystis pyrifera (Domning 1978) may 
have facilitated light penetration to the sea floor, 
increasing the abundance of epibenthic kelps and 
other macroalgae and decreasing the abundance of 
benthic suspension feeders (Estes et al. 1989, Bullen 
et al. 2021). 

In summary, sirenian foraging can exert myriad 
impacts on macrophyte communities (Table 2). How-
ever, our knowledge of these impacts remains lim-
ited. Here, we highlight 4 key aspects of sirenian im -
pacts that are important to investigate in the future. 
First, the trophic impacts of T. inunguis and T. sene-
galensis remain poorly understood. While feeding on 
benthic macrophytes, sirenians can either crop the 
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leaves of plants or excavate (root) rhizomes, and T. 
manatus and D. dugon regularly employ the latter 
tactic (e.g. Packard 1984, Anderson 1998, Short et al. 
2006, Navarro-Martinez et al. 2014). By contrast, the 
extents to which T. inunguis and T. senegalensis rely 
on these tactics, which differ in their effects, have not 
been explored. Moreover, T. inunguis seems to pri-
marily exploit floating and emergent plants, whereas 
T. senegalensis appears to largely exploit freshwater 
animals and emergent vegetation (Colares & Colares 
2002, Marshall et al. 2003, Spiegelberger & Gans -
losser 2005, Takoukam et al. 2021). Therefore, the 
effects of these species on macrophyte communities, 
and animals in the case of T. senegalensis, may differ 
considerably from those observed in T. manatus and 
D. dugon. 

Second, documented trophic impacts of sirenians 
vary among ecosystems and macrophyte communi-
ties (Table 2). Indeed, some studies have found for-
aging by megaherbivores, including sirenians, to 
exert little influence on macrophytes and associated 
organisms. In coastal seagrass ecosystems in Aus-
tralia, for example, Scott et al. (2021a) found that 
mega-grazers (D. dugon and C. mydas) reduced 
above- but not belowground seagrass biomass. Simi-
larly, Ebrahim et al. (2014) found no evidence of 
grazing impacts by these species. Accordingly, care-
ful scrutiny of the factors controlling the strength of 
these impacts is warranted. We documented 3 factors 
that can serve as starting points for future work: spa-
tiotemporal patterns of herbivory have been shown 
to vary across seasons in D. dugon (Anderson 1986, 
Holley et al. 2006, Zeh et al. 2018), T. inunguis (Best 
1983), T. manatus (Gannon et al. 2007, Castelblanco 
et al. 2009b, Pablo-Rodrí guez et al. 2016), and T. 
senegalensis (Takou kam Kamla et al. 2021); across 
habitats in T. inunguis (i.e. river type; Crema et al. 
2019); and as a function of foraging mode (i.e. crop-
ping vs. excavation) in D. dugon (Anderson 1986, 
Marsh et al. 1999, Wirsing et al. 2007a). 

Third, from a behavioral standpoint, some authors 
have proposed that both manatees (Lefebvre et al. 
1999) and dugongs (Preen 1995a) practice rotational 
grazing, whereby foraging activity is distributed in 
space and time to allow macrophytes to recover from 
grazing impacts and to produce vegetation patches 
dominated by more nutritious pioneering species 
(sensu McNaughton 1984). In support of this hypoth-
esis, T. m. latirostris populations are known to regu-
larly return to the same patches of seagrass (e.g. H. 
wrightii) to feed (Packard 1984, Lefebvre et al. 1999). 
Dugongs have also been observed to target areas 
with preferred pioneering seagrasses (Lanyon 2003, 

Lanyon et al. 2005, Sheppard et al. 2010) and to reg-
ularly revisit foraging sites (de Iongh et al. 1997, 
2007). Furthermore, grazing by large herds of du -
gongs can cause mixed-species seagrass beds to shift 
to dominance by nitrogen-rich pioneering species 
(Preen 1995b, Aragones & Marsh 1999, Aragones et 
al. 2006). The same has been hypothesized for mana-
tees (Dawes & Lawrence 1979), as has the possibility 
that manatee grazing alters the texture of the sub-
strate (Packard 1984), subsequently allowing for eas-
ier removal of plants (Lefebvre & Powell 1990). More 
work is needed to rule out alternative explanations 
for this behavior, however, with some studies of D. 
dugon foraging for example having documented 
selection for overall macrophyte biomass rather than 
particular species (e.g. Yamamuro & Chirapart 2005, 
Tol et al. 2016) and failed to find any effect of her-
bivory by this sirenian on seagrass species composi-
tion (e.g. Masini et al. 2001). Moreover, recovery 
times of seagrasses from feeding disturbances by D. 
dugon vary spatially, as a function of the timing and 
intensity of herbivory, the location and composition 
of species within the meadow being targeted, and 
the spatiotemporal pattern of additional disturbances 
from D. dugon and other factors during recovery 
(Aragones & Marsh 1999, Marsh et al. 2005), mean-
ing that optimal return timing from the standpoint of 
D. dugon nutrition will vary considerably depending 
on these drivers (Aragones et al. 2006). 

Fourth, seagrass meadows are recognized as glob-
ally significant storehouses of coastal and marine, or 
‘blue’, carbon (Fourqurean et al. 2012). Insofar as 
sirenians can alter the biomass and composition of 
seagrass communities, their herbivory has been pro-
posed as a mechanism that could mediate carbon se -
questration in seagrass ecosystems (Scott et al. 
2018). Notably, studies of green turtles suggest that 
intensive grazing, resulting from population growth 
promoted in part by reductions in predator popula-
tions, could reduce carbon sequestration in seagrass 
meadows (Heithaus et al. 2014). Given the low pop-
ulation densities of sirenians relative to historical 
levels, the possibility that sirenians might exert sim-
ilar effects seems unlikely for the foreseeable future. 
Should sirenian conservation measures prove suc-
cessful, however, concurrently rebuilding popula-
tions of pre dator species that affect sirenians (see 
Section 7) is likely desirable, as has been suggested 
for green turtles (Heithaus et al. 2014). For the time 
being, the link between patterns of sirenian herbi -
vory and carbon storage in seagrass meadows is not 
well ex plored and thus remains as an urgent 
research frontier. 
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5.  BIOTURBATION 

Bioturbation, or the reworking of sediments by 
organisms, occurs in aquatic and terrestrial ecosys-
tems and is now recognized as a form of ‘ecosystem 
engineering’, whereby organisms alter the physical 
characteristics of habitats and affect resources to 
other species (Meysman et al. 2006). First described 
by Darwin (1881) in his last book (although not 
termed as such), bioturbation is acknowledged to be 
a major driver of species and ecosystem evolution 
(Meysman et al. 2006). A range of large marine ver-
tebrates are known to have substantial impacts on 
sediment movement, infauna community structure, 
and nutrient fluxes via bioturbation, such as foraging 
gray whales Eschrichtius robustus and walruses 
Odo benus rosmarus in polar coastal ecosystems 
(Nelson et al. 1983, Ray et al. 2006). 

Sirenians should have great scope to affect their 
immediate abiotic environment, particularly because 
they travel, rest, and most importantly forage on or 
close to the bottoms of rivers, estuaries, and coastal 
marine habitats, including seagrass meadows. Yet, 
limited research has been carried out to assess the 
role of sirenians as bioturbators and the importance 
of bioturbation as a factor affecting sediment move-
ments and community and ecosystem dynamics in 
tropical and subtropical aquatic habitats. So far, 
empirical evidence suggests that sirenian bioturba-
tion can negatively affect infaunal communities via 
habitat destruction. In intertidal seagrass beds along 
the coast of Thailand, benthic fauna was significantly 
more abundant and diverse in intact Halophila ovalis 
beds than in Dugong dugon feeding trails (Nakaoka 
et al. 2002). Similar patterns were observed in More-
ton Bay (southeast Queensland), where abundance 
of benthic organisms, particularly polychaete worms 
and amphipods, was reduced by up to 85% by simu-
lated disturbance to the substratum that would occur 
when dugongs graze and create feeding trails (Skil-
leter et al. 2007). Beyond the physical impacts on 
benthic habitats and infaunal communities, sirenians 
such as D. dugon can also affect nutrient dynamics 
and increase microbial activity in the sediment, 
therefore contributing to increased nitrogen fixation 
(Perry & Dennison 1996). 

Notably, as described in Section 4.2, sirenian forag-
ing be havior can vary seasonally and as a function of 
the macrophyte community in which it occurs. More-
over, foraging tactics are highly variable within sire-
nians (Domning 1980), including at the species level 
(cf. cropping vs. excavating; Wirsing et al. 2007a). 
Therefore, the magnitude and ecological conse-

quences of sirenian bioturbation are likely affected 
by several factors, including geography, sediment 
composition, the identity and nutrient content of the 
plants being targeted, and changes to foraging mode 
induced by perceived risk of predation, which can 
also vary seasonally (Wirsing et al. 2006). 

6.  NUTRIENT RECYCLING AND SEED 
TRANSLOCATION 

Animals can affect nutrient cycling through mul -
tiple processes, either directly through ingestion, 
egestion, production, and excretion, or indirectly 
when they change the distribution and biomass of 
plants and microbes that take up nutrients (Vanni 
2002, Hall et al. 2007). Over the past several decades 
and aided in some cases by improved tracking tech-
nology, there has been growing scrutiny of the role 
that animals, particularly large marine consumers, 
play in translocating nutrients within and across 
habitats in terrestrial, riparian, and marine ecosys-
tems. For example, large cetaceans release nitrogen- 
and iron-rich fecal plumes and urine at the ocean 
surface after feeding at depths, or by translocating 
nutrients from high-latitude feeding grounds to low-
latitude breeding grounds (Roman et al. 2014). 

Within their foraging grounds, sirenians may also 
fertilize macrophytes via the deposition of fecal mat-
ter and urine, thereby promoting growth and recov-
ery following herbivory (Heinsohn et al. 1977). This 
possibility has not been assessed empirically, how-
ever. Moreover, Aragones et al. (2006) argue that be -
cause of intertidal feeding and lengthy gut retention 
times, sirenian defecation may often occur far from 
seagrass meadows. Hence, the extent to which siren-
ian excretion and egestion act as source of carbon, 
nitrogen, and phosphorus for macrophyte communi-
ties is unknown. 

The roles and importance of sirenians in the move-
ments and recycling of nutrients have not been 
investigated in detail. However, due to their high 
consumption rates and the extent of their movements 
within and across multiple habitats and ecosystems 
(e.g. Castelblanco-Martínez et al. 2021b), sirenians 
have the potential to act as nutrient vectors and af -
fect ecosystem dynamics beyond their roles as con-
sumers, prey, or bioturbators. Previous research sug-
gests that grazing by sirenians can reduce the 
abundance of detrital matter, a significant source of 
nutrients in coastal ecosystems, particularly in sea-
grass meadows (Aragones & Marsh 1999). However, 
the grazing pressure by sirenians and other large 
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herbivores would result in faster recycling of nutri-
ents than decomposition, which should increase the 
productivity of seagrass and other plant communities 
(Perry & Dennison 1999). 

Both Trichechus manatus and T. senegalensis feed 
on freshwater and coastal plants and algae and move 
within and across ecosystems and therefore consti-
tute biological links between distinct food webs 
(Aragones et al. 2012, Kiszka et al. 2015, Keith-
Diagne et al. 2021). T. m. manatus in Belize forage on 
dense seagrass meadows and on mangrove leaves 
and roots in inshore waters but also use the break of 
the Mesoamerican barrier reef system (Self-Sullivan 
et al. 2003). Similarly, Dugong dugon is known to 
feed on a variety of seagrass species with high nitro-
gen content on seagrass meadows in the lagoons of 
New Caledonia, but moves from inshore waters to 
coral reef pinnacles and the forereef that are typi-
cally nitrogen-depleted, possibly to reduce risk of 
encounters with large predatory sharks (e.g. Cleguer 
et al. 2020). Therefore, both T. manatus and D. dugon 
might mediate the translocation of nutrients from 
seagrass beds to coral reef ecosystems. Although the 
behavior of manatees and dugongs on reefs is poorly 
known, manatees could also mediate the transport 
and recycling of nutrients from productive coastal 
systems to nutrient-poor reefs. However, the magni-
tude and importance of ecological impacts of siren-
ian-mediated nutrient movements and recycling 
needs to be investigated further. Future research 
incorporating sirenian fine-scale movements within 
and across habitats (e.g. coupling between seagrass 
and coral reef habitats, or between freshwater and 
coastal ecosystems), nutrient content of egestions 
and excretions, and gut transit time will contribute to 
a better understanding of the dynamics of sirenian-
mediated nutrient translocation and recycling, both 
within and across ecosystems. 

Seed dispersal is critical for most plant species, and 
factors limiting seed propagation can influence plant 
population connectivity and decrease their resilience 
from anthropogenic and natural disturbance (Kend -
rick et al. 2012). Sirenian-mediated seed dispersal 
has rarely been investigated (e.g. Peterken & Cona -
cher 1997), but a recent study suggests that large 
herbivores such as green turtles Chelonia mydas and 
D. dugon on the Great Barrier Reef consume and re -
cycle via defecation viable seeds from at least 3 sea-
grass species (Zostera muelleri, Halodule uninervis, 
and Halophila decipiens), including during the peak 
reproductive season (Tol et al. 2017). An estimated 
500 000 viable seeds can be excreted daily by both 
green turtles and D. dugon in this region, and in the 

dugong’s case, digesta passage times suggest poten-
tial seed dis persals up to a distance of >230 km 
among seagrass meadows in the Great Barrier Reef 
region (Tol et al. 2017). This distance compares favor-
ably with those recorded for abiotic dispersal via 
ocean currents, which can range up to 400 km but 
are typically under 100 km (van Dijk et al. 2009, 
Kendrick et al. 2012, Grech et al. 2016). 

7.  INTERACTIONS WITH PREDATORS 

Sirenians may serve as food for predators while 
also transmitting non-consumptive predator effects 
via antipredator behavior (Wirsing et al. 2021). Re -
cords dating to the early Paleogene provide evidence 
of prehistoric shark predation on sirenians (Diedrich 
2013). Today, Trichechus manatus is thought to be 
part of the diet for large sharks (bull sharks Carcha -
rhinus leucas and tiger sharks Galeocerdo cuvier; 
Falcón-Matos et al. 2003), and large sharks have also 
been observed scavenging on T. m. latirostris car-
casses in Florida, USA (Lightsey et al. 2006), though 
active shark predation on living members of this spe-
cies has yet to be confirmed. Predator−prey interac-
tions have been observed between T. m. latirostris 
and American alligators Alligator missis sippiensis 
(Falcón-Matos et al. 2003). Amazonian manatees 
may also be subject to predation by sharks, as well as 
jaguars Panthera onca and caimans (Caiman croco-
diles, Melanosuchus niger, Paleosuchus palpebrosus, 
Paleosuchus trigonatus), but reliable documentation 
is lacking (Falcón-Matos et al. 2003). African mana-
tees share habitat with large sharks and crocodiles, 
and Luiselli et al. (2012) suggest that crocodiles may 
constitute the main non-human predator for this 
 species, but we were unable to find any recent docu-
mented accounts of predation (but see Johnson 
1937). Overall, the importance of the 3 species of 
manatees as prey is poorly understood. Finally, all 
3 manatees were hunted historically for human 
 consumption (McKillop 1985, Reeves et al. 1988, 
Morales-Vela et al. 2003, Normande et al. 2015). In 
some cases, harvests were sustainable (e.g. by indi -
genous communities, Timm et al. 1986), but others 
contributed to population declines (e.g. Jiménez 
2002, Sousa et al. 2013). For some populations, con-
tinued exploitation of these species is recognized as 
an ongoing threat (Reeves et al. 1988, Ferreira et al. 
2011, Franzini et al. 2013, Cosentino & Fisher 2016). 

Dugongs are subject to predation by large sharks 
(e.g. G. cuvier, Heithaus 2001, Simpfendorfer et al. 
2001), killer whales Orcinus orca (Anderson & Prince 
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1985, Jefferson et al. 1991), and perhaps saltwater 
cro codiles Crocodylus porosus (Heinsohn et al. 
1977), with the young thought to be most vulnerable 
(Hein sohn et al. 1977). Whereas Dugong dugon 
might be rare prey for both cetaceans and crocodil-
ians, tiger sharks in some regions appear to rely 
heavily on D. dugon as a food source, as evidenced 
by spatiotemporal correlation in their numbers 
(Anderson 1982, Wirsing et al. 2007b). Indeed, high 
occurrence of D. dugon tissue in the stomachs of G. 
cuvier in Western Australian waters suggests that, 
where their numbers are not suppressed, these 
sharks could exert demographic impacts on D. dugon 
populations (Simpfendorfer et al. 2001). As with 
mana tees, humans are the most globally pervasive 
and influential predator of D. dugon (Robards & 
Reeves 2011), with harvest linked to observed de -
clines (e.g. Ligon 1976, Daley et al. 2008) and identi-
fied as a continuing threat to at-risk populations (e.g. 
Marsh et al. 1995). Notably, however, indigenous 
harvest of D. dugon is also recognized as an impor-
tant cultural and economic practice (e.g. Kwan et al. 
2006, Delisle et al. 2018) and has been found to be 
sustainable in some areas (e.g. Marsh et al. 2015). 

Information on consumptive predator−prey interac-
tions involving Hydrodamalis gigas is lacking, though 
Bullen et al. (2021) hypothesize that O. orca and large 
sharks were likely predators. Notably, human preda-
tion is thought to be the primary driver of the extinc-
tion of this sirenian (Turvey & Risley 2006). 

Non-consumptive relationships between sirenians 
and their non-human predators are poorly studied. 
Most of our current understanding comes from stud-
ies of D. dugon. For example, D. dugon in Queens-
land, Australia, avoid areas lacking deep water refu-
gia where they may be more vulnerable to sharks 
(Lanyon 2003, Lanyon et al. 2005). Working in the 
same region, Sheppard et al. (2009) found that D. 
dugon moves closer to shore at night, possibly 
because use of shallow water where tiger sharks are 
more apt to hunt (Heithaus et al. 2002a) is safer when 
these predators are less active (Heithaus 2001). Fur-
thermore, Kiszka (2007) observed D. dugon in close 
association with dolphins in protected waters in 
the lagoon of Mayotte, perhaps as protection from 
sharks. In New Caledonia, D. dugon transits and 
rests in the deep and relatively clear waters of the 
outer slope of the barrier reef or in the vicinity of reef 
pinnacles in the lagoon (Cleguer et al. 2020). This 
pattern might be a tactic to increase the detection of 
large sharks that are abundant in this region, or to 
reduce the risk of encountering sharks in seagrass 
beds where tiger sharks might be foraging. 

The best evidence for these effects in D. dugon, 
however, comes from a series of studies in Shark Bay, 
Western Australia. Namely, D. dugon manages risk of 
shark predation in this system by: avoiding the shal-
lows where tiger sharks spend most of their time 
hunting and are most effective (Wirsing et al. 2007c); 
avoiding interior portions of seagrass meadows 
where lower water volume reduces maneuverability 
and distance to deep refugia is greatest (Wirsing et al. 
2007d); avoiding a feeding tactic (excavation) that 
constrains vigilance by generating turbidity (Ander-
son 1986) and may attract sharks (Wirsing et al. 
2007a); altering their behavioral sequencing while 
foraging to include more frequent bouts of traveling, 
which facilitates vigilance (Wirsing & Heithaus 2012); 
altering their dive cycles while excavating to spend 
more time at the surface where vigilance is less inhib-
ited by sediment (Wirsing et al. 2011); and selecting 
for seagrass patches with elevated amounts of edge 
(i.e. greater access to deep refugia, Heithaus et al. 
2007). Collectively, these results highlight the myriad 
ways in which predation danger can influence siren-
ian behavior (Fig. 2). More research is needed to de-
termine whether and how these anti-predator re-
sponses shape D. dugon population demography via 
risk effects (sensu Creel & Christianson 2008). There 
is evidence, however, that they transmit indirect ef-
fects of sharks on the macrophytes D. dugon targets. 
Using a herbivore exclosure experiment, Burkholder 
et al. (2013) documented heavy D. dugon (and green 
turtle) grazing effects on seagrass biomass and com-
munity composition in low-risk seagrass meadows 
edges, which are used heavily by these species when 
tiger sharks abound, but not in high-risk meadow in-
teriors. Moreover, Nowicki et al. (2021) used a simu-
lation experiment to show that, if unchecked by tiger 
sharks, D. dugon herbivory could exacerbate effects 
of extreme climate events (ECEs) on seagrass recov-
ery and community composition. 

Anthropogenic disturbance may be perceived by 
animals as predation risk and, as a result, elicit de -
fensive behavior (Frid & Dill 2002). There is evidence 
supporting this phenomenon in sirenians. T. inunguis 
(Timm et al. 1986) and T. senegalensis (Mayaka et al. 
2019) are difficult to observe, putatively owing to 
past human hunting practices, and in Nicaragua, T. 
m. latirostris is thought to rest in sheltered deep 
water during the day and venture out into the shal-
lows to forage from dusk to dawn in part as a re -
sponse to being hunted diurnally by humans 
(Jiménez 2002). Furthermore, T. m. latirostris has 
been observed to respond to approaching boats with 
anti-predator re sponses (e.g. Nowacek et al. 2004, 
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Fig. 2. Effects of temporal variation in tiger shark Galeocerdo cuvier predation risk on dugong Dugong dugon (a,b) space use, 
(c,d) feeding behavior, and (e,f) diving behavior in Shark Bay, Western Australia. During times of the year when tiger sharks are 
locally scarce and risk is therefore low, dugongs spend most of their time over the central portions of shallow seagrass meadows 
(‘interior’) (a), but spend more time along the perimeters of shallow seagrass meadows (‘edge’) and in deeper water (‘deep’) 
where seagrass is less plentiful when sharks are more abundant and risk is higher (b). Dugongs also shift from excavating sea-
grass rhizomes, a feeding tactic that inhibits vigilance, when tiger sharks are scarce (c), to cropping leaves from seagrass plants, 
a less profitable but safer tactic that better enables visual scanning of the environment, when sharks are abundant (d). Foraging 
dugongs use long dive cycles when tiger sharks are scarce, facilitating lengthy feeding bouts (e), but return to the surface more 
frequently when sharks are abundant, reducing foraging time (f). By implication, tiger sharks may indirectly structure seagrass  

ecosystems via multiple pathways that are transmitted by an array of dugong anti-predator countermeasures
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Rycyk et al. 2018) and to avoid direct human contact/
harassment (e.g. associated with ‘swim with’ mana-
tee programs; Sorice et al. 2003, 2006, Allen et al 
2014). During the winter months in Florida, natural 
thermal refuges are critical for T. m. latirostris, par-
ticularly in Kings Bay (Crystal River), where a major 
tourism industry has developed since the 1980s. The 
use of sanctuaries (areas where boating activity is 
prohibited) by this species has increased in Kings 
Bay, suggesting that it deliberately avoids boats 
when tourism pressure increases (Buckingham et al. 
1999). D. dugon has been observed to avoid close 
boat approaches (de Iongh et al. 1997, Hodgson & 
Marsh 2007) and, notably, to respond to such ap -
proaches with behavior (shifts to deep water) that 
resembles their reaction to encounters with sharks 
(A. Wirsing pers. obs.). By implication, human distur-
bance may negatively impact manatee and dugong 
populations by triggering costly anti-predator re -
sponses and initiate indirect effects on vegetation. 

8.  INTERACTIONS WITH COMPETITORS 

Sirenians may compete for food with other mega- 
(e.g. green sea turtles) and macroherbivores (fishes, 
urchins, and other invertebrates). Although spatial 
overlap between both Trichechus manatus and T. 
senegalensis and Chelonia mydas has been docu-
mented (Alves et al. 2013, L. Keith-Diagne pers. 
comm.), revealing potential for these 2 species to be 
competitors, dietary overlap and inter-specific be -
havioral interactions between manatees and sea tur-
tles have not been explored. The potential for compe-
tition between Dugong dugon and C. mydas has 
re ceived some attention, by contrast. Gredzens et al. 
(2014) documented broad spatial overlap be tween 
these 2 herbivores in 2 regions of Australia (Torres 
Strait and Shoalwater Bay) but disparity between 
core use areas and, consistent with other studies of 
their diving behavior (Chilvers et al. 2004, Hazel et al. 
2009), greater use of deep habitat by D. dugon in the 
latter region, suggesting that they may spatially par-
tition resources under some circumstances. In Shark 
Bay, Australia, green turtles were found to include 
large numbers of ctenophores and jellyfish in their di-
ets and also consume sponges and macroalgae (Hei-
thaus et al. 2002b). Similarly, André et al. (2005) 
found evidence of resource partitioning be tween 
sympatric D. dugon and C. mydas populations on the 
Orman Reefs in Torres Strait, between Australia and 
Papua New Guinea, with sharing of only 1 seagrass 
species (Thalassia hemprichii), and turtles consuming 

more algae. Working in the same system, Nietsch -
mann (1984) documented heavy use of algae by tur-
tles during a period of seagrass scarcity, whereas D. 
dugon primarily exploited the available seagrasses, 
leading André et al. (2005) to hypothesize that turtles 
adjust their diet to minimize competition with D. 
dugon. By implication, there may be circumstances 
when the trophic relationship be tween D. dugon and 
C. mydas is more facilitative than competitive. In-
deed, such facilitation may oc cur, at least of turtles, 
wherever sirenian herbivory im proves the nutritional 
content of seagrasses, as described in Section 4.2. 

Green sea turtles typically crop seagrasses (Hein-
sohn et al. 1977, Thayer et al. 1984, Domning & 
Beatty 2007), whereas sirenians (at least T. manatus 
and D. dugon) often spend considerable amounts of 
time digging up rhizomes. Thus, even when sireni-
ans and turtles both target seagrasses, this foraging 
disparity may reduce the potential for competitive 
overlap. Notably, however, C. mydas has also been 
observed to excavate rhizomes (Scott et al. 2020). 
The extent and drivers of this behavior in turtles 
therefore warrants more attention, as does the possi-
bility that its prevalence in any system may mediate 
the degree of sirenian−turtle niche overlap. 

Few studies have explored competition between 
sirenians and other macroherbivores, and most of the 
available evidence suggests that niche overlap is 
modest. For example, a mass-balance model describ-
ing energy flow estimated low trophic overlap be -
tween T. m. manatus and other consumers (fishes and 
invertebrates) in an estuarine environment with lim-
ited seagrass abundance (Castelblanco-Martínez et 
al. 2012). Similarly, in a protected region of the north-
ern Great Barrier Reef with healthy seagrass ecosys-
tems, the influence of macroherbivores on seagrass 
meadows was modest, suggesting low competition 
with D. dugon (Scott et al. 2021b). However, Heck et 
al. (2015) hypothesized that increasing numbers of T. 
m. latirostris could reduce forage biomass for juvenile 
fishes. Furthermore, in Shark Bay, Western Australia, 
western striped trumpeters Pelates octolineatus, a 
numerically dominant teleost in seagrass meadows 
(Heithaus 2004), are largely herbivorous (Bessey & 
Heithaus 2015) and graze heavily on the seagrasses 
Halophila ovalis and Halodule uninervis (Burkholder 
et al. 2013, Bessey et al. 2016). Because both of these 
seagrasses are preferred forage for D. dugon, some 
degree of competition be tween this sirenian and P. 
octolineatus is likely. Ac cordingly, competition be-
tween sirenians and macro herbivores may be strong 
under certain circumstances (e.g. when there is high 
dietary overlap). 
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9.  PROVISION OF HABITAT AND RESOURCES 

Sirenians may serve as habitat for epifloral and 
 faunal taxa. For example, Trichechus manatus lati -
rostris and T. m. manatus are known to play host to 
 numerous epibionts, including barnacles, copepods, 
dia toms, foraminiferans, nematodes, and roti fers 
(Suárez-Morales et al. 2010, Frankovich et al. 2015, 
Violante-Huerta et al. 2017), and barnacles may 
attach to Dugong dugon (Fertl & Newman 2018). 
Ver te  brates may also occasionally use sirenians as 
foraging habitat. Armored suckermouth catfish Ptery   -
gopl  ichthys disjunctivus, for instance, may attach 
to T. m. latirostris to feed commensally on epiflora 
(algae) (Nico et al. 2009, Nico 2010), and commensal-
ism by remora Echeneis neucratoides has also been 
documented (Mignucci-Giannoni et al. 1999). Inter-
estingly, T. m. latirostris individuals exploited by cat-
fish in this manner display elevated levels of activity 
and numbers of active behaviors, aimed at dislodg-
ing the catfish, suggesting that they are paying an 
energetic cost (Gibbs et al. 2010). 

10.  OUTLOOK AND FUTURE DIRECTIONS 

Our review reveals that sirenians play a number of 
roles in aquatic ecosystems. Foremost, and like other 
large aquatic herbivores (Bakker et al. 2016), these 
megaherbivores can be influential agents of plant 
community change and physical disturbance, quali-
fying them as ecosystem engineers in macrophyte-
dominated ecosystems. As mobile consumers, sireni-
ans may also act as nutrient vectors that couple 
discrete food webs, in some cases potentially subsi-
dizing ecosystems that are oligotrophic. Further-
more, there is growing evidence that sirenians are 
prey for and respond to risk from a variety of pre -
dators, including humans, and that they may be a 
strong competitor with other herbivores in some 
cases. Finally, sirenians themselves may serve as 
physical habitat for a variety of species. By implica-
tion, changes to their abundance are likely to influ-
ence community and ecosystem properties, particu-
larly in foraging areas where they target aquatic 
vegetation. 

We also highlight several key gaps in our under-
standing of sirenian ecology that currently impede 
reliable prediction of the causes and consequence of 
changes to their numbers in many systems. First and 
foremost, there is need for a comprehensive ap -
proach that integrates existing data on abundance, 
foraging, metabolism, movement, and thermo regu la -

tion to better understand the drivers of sirenian carry-
ing capacity. Such an approach will be crucial to 
modeling habitat suitability, and thus guiding protec-
tive policy, for each of the remaining species. A better 
understanding of sirenian carrying capacity will also 
help to address continuing uncertainty about past 
sirenian abundance (Magera et al. 2013) as well as 
both patterns of current habitat use (e.g. how Tri che -
chus manatus latirostris manages the trade-off be-
tween foraging and thermoregulatory needs) and the 
causes of recent mass mortality events (Lazensky et 
al. 2021), most recently in 2021. Second, T. inun guis 
and T. senegalensis are understudied, even though 
their numbers seem to be de clining and both are clas-
sified as Vulnerable on the IUCN Red List of Threat-
ened Species (IUCN 2018). Most notably, we could 
find no detailed assessments of their trophic impacts, 
leaving the question of how macrophyte communities 
might respond to variation in their abundance and 
distribution completely open. Third, even for T. man-
atus and Dugong dugon, few studies have explored 
their trophic impacts experimentally, and most such 
studies have relied on simulated herbivory treat-
ments, which are less representative of the actual 
consequences of sirenian herbivory than field experi-
ments using exclosures. Accordingly, in the interest 
of ex panding our predictive capacity, we encourage 
more widespread use of exclosure experiments 
(where by herbivory from these animals is artificially 
re moved), both across the sirenian species and geo-
graphically. Importantly, many of the exclosure ex-
periments that we did find failed to adequately sepa-
rate the top-down impacts of sirenians and other 
mega herbi vores (i.e. sea turtles; Table 2). Therefore, 
future experiments that can isolate herbivory impacts 
of sirenians should be particularly revealing. Fourth, 
greater emphasis on longitudinal work, particularly 
where sirenian abundance is changing, would fa -
cilitate prediction of the consequences of, and yield 
insight into the resilience of macrophyte communities 
to, these population dynamics. Fifth, greater con -
sideration should be given to intra-population di-
etary niche variation, particularly individual foraging 
specializations, which has been detected (e.g. T. m. 
manatus; Ciotti et al. 2014), and given that individual 
differences can influence the breadth of roles popula-
tions play in communities and, therefore, the impacts 
of population declines and extirpations (Bolnick et al. 
2003). Sixth, although sirenians engage in omnivory 
to a surprising extent (Table 1), the drivers and eco-
logical implications of omnivory in this group have 
not been addressed. Work in this area will facilitate 
prediction of sirenian population resilience and al-
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tered impacts as macrophyte communities respond to 
stressors associated with the Anthro po cene, particu-
larly climate change. Seventh, the impacts of preda-
tion (human and non-human) on sirenians merit more 
scrutiny, particularly those that are non-consumptive, 
as does the question of how perceived risk from hu-
man disturbance might cascade through macrophyte 
communities and ecosystems. A better understanding 
of these impacts is crucial to forecasting the conse-
quences of changes to predation regimes on sirenian 
populations and their environments. 

Along with many other large-bodied, herbivorous 
mammals, birds, and reptiles (Atwood et al. 2020), 
sirenian populations are also especially vulnerable to 
extinction. Indeed, one species (Hydrodamalis gigas) 
already suffered a recent extinction, and the remain-
ing species have declined relative to historical base-
lines (Marsh et al. 2005, Lotze & Worm 2009, Bakker 
et al. 2016), sometimes precipitously. For example, D. 
dugon numbers along the coast of eastern Queens-
land have dropped by 95%, with this decline being 
attributed in part to seagrass loss associated with 
ECEs since 2005 (Marsh et al. 2005, 2011), and as 
mentioned in Section 7, exploitation by humans 
remains a threat to all extant sirenians. As a result, 
the IUCN Red List lists all 4 extant sirenian species 
as Vulnerable, with T. manatus, T. inunguis, and D. 
dugon ex hibiting decreasing global population trends, 
and, equally concerning, the trend is unknown for 
the hunted T. senegalensis. The precarious global 
status of sirenians raises the question of whether 
many populations are still abundant enough to per-
form their historical ecological roles (McCauley et al. 
2015). Ac cordingly, there is a critical need for studies 
ad dressing the ecology of already depleted popula-
tions and, where possible, the consequences of spa-
tiotemporal variation in their numbers. Looking 
ahead, there is also a need to examine how the im -
pacts of sirenians are likely to be shaped by ongoing 
changes to their environments, including global sea-
grass de clines, overgrazing by other taxa, loss of 
freshwater habitats, and climate change. 

Though our review underscores the structural ef -
fects that sirenians can have on macrophyte commu-
nities, the trophic impacts that have been demon-
strated also vary markedly (e.g. as a function of 
geography; Table 2). Some of this variation may stem 
from inter-population differences in abundance. Yet, 
answering this question is challenging because, to 
date, most of what we know about the trophic effects 
of sirenians comes from work on relatively abundant 
populations (e.g. T. manatus in Florida, USA and the 
Caribbean; D. dugon in Queensland and Shark Bay, 

Australia). Accordingly, a key first step is generating 
more reliable demographic information for data-
 deficient populations in many areas (Findlay et al. 
2011, Magera et al. 2013), and in some cases for 
entire species (T. senegalensis), as a basis for more 
geographically expansive investigation. As a second 
step, studies aimed at answering this question with 
pseudo-experiments might take advantage of natural 
fluctuations in sirenian populations (e.g. D. dugon; 
Gales et al. 2004) or focus on systems in which sireni-
ans are recovering (e.g. T. m. latirostris in parts of the 
southeastern USA, Littles et al. 2019; D. dugon in 
Moreton Bay, Australia, Lanyon 2003). 

Seagrass ecosystems are declining globally (Orth 
et al. 2006, Short et al. 2007). Given the heavy dietary 
reliance of sirenians (save T. inunguis and inland 
populations of T. senegalensis) on seagrasses, these 
declines merit immediate attention as a sirenian con-
servation concern. Whereas the anthropogenic driv-
ers of seagrass declines are well known (Orth et al. 
2006), some may be the product of overgrazing by 
consumers with which sirenians compete (e.g. ur -
chins; Rose et al. 1999). Accordingly, there is a need 
for studies asking whether interspecific competition 
for seagrasses might be jeopardizing at least some 
sirenian populations. More broadly and irrespective 
of the underlying mechanism, studies in areas where 
seagrass declines are being monitored (e.g. Florida, 
USA) could help to establish causal links between 
changes to seagrass availability and sirenian popula-
tion status and thus inform conservation policy deci-
sions, whereas studies in systems ex periencing sea-
grass recovery following management (e.g. Tampa 
Bay, Sherwood et al. 2017) could help to guide siren-
ian recovery efforts. Notably, however, green turtle 
recoveries in regions lacking healthy top predator 
(i.e. large shark) populations have led to seagrass 
overgrazing (Fourqurean et al. 2010, Heithaus et al. 
2014, Bakker et al. 2016). Finally, therefore, the pos-
sibility that sirenian population recovery without as -
sociated predator recovery could jeopardize seagrass 
communities in some systems should be investigated 
as well. 

Freshwater environments are a critical part of 
mana tee life history. For T. inunguis, which is a full-
time occupant of freshwater ecosystems, and inland 
populations of T. senegalensis living up to 3000 km 
from the ocean, preservation of these habitats is a 
clear conservation priority. The other manatee species 
may also suffer as a result of reduced access to or 
degradation of freshwater ecosystems, however. For 
example, T. m. latirostris achieves higher digestive 
efficiency in freshwater (Worthy & Worthy 2014), 
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suggesting that a higher biomass of marine food 
would be necessary if freshwater food resources were 
to be lost, and freshwater limitation may induce this 
species to concentrate around remaining availability 
and away from food (Favero et al. 2020). Furthermore, 
many T. m. latirostris populations currently use warm 
effluent from power plants as thermal refugia (Haase 
et al. 2020), and foraging oc curs in these areas (Allen 
et al. 2014). Hence, power plant closures or changes 
to plant communities in their vicinity could rob these 
sirenians of key thermoregulatory and foraging habi-
tat during colder periods of the year. Studies of mana-
tee responses to these dynamics are critical to pre-
dicting how resilient their populations will be to 
planned plant retirements and other forms of anthro-
pogenic pressure on freshwater refuge environments, 
and ultimately whether manatees will continue to 
play a role in these ecosystems. 

Climate has played a prominent role in the evolu-
tionary history of sirenians. Velez-Juarbe et al. (2012) 
observed, for example, that species richness within 
the family Dugonidae has corresponded over time 
with climate-driven sea level variation, and Prista et 
al. (2014) illuminated changes to seasonality and sea 
level as key drivers of evolution and richness in Euro-
pean and North African sirenians. Furthermore, 
there is some evidence that climate warming may 
have contributed to the recent extinction of H. gigas 
in some areas by altering the availability of kelp 
(Crerar et al. 2014). Today, ongoing climate change 
has the potential to shape ecological roles of sireni-
ans — notably by altering their access to macro-
phytes, trophic impacts, and movements (e.g. Cloyed 
et al. 2021). 

Climate change may restrict sirenian access to 
macrophyte communities, as when ECEs such as 
floods and cyclones destroy seagrass meadows 
(Preen & Marsh 1995), or droughts render some plant 
species in freshwater ecosystems unavailable by 
lowering water levels (e.g. to T. inunguis; Guterres-
Pazin et al. 2014). Notably, there is recent evidence 
that these ECEs can alter sirenian population abun-
dance, at least in the short term, by restricting forag-
ing opportunities. Namely, Nowicki et al. (2019) 
found that, following an extensive marine heat wave 
along the western coastline of Australia, the abun-
dance of D. dugon declined markedly in Shark Bay’s 
Eastern Gulf where seagrass biomass and coverage 
had been reduced. Accordingly, there is need for 
research exploring both climate-driven alteration of 
the bottom-up inputs to sirenian populations and the 
ecological implications of changes to sirenian abun-
dance that are triggered by climate volatility. 

There is some evidence to suggest that, even if 
their abundance is stable, sirenian impacts on macro-
phyte communities may be modified by climate 
change. For instance, de Iongh et al. (1995) detected 
strong seasonality in the rates of seagrass recovery 
following D. dugon grazing in Indonesia, with recov-
ery taking much longer during the dry season. By 
implication, altered patterns of seasonality in the 
face of climate change could reshape how aquatic 
plants respond to sirenian herbivory, potentially 
compromising their resilience. There is also recent 
evidence revealing that sirenian impacts on macro-
phyte community recovery following climate-related 
disturbance can depend on the abundance of top 
predators. Namely, Nowicki et al. (2021) found that 
simulated D. dugon foraging treatments consistent 
with patterns of consumption in the absence of tiger 
sharks shifted seagrass beds in Shark Bay that were 
recovering from the aforementioned marine heat 
wave away from domination by the perennial species 
Amphibolis antarctica and toward greater represen-
tation of pioneering tropical species. Thus, loss of 
apex predators in areas experiencing the effects of 
climate change (e.g. ECEs) could modify sirenian−
plant relationships in ways that reorganize macro-
phyte community structure and indirectly affect 
other taxa and ecosystem dynamics. 

Perturbations to the thermal environment brought 
about by climate change could alter fine-scale move-
ments of sirenians in ways that affect their ecological 
roles. D. dugon, for example, exhibits small-scale 
movements that are dictated by water temperature 
(i.e. their thermal tolerance; Anderson 1986). Accord-
ingly, changes to nearshore ocean temperature re -
gimes could influence the need for such movements 
and, as a result, the degree of trophic coupling by 
this species. Furthermore, because T. m. latirostris 
acts as a central-place forager during colder periods 
of the year when it is tied to thermal refugia Haase et 
al. (2020), climate change is likely to shape individ-
ual foraging patterns in this species by altering the 
timing and location of thermal refuges. At the same 
time, population impacts may be locally enhanced if 
aggregation at thermal refugia is accentuated during 
anomalous cold spells (Reynolds & Wilcox 1986). 

Lastly, we encourage studies exploring the possi-
bility that sirenians might in some cases buffer 
against the effects of climate change on macrophyte 
communities and, perhaps, the process of climate 
change itself. Christianen et al. (2012) showed that, 
in tropical seagrass ecosystems, grazing by Chelonia 
mydas mitigates against eutrophication by stimulat-
ing plant production and indirectly preventing re -
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duced rhizomal biomass caused by nutrient accumu-
lation. They concluded that these turtle grazing 
effects, which also protect meadows against distur-
bance by stabilizing the soil, will become increas-
ingly important as climate change elevates nutrient 
inputs and disturbance impacts in many marine sys-
tems. Insofar as they promote plant production and 
remove biomass (especially via cropping), sirenians 
could play a similar role. Moreover, as broached in 
Section 4.2, researchers have hypothesized that, by 
stimulating plant productivity, sirenian herbivory 
could promote blue carbon sequestration in seagrass 
ecosystems (Scott et al. 2018). 
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