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1.  INTRODUCTION 

Most of what is known about the behavior of 
Cuvier’s beaked whales Ziphius cavirostris has come 
from the use of animal-borne tags, technology that is 
continually advancing (Evans et al. 2013). The first 
tags deployed on Cuvier’s beaked whales were 

attached via suction cups, and while these deploy-
ments were typically short, the data suggested that 
Cuvier’s beaked whales exhibit a strongly bimodal 
diving pattern consisting of long, deep dives typi-
cally followed by a series of shorter, shallower dives 
(Baird et al. 2006, Tyack et al. 2006). Some of these 
short-term tags (notably DTAGs) included acoustic 
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shallow dives were classified as foraging dives. Results confirm that conventional depth and/or 
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additional variables previously listed enhance foraging detections for unusual dives (notably non-
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sensors and accelerometers (Johnson & Tyack 2003). 
DTAG recordings showed that echolocation clicks 
and accelerations associated with prey captures only 
occurred during long, deep dives, leading to the 
interpretation that the primary purpose of such dives 
is foraging (Johnson et al. 2004, Tyack et al. 2006). 

In addition to their extreme diving behavior (Tyack 
et al. 2006, Schorr et al. 2014, Quick et al. 2020), 
Cuvier’s beaked whales are best known for their 
presence in cetacean mass stranding events associ-
ated with exposure to military sonar (D’Amico et al. 
2009, Filadelfo et al. 2009). While the mechanisms 
connecting sound exposure to mortality remain 
unclear, the apparent reliance of Cuvier’s beaked 
whales on a physiologically demanding foraging 
behavior has been highlighted as a potential risk fac-
tor (Hooker et al. 2009, Fahlman et al. 2014). How-
ever, the limited recording duration of suction-cup-
attached tags, which seldom remain attached for 
more than a day (Tyack et al. 2006, DeRuiter et al. 
2013), may result in an incomplete picture of behav-
iors under both natural conditions and when exposed 
to anthropogenic sound sources. Therefore, it is 
important to acquire data over longer intervals to 
sample the full variability of natural behaviors, cap-
ture responses to anthropogenic activities, and ulti-
mately aid development of response and risk models. 

In response to the need for longer periods of data 
collection, compact tags capable of extended attach-
ments were developed. Termed ‘low-impact, mini-
mally percutaneous, external-electronics transmitter 
(LIMPET)’ tags (Wildlife Computers), these small 
tags are attached to the dorsal fin via barbed darts 
and provide a record of geographic movements and 
diving behaviors over periods of weeks and months 
(Andrews et al. 2008). LIMPET tag data are transmit-
ted via satellite, thus obviating the need to recover 
the tag but greatly constraining the type and resolu-
tion of data that can be collected. Nonetheless, these 
much longer but lower-resolution datasets have con-
firmed the prevalence of bimodal diving behavior in 
this species (Schorr et al. 2014, Joyce et al. 2017, 
Shearer et al. 2019, Barlow et al. 2020). While 
LIMPET tags have been broadly used to study 
Cuvier’s beaked whales, including their geographic 
distributions (Schorr et al. 2014, Foley et al. 2021), 
diving capacities (Schorr et al. 2014, Quick et al. 
2020), social behaviors (Cioffi et al. 2021), and reac-
tions to anthropogenic activities (Falcone et al. 2017), 
interpretation of the datasets they provide have been 
constrained by their limited range of sensors and 
temporal resolution. LIMPET tags typically transmit 
only depth and temperature data with low temporal 

resolution; they lack acoustic sensors and do not 
transmit summarized or raw accelerometer data. 
Researchers have traditionally used K-means cluster-
ing analyses (Schorr et al. 2014, Falcone et al. 2017), 
depth thresholds (Joyce et al. 2017, Shearer et al. 
2019), duration thresholds (Quick et al. 2019, 2020, 
Cioffi et al. 2021), or a combination of methods (Bar-
low et al. 2020) to assign dives recorded by LIMPET 
tags into deep and shallow classes, with deep dives 
presumed to include foraging. However, the assign-
ment of deep dives as foraging dives and shallow 
dives as non-foraging dives has relied solely upon 
observations from short-term acoustic tags that may 
not include the full range of Cuvier’s beaked whale 
behaviors (Johnson et al. 2004, Tyack et al. 2006). 

Despite the quantity of DTAG data from Cuvier’s 
beaked whales that support the classification of for-
aging behavior based on dive depth and duration, 
deep dives with little or no foraging are occasionally 
performed by this species and may constitute an 
avoidance response to disturbances. DeRuiter et al. 
(2013) reported a non-foraging deep dive recorded 
by a sound-recording tag on a Cuvier’s beaked whale 
following exposure to simulated mid- frequency 
active sonar (MFAS). Additionally, a whale in the 
Ligurian Sea showed reduced foraging effort during 
a deep dive coincident with a close vessel pass 
(Aguilar Soto et al. 2006). These observations support 
the notion that beaked whales may respond to per-
ceived threats by silencing and remaining at depths 
beyond the reach of shallower-diving predators 
(Aguilar de Soto et al. 2020), with implications on 
both foraging efficiency and gas management when 
they return to the surface. Therefore, understanding 
the prevalence of such responses and their impact on 
normal foraging behavior is a valuable step towards 
assessing the costs of anthropogenic disturbances. 

As beaked whale foraging behavior may vary with 
time of day (Arranz et al. 2011, Barlow et al. 2020) 
and location, high-resolution data spanning multiple 
diel cycles and a wide geographic area are ideally 
needed to develop and validate foraging classifi -
cation algorithms. Here we used data from new 
medium-duration (i.e. up to 2 wk) cetacean tags with 
acoustic sensors that were deployed on Cuvier’s 
beaked whales in southern California, USA, a region 
where these animals are regularly exposed to MFAS 
and other anthropogenic activities (Falcone et al. 
2017). Compared to suction-cup tags, these dart-
attached archival tags provide greatly extended 
recordings of baseline behavior while also offering 
an increased chance of sampling responses to 
anthropogenic disturbances within a single deploy-
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ment. Using data from these tags, we developed a 
machine-learning algorithm for accurately detecting 
foraging using regularly sampled depth (1 Hz) and 
acceleration (16 Hz) data. We applied this method to 
tag data that includes depth and acceleration data 
but lacks sound recordings, and we discuss the impli-
cations of our findings for the design of studies using 
long-duration tags with lower-resolution data and no 
sound recordings. 

2.  MATERIALS AND METHODS 

2.1.  Data collection 

Medium-duration, dart-attached archival tags 
(Lander II and SMRT; Wildlife Computers) were 
deployed on Cuvier’s beaked whales in the southern 
California Anti-Submarine Warfare Range from 
2018−2019 (Table 1). These tags are invasive Type A 
tags (Andrews et al. 2019) that anchor to the whale’s 
dorsal surface with 4 LIMPET-style darts that can 
penetrate up to 7 cm into tissue. The Lander II is a 
revision to the Whale Lander tag (Owen et al. 2016); 
its electronics package has a dorso-ventrally flat-
tened ovoid shape that remains outside the body dur-
ing tag deployments, with maximum dimensions of 
18.2 × 10.3 × 2.5 cm (length × width × height). It 
includes syntactic foam so that once released from 
the tagged whale, it floats with its Argos transmitter 
and GPS receiver antennas exposed to facilitate 
recovery. The Lander II tags collected depth data at 
4 Hz with an effective resolution of 1 m, triaxial 

accelerometry at 16 Hz, temperature at 1 Hz, and 
attempted up to 6 Fastloc GPS snapshots per hour. 
The electronics package shape of SMRT tags is like 
that of the Lander II but with maximum dimensions 
of 19.6 × 7.0 × 3.7 cm. The main difference between 
the tags is that SMRT tags include a single hydro -
phone for recording sound at a rate of 192 kHz with 
16-bit resolution. Sound data were decimated within 
the SMRT tag by a factor of 2 followed by loss-less 
compression (Johnson et al. 2013), resulting in a 
stored sampling rate of 96 kHz. A one-pole high- 
pass filter was included with a cut-off frequency of 
100 Hz, resulting in an approximate −3 dB recording 
bandwidth from 100 Hz to 44 kHz. SMRT tag mem-
ory capacity allowed continuous sound recording for 
the first 6 d of each deployment. SMRT tags also con-
tained a pressure sensor (effective resolution of 1 m) 
sampling at 1 Hz, temperature sensor sampling at 
0.5 Hz, triaxial accelerometer sampling at 100 Hz (or 
50 Hz for 1 tag), and triaxial magnetometer sampling 
at 25 Hz. 

2.2.  Data processing and analysis 

All data processing and analyses were performed 
using RStudio (v1.4.1717; R v3.6.0), MATLAB 
(v9.8.0.1380330), and PAMGUARD (v2.01.03) using a 
combination of open-source tag analysis tools 
(www.animaltags.org) and custom tools. Figures 
were made using the R packages ‘ggpubr’ v0.4.0 
(Kassambara 2020), ‘ggformula’ v0.10.1 (Kaplan & 
Pruim 2020), ‘ggplot2’ v3.3.3 (Wickham 2016), 

‘patchwork’ v1.1.1 (Pedersen 2020), and 
‘wesanderson’ v0.3.6 (Ram & Wickham 
2018) and Microsoft 365 Word (v2201; 
Build 14827.20158). Depth data from Lan-
der II tags and temperature data from 
SMRT tags were resampled to 1 Hz to 
match the pressure sensor sampling rate 
of the SMRT tags, and the pressure data 
were corrected for temperature sensitiv-
ity. Any submergence >50 m was classi-
fied as a dive following prior LIMPET tag 
analyses from this region (Schorr et al. 
2014, Falcone et al. 2017, Barlow et al. 
2020), and the maximum depth reached 
and the total dive duration were calcu-
lated for each dive. To facilitate a compar-
ison between dive classifications from the 
model developed in this study and con-
ventional methods used for Cuvier’s 
beaked whales in southern California 
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Deployment         Tag         Deployment          No. of completed dives 
date                      type            duration               (no. of foraging/non-
(d/mo/yr)                                      (d)                         foraging dives) 
                                                                             Deep            Shallow  
                                                                             dives               dives 
 
13/01/2018       Lander II             5.7                      50                   250 
30/03/2018       Lander II           19.3                     158                  583 
31/03/2018       Lander II             5.6                      50                   199 
11/01/2019       Lander II             9.1                      71                   318 
13/01/2019         SMRT               0.5                  4 (4/0)           15 (0/15) 
12/10/2019         SMRT               5.9                52 (36/10)     198 (1/178) 
12/10/2019         SMRT               7.0                58 (42/0)       229 (0/177) 
11/11/2019         SMRT             12.1              104 (40/1)        410 (0/176) 
17/11/2019         SMRT               0.3                  1 (1/0)           11 (1/10)

Table 1. Summary of Ziphius cavirostris tag deployments and number of 
dives recorded by each tag. Deep and shallow dives were classified using 
K-means clustering based on maximum dive depth and duration. The 
numbers of dives with/without acoustic evidence of foraging are provided 
in parentheses for SMRT tags. Note that not all SMRT tag dives included  

acoustic data
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(Schorr et al. 2014, Falcone et al. 2017, Barlow et al. 
2020), K-means clustering was performed on a per-
individual basis to classify dives as either deep (con-
ventionally assumed to be foraging dives) or shallow 
(conventionally assumed to be non-foraging dives) 
using scaled dive depth and duration (mean-cen-
tered and scaled by the standard deviation). The bot-
tom phase of each dive was estimated as the time 
between the first and last inversion in the vertical 
direction of travel that occurred below 73% of the 
maximum depth reached during the dive (73% is 
equivalent to the maximum echolocation clicking 
start depth relative to the dive depth across all SMRT 
foraging dives). 

Dives during which sound was recorded (a subset 
of SMRT tag dives) were classified as foraging dives 
if echolocation clicks and buzzes produced by the 
tagged whale were recorded during the dive (John-
son et al. 2004, Aguilar Soto et al. 2006, Tyack et al. 
2006, DeRuiter et al. 2013, Alcázar-Treviño et al. 
2021). Audio files from each SMRT tag were manu-
ally reviewed using the PAMGUARD spectrogram 
module (Gillespie et al. 2009) to determine the start 
and end time of echolocation clicks and buzzes. 
Echolocations from the tagged individual were man-
ually distinguished from those of conspecifics or 
nearby delphinids based on the presence of rela-
tively high spectral energy below 20 kHz and rela-
tively consistent click amplitudes over sequences of 
clicks (Zimmer et al. 2005, Johnson et al. 2006). 
Echolocations not assigned to the tagged individual 
were excluded from the analysis. Due to varying sig-
nal-to-noise levels across tag recordings, buzz pres-
ence could not be reliably determined throughout all 
dives from all tags. 

Triaxial acceleration data recorded by the SMRT 
tags were interpolated and then decimated by the 
necessary factors to resample the data to 16 Hz, thus 
matching the acceleration sampling rates of the Lan-
der II tags. For 50 Hz data, this required an 8-fold 
interpolation followed by a 25-fold decimation; for 
100 Hz data, it required a 4-fold interpolation fol-
lowed by a 25-fold decimation. To measure the 
extent to which Cuvier’s beaked whales exhibited 
postural changes when searching for, pursuing, and 
capturing prey, we calculated roll circular variances 
(Berens 2009) over the combined descent and bottom 
phase of each dive, excluding periods when the 
whale had a steep pitch angle within 20° of a verti-
cally-oriented posture (i.e. to avoid erroneous roll 
values due to gimbal lock at high pitch angles). Sev-
eral additional dive parameters were computed to 
guide automatic classification of foraging and non-

foraging dives. Descent (start of dive to start of bot-
tom phase) and ascent (end of bottom phase to end of 
dive) rates (defined as the total change in depth dur-
ing the ascent or descent divided by the duration of 
the ascent or descent) were calculated, as these were 
found to differ between deep and shallow dives in 
prior studies (Baird et al. 2006, 2008, Tyack et al. 
2006). We also calculated the proportion of sign 
changes in the first difference of the bottom-phase 
depth time series (Miller et al. 2015) and the bottom-
phase average vertical speed (i.e. bottom-phase 
mean absolute vertical speed ignoring travel direc-
tion) to identify changes in the vertical movements of 
whales when they were likely pursuing prey. 

In an attempt to identify individual prey captures, 
acceleration transients potentially associated with 
strikes at prey (Ydesen et al. 2014, Sweeney et al. 
2019) were detected by first computing the norm-
jerk (i.e. the vector magnitude of the triaxial acceler-
ation differential) using data at the common 16 Hz 
sampling rate. Transients were then detected during 
the descent and bottom phases when the norm-jerk 
signal surpassed the maximum norm-jerk value dur-
ing each respective dive’s ascent (disregarding the 
last 5 s of the ascent when norm-jerk peaks can be 
abnormally large as whales approach the surface). 
We used the maximum norm-jerk value during the 
dive ascent, when the whale was not presumed to be 
foraging, as the peak detector threshold to curtail 
false positive detections at norm-jerk levels compa-
rable to non-foraging periods. Adjacent norm-jerk 
peaks separated by <3.5 s (average buzz duration 
from SMRT tags) were combined and counted as the 
same peak (Sweeney et al. 2019). 

Due to concerns that 16 Hz was an insufficient 
sampling rate to consistently identify prey captures 
(Ydesen et al. 2014), we tested whether jerk tran-
sients could be distinguished from the norm-jerk sig-
nal before, during, and after each identified buzz by 
calculating the root-mean-square (RMS) of the norm-
jerk signal within 1 s windows (n = 3): 1 window cen-
tered at the end time of each buzz, 1 window ended 
at the start time of each buzz, and 1 window started 
as many seconds as the buzz was in duration after the 
end time of each buzz. To test the hypothesis (α = 
0.05) that RMS norm-jerk values centered at the end 
time of buzzes differed from those before and after 
each buzz, we used the R package ‘glmmTMB’ 
v1.0.2.1 (Brooks et al. 2017) to fit a gamma mixed-
effects regression with a log link function with RMS 
norm-jerk as the response variable. We chose 
gamma rather than standard Gaussian regression 
since RMS norm-jerk values are always non-nega-
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tive and tend to be right-skewed. In addition to the 
categorical predictor variable differentiating be -
tween RMS norm-jerk time windows, we included 
nested random effects to account for autocorrelation 
within tagged individuals, foraging dives, and dis-
tinct buzzes. Regardless of whether RMS norm-jerk 
values were greater at the end time of buzzes com-
pared to before and after buzzes, identified norm-
jerk peaks could be associated with either prey cap-
tures or rapid maneuvering not directly related to 
prey captures. Therefore, we determined how many 
identified norm-jerk peaks (using both 16 Hz data 
from all tags and 100 Hz data from the 4 tags that 
sampled acceleration at 100 Hz) were within 3.5 s 
(average buzz duration from SMRT tags) of the end 
time of identified buzzes. 

2.3.  Model development and application 

We assessed the feasibility of accurately classifying 
dives as foraging or non-foraging dives via machine 
learning using variables derived from 1 Hz depth 
data and 16 Hz triaxial acceleration data by first cre-
ating 500 replicates of all dives with concurrent 
sound recordings (n = 692). Each replicate was then 
randomly partitioned into training and testing data -
sets using the R package ‘caret’ v6.0-86 (Kuhn 2020). 
Training and testing datasets were partitioned using 
a roughly two-thirds (n = 462) to one-third (n = 230) 
split, respectively, where each split dataset had ap -
proximately the same percentage of foraging dives 
as the full dataset of dives with acoustic data (18.1%). 
Using the 500 partitioned training datasets, we 
 created extreme gradient boosting tree models from 
the R package ‘xgboost’ v1.4.1.1 (Chen et al. 2021) to 
classify dives (foraging or non-foraging) based on 
dive depth, dive duration, bottom-phase duration, 
ascent rate, descent rate, proportion of sign changes 
in the first difference of the bottom-phase depth time 
series, bottom-phase average vertical speed, the 
number of norm-jerk peaks during the descent and 
bottom phase, and roll circular variance during the 
descent and bottom phase (Code S1 in the Sup -
plement at www.int-res.com/articles/suppl/m692
p195_supp.pdf). For each replicate model, we per-
formed a hyperparameter optimization grid search 
via 10-fold cross validation repeated 10 times using 
parallel computing with a socket cluster using the R 
packages ‘caret’ v6.0-86, ‘snow’ v0.4-3, and ‘doS-
NOW’ v1.0.19 (Tierney et al. 2018, Kuhn 2020, 
Microsoft Corporation & Weston 2020) to find the 
best-fit model based on overall classification accu-

racy within the training dataset. The following 
hyperparameters for the optimization grid search 
were chosen to allow sufficient model complexity 
without overfitting: eta (step size shrinkage) from 
0.5−1 by steps of 0.1, max_depth (maximum tree 
depth) from 1−3 by steps of 1, min_child_weight 
(minimum sum of instance weights needed) was 
0.25−1 by steps of 0.25, colsample_bytree (subsample 
ratio of predictors when constructing each tree) was 
1, gamma (minimum required loss reduction) was 
0.25−1 by steps of 0.25, nrounds (number of trees) 
from 1−4 by steps of 1, and subsample was 1. Model 
goodness-of-fit and prediction accuracies were sum-
marized across all 500 model replicates. 

To predict the presence of foraging in dives from 
tags without acoustic data, which consisted of some 
dives from SMRT tags (due to programmed sensor 
shutdowns) and all dives from Lander II tags, we refit 
the model using all SMRT tag dives with acoustic 
data (n = 692) and the same variables and optimiza-
tion methods previously listed, thus maximizing the 
volume of training data (Code S2). We hereafter refer 
to this model as the comprehensive model. Fractional 
contributions of each covariate in the comprehensive 
model were calculated based on the total predictive 
information gained from the variable’s splits (Chen et 
al. 2021). 

3.  RESULTS 

Tags recorded 2069 dives without acoustic data 
and 692 dives with acoustic data. K-means clustering 
classified these dives using depth and duration into 
2213 shallow dives (558 with acoustic data) and 548 
deep dives (134 with acoustic data). Of the 134 deep 
dives with acoustic data, 11 dives (8.2%) did not con-
tain echolocation clicks from the tagged whale (or 
any conspecific), whereas 2 shallow dives (0.36% of 
558 shallow dives with acoustic data) did. Thus, 
98.1% of the 692 dives with acoustic data were cor-
rectly classified with respect to presumed foraging 
by simple K-means clustering. The depth and dura-
tion ranges of dives from all tags are shown in Fig. 1. 

Across the 692 dives with acoustic data from 
SMRT-tagged whales, 2526 buzzes from the tagged 
whales were identified. However, only 625 of these 
buzzes (24.7%) had either 16 Hz or 100 Hz norm-jerk 
peaks within 3.5 s of the end time of the buzz. 
Despite the small percentage of buzzes (i.e. probable 
prey captures) that were associated with above-
threshold norm-jerk peaks, moderate associations 
between jerk peaks and buzz times were still 
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observed. RMS norm-jerk values (16 Hz sampling 
rate) centered around the end time of buzzes (n = 
2526) were significantly greater than those both 
before (β = 0.83, SE = 0.02, z = 53.62, p < 0.001) and 
after each buzz (β = 0.98, SE = 0.02, z = 59.15, p < 
0.001). Of the 125 foraging dives with acoustic data, 
105 (84%) had 16 Hz norm-jerk peaks within 3.5 s of 
the end time of a buzz. In the 125 foraging dives with 
acoustic data, 620 of 1376 (45.1%) norm-jerk peaks 
detected during foraging dive descents and bottom 
phases were within 3.5 s of the end time of a buzz. 
The median ratio of the number of 16 Hz jerk peaks 
associated with buzzes to the total number of buzzes 
during the dive was 0.21 (range = 0−1, inter-quartile 
range = 0.40). To test if these low percentages of jerk 
peaks associated with buzzes were a consequence of 
the low (16 Hz) acceleration sampling rate, the analy-
sis was re-run on the 121 foraging dives with acoustic 
data from the 4 tags that recorded 100 Hz triaxial 
acceleration. On these tags, 468 out of 1232 (38.0%) 
100 Hz norm-jerk peaks were associated with buzz 
times. 

Although random data partitioning allowed us to 
test the accuracy of the 500 model replicates, it often 
reduced the number of deep, non-foraging dives 
used in model training. Given the biological rele-
vance of accurately determining whether foraging 
occurred during deep dives or not, we used Kendall’s 

rank correlation tests to assess how prediction accu-
racies from the 500 model replicates varied depend-
ing on the proportion of deep, non-foraging dives 
present in the training datasets. These tests revealed 
that the proportion of deep, non-foraging dives in the 
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Fig. 1. Comprehensive model classifications of all Ziphius cavirostris dives (a) with acoustic data and (b) without acoustic data. 
Data symbols show the dive classifications by the comprehensive model (which also match the acoustically validated results 
in panel a), while point colors show the model-fitted probabilities that a given dive was a foraging dive. Note that K-means  

clustering is not presented here and that the horizontal axis scales are different between the 2 panels

                                   Median proportion of correctly  
                                     classified dives (IQR; range) 
                          Foraging dives     Non-foraging dives 
 
Training                            1                                1 
datasets                 (0.012; 0.976−1)           (0; 0.995−1) 
Testing                           0.976                             1 
datasets                 (0.049; 0.829−1)        (0.005; 0.968−1) 
Combined                     0.992                             1 
datasets                 (0.008; 0.944−1)        (0.002; 0.988−1)

Table 2. Summary of model accuracies from the 500 models 
using randomly partitioned training and testing datasets 
comprised of foraging and non-foraging dives by Ziphius 
cavirostris for which definitive classification was possible 
based on acoustic data. Results for the training datasets 
reflect the ability of the models to properly fit the training 
datasets, while testing dataset results reflect how well the 
fitted models predicted dives from the subset of the data that 
were not used for training. Combined dataset results show-
case the accuracy of the fitted models to classify dives from 
both the training and testing datasets combined (see 
Figs. S1 & S2 for further details on these results). IQR:  

inter-quartile range
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training datasets was correlated with the proportion 
of correctly classified deep, non-foraging dives in the 
testing datasets (Kendall’s tau = 0.2, z = 5.8, p < 
0.001), but not correlated with the proportion of cor-
rectly classified foraging dives in the testing datasets 
(Kendall’s tau = 0.06, z = 1.67, p = 0.094). Due to 
imposed model complexity limitations, 352 of the 500 
(70.4%) models using partitioned data perfectly fit 
the training data. However, of the 148 models that 

did not perfectly fit training data, the average num-
ber of misclassified dives was only 1.2 (median = 1, 
range = 1−3). An average of 99.9% of training data-
set dives (median = 100%, range = 99.4−100%) and 
99.2% of testing dataset dives (median = 99.3%, 
range = 97.0−100%) were correctly classified across 
the 500 models (Table 2; Figs. S1 & S2). 

The comprehensive model (Fig. 2) fit the training 
dataset (i.e. all 692 dives with acoustic data) with 
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Fig. 2. Optimized decision trees from 
the comprehensive model. Rectan-
gles represent decision nodes from 
which a set of arrows point to guide 
dive classifications along towards 
resulting leaves (yellow ellipses) at 
the end of each decision tree. When 
classifying each dive via these four 
decision trees, the top arrow coming 
from each node is followed if the con-
dition (shown above each top arrow) 
is met for the variable listed within 
the node. Otherwise, the bottom 
arrow is followed. ‘Cover’ is the sum 
of the second-order gradient of train-
ing data classified to the leaf. ‘Gain’ 
is a quantification representing the 
information gained from a split (thus 
corresponding to the importance of 
the node in the model). ‘Value’ rep-
resents the marginal value that the 
leaf may contribute to predictions 
(positive values contri bute to for -
aging dive classifications and nega-
tive to non-foraging classifications). 
Optimized hyperparameters for the 
comprehensive model were: nrounds 
= 4, max_depth = 3, eta = 0.9, gamma 
= 0.25, colsample_bytree = 1, min_
child_weight = 0.75, and subsample 
= 1. Due to space limitations around 
the arrows coming from each node, 
variable units for decision thresholds 
are as follows: dive depth (m), dive 
duration (min), descent and ascent 
rates (m s−1), bottom-phase average 
vertical speed (m s−1), roll variance  

(radians)
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perfect accuracy (Fig. 1a). Within the 4 constructed 
trees (Fig. 2) of the comprehensive model, 11 split 
nodes were formed that classified dives using dive 
depth, dive duration, bottom-phase average vertical 
speed (Fig. 3), roll circular variance during the 

descent and bottom phase (Fig. 4), ascent rate 
(Fig. 5), and descent rate (Fig. 6). The fractional 
contributions (scale from 0 to 1) of each variable to 
the comprehensive model were: dive depth = 
0.883, bottom-phase average vertical speed = 
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Fig. 3. Plots of Ziphius cavirostris dive (a) depth and (b) duration as a function of the bottom-phase average vertical speed (m 
s−1) in dives used to construct the comprehensive model. Points are shaped based on whether foraging was acoustically 
detected (i.e. echolocation clicks from the tagged whales were recorded) during the dive, and point colors display the classi-
fication of each dive as deep or shallow using K-means clustering. Deep, non-foraging dives and shallow, foraging dives (i.e.  

dives incorrectly classified via K-means clustering), are slightly enlarged and outlined in black

Fig. 4. Plots of Ziphius cavirostris dive (a) depth and (b) duration as a function of the roll circular variance (radians) during the  
descent and bottom phase in dives used to construct the comprehensive model. Other details as in Fig. 3
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0.052, dive duration = 0.046, roll circular variance 
during the descent and bottom phase = 0.013, 
ascent rate = 0.003, descent rate = 0.003. Upon 
combining all dives with and without acoustic data 
across all tags (Fig. 1), 13 of 548 (2.4%) K-means 
clustered deep dives were classified as non-forag-
ing dives, and 7 of 2213 (0.3%) K-means clustered 

shallow dives were classified as foraging dives. 
These 20 dives (Figs. S4–S23) with differing forag-
ing classifications between K-means clustering 
(where deep are presumed foraging and shallow 
are presumed non-foraging) and the comprehen-
sive model accounted for 0.72% of all dives from 
all tags (Table 1). 
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Fig. 5. Plots of Ziphius cavirostris dive (a) depth and (b) duration as a function of the ascent rate (m s−1) in dives used to con- 
struct the comprehensive model. Other details as in Fig. 3

Fig. 6. Plots of Ziphius cavirostris dive (a) depth and (b) duration as a function of the descent rate (m s−1) in dives used to con- 
struct the comprehensive model. Other details as in Fig. 3
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4.  DISCUSSION 

As the amount of tag data collected to study 
 Cuvier’s beaked whale biology and responses to 
 anthropogenic disturbances continues to grow, so too 
does the need for robust methods of inferring forag-
ing from the relatively low-temporal-resolution data 
often returned by these tags. Using data from 5 
medium-duration archival tags with pressure sen-
sors, accelerometers, and acoustic sensors deployed 
on Cuvier’s beaked whales in a region where these 
animals are commonly exposed to MFAS and other 
anthropogenic activities, we developed a model capa-
ble of determining if foraging occurred during dives 
without concurrent sound recordings. The resulting 
classification algorithm allows us to leverage the full 
suite of archival tag data available from this project 
for behavioral studies where foraging disruption is a 
key response metric. It also provides insight into the 
accuracy of prior studies (Baird et al. 2006, 2008, 
Schorr et al. 2014, Falcone et al. 2017, Joyce et al. 
2017, Quick et al. 2019, 2020, Shearer et al. 2019, 
Barlow et al. 2020, Cioffi et al. 2021) that have 
inferred foraging using only low-resolution depth 
data. 

K-means clustering has been used to infer foraging 
behavior from low-resolution Cuvier’s beaked whale 
tag data in southern California (Schorr et al. 2014, 
Falcone et al. 2017, Barlow et al. 2020). Our findings 
confirm that maximum dive depth and dive duration 
can be used to accurately infer foraging status for 
most dives, given that 98.1% of dives with acoustic 
data were correctly classified with respect to pre-
sumed foraging by simple K-means clustering. Most 
of the incorrectly classified dives using K-means 
clustering (11 out of 13) were deep dives that did  
not contain echolocation clicks. Despite occurring 
infrequently, such non-foraging deep dives may 
have major implications for anthropogenic distur-
bance analyses where foraging disruption is a key 
metric and where all deep, long dives are assumed to 
include foraging. The ability to recognize these 
unusual deep dives will increase our understanding 
of the circumstances in which they occur. 

Although the use of 500 model replicates allowed 
effective assessment of the capabilities of extreme 
gradient boosting tree models on these Cuvier’s 
beaked whale tag data, they were inherently limited 
in their ability to accurately classify dives since they 
were fit using a subsample of the available dataset, 
and the unusual dives we are most interested in 
 characterizing represented a very small fraction of 
the dives. To make the most of the available data 

with definitive acoustic foraging indications, we per-
formed model fitting in 2 steps. First, we performed a 
cross-validation study on random subsets of the data 
to show that model fits consistently yielded strong 
classification performance. As expected, our results 
showed that increasing the proportion of non-forag-
ing deep dives in a training dataset improved the 
ability of the models to accurately predict such dives 
in other data. We then fit a final model (the compre-
hensive model) to the entire dataset with acoustic 
data under the assumption that, by maximizing the 
volume of training data in the comprehensive model, 
model performance should be optimal. Thus, we 
assume that the accuracy of our predicted foraging 
classifications for all dives without associated sound 
recordings is similar to the summarized prediction 
accuracy from the 500 cross-validation models fit to 
subsets of the data. 

The foundational presence of dive depth in the 
comprehensive model (the leading split node in the 
first 2 trees with a fractional contribution to the 
model of 0.883; Fig. 2) is not surprising given that 
Cuvier’s beaked whales are known to feed primarily 
on cephalopods and benthic fish that are found at 
great depths (West et al. 2017). The importance of 
dive depth in the comprehensive model also explains 
why only 0.72% of dives were misclassified by sim-
ple K-means clustering using only dive depth and 
duration. The strong bimodality exhibited by these 
whales aided model fitting of dives with acoustic 
data that occurred towards the ends of certain tag 
deployments where we suspect the tag had come 
loose based on amplified signal noise in the acceler-
ation data. There was one such dive without acoustic 
data that occurred while the tag was seemingly loose 
and that was classified as a shallow dive according 
to K-means clustering but was predicted to include 
 foraging according to the comprehensive model 
(Fig. S4). Although the probability of this dive includ-
ing foraging according to the comprehensive model 
likely increased due to the exaggerated roll variance 
from the loose tag, the depth-related covariates in 
the comprehensive model provided sufficient evi-
dence to support the foraging classification for this 
dive regardless of the roll variance level. 

Despite the inclusion of dive duration in the com-
prehensive model, the very small fractional impor-
tance of dive duration (0.046) relative to that of dive 
depth suggests that using a dive duration threshold 
alone would be a less accurate method of classifying 
dives compared to a depth-only threshold. Descent 
and ascent rates had the lowest fractional contribu-
tions to the comprehensive model (0.003), and the 13 
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dives with acoustic data for which K-means cluster-
ing classifications did not accurately detect foraging 
were all scattered across the observed distributions 
of these 2 variables (Figs. 5 & 6). 

The role of bottom-phase average vertical speed in 
the optimized model (Fig. 3) suggests that Cuvier’s 
beaked whales in southern California perform fre-
quent vertical excursions when pursuing prey. Only 
4 foraging dives with acoustic data (3.2%) had bot-
tom-phase average vertical speeds <0.284 m s−1 
(Fig. 3), whereas all 11 non-foraging deep dives with 
acoustic data had bottom-phase average vertical 
speeds below this same level (threshold in tree 3 of 
Fig. 2). All 6 non-foraging deep dives that reached 
depths >844.8 m had average bottom-phase vertical 
speeds <0.2 m s−1 (thresholds in tree 0 of Fig. 2). 
Shallow dives were strongly clustered with low 
 bottom-phase average vertical speeds, typically 
< ~0.3 m s−1, although shallow dives with high bot-
tom-phase average vertical speeds were occasionally 
observed with no evidence of foraging in the acoustic 
record. Several of these active shallow dives were 
preceded by deep dives with conspecific click detec-
tions, suggesting the elevated activity levels may in 
some cases have been social in nature. 

The descents and bottom-phases of foraging dives 
(during periods with shallow pitch angles) tended to 
possess far more roll variance than those of non-for-
aging dives (Fig. 4), likely due to postural changes 
when searching for and pursuing prey, as seen in 
other odontocetes (Miller et al. 2004, 2015, Madsen 
et al. 2005, Stimpert et al. 2014). Within the dataset 
with acoustic data, 9 of the 11 non-foraging deep 
dives had roll variance levels lower than any forag-
ing dive (Fig. 4). Abnormally low levels of roll have 
also been observed in other beaked whale species 
during non-foraging deep dives coincident with ex -
posure to simulated sonar (Stimpert et al. 2014, 
Miller et al. 2015). 

One compelling application of this dive classifica-
tion model would be to incorporate it into tag firm -
ware, so that foraging could be accurately detected 
in dives as they are recorded, potentially obviating 
the need to transmit or recover the higher-resolution 
depth and accelerometer data while still capturing 
the important distinctions they provide. The pres-
ence of roll, an orientation-dependent parameter, in 
the comprehensive model is a potential obstacle, 
however. Dart-attached tags are typically applied to 
free-ranging animals either ballistically or with a 
pole and, in both cases, the location and orientation 
of the tag on the animal cannot be controlled pre-
cisely. The onboard processing algorithm would 

therefore need to infer in situ the tag orientation on 
the animal to estimate roll. Although possible, for 
example using the measured orientation when the 
animal is breathing at the surface, it would add con-
siderable complexity to the data-processing algo-
rithm of the tag. An exploratory model run using the 
same methods as the comprehensive model but 
excluding orientation-dependent variables (Code S3 
and Fig. S3) produced a model that fit the training 
dataset with 99.6% classification accuracy and only 
predicted 2 dives without associated acoustic data 
differently than the full comprehensive model. 
Therefore, with only modest alterations to the exist-
ing model framework and input parameters, similar 
results can be obtained using extreme gradient 
boosting tree algorithms, although the use of orienta-
tion-dependent parameters (as they were calculated 
in this study) does still improve data fitting accuracy. 

Norm-jerk peaks do not appear to be a reliable 
metric for the identification of foraging in dives by 
Cuvier’s beaked whales in southern California. Al -
though RMS norm-jerk values centered around the 
end time of buzzes were significantly greater than 
those both before and after each buzz, most jerk 
peaks above the predetermined thresholds occurred 
without an associated buzz. Only 45.1 and 38.0% of 
16 and 100 Hz norm-jerk peaks, respectively, were 
within 3.5 s of a buzz (i.e. high false positive rate), 
and many buzzes were not associated with jerk 
peaks (i.e. many missed detections). This could indi-
cate that capturing different species and sizes of prey 
in southern California (Adams et al. 2015) may re -
quire varying degrees of kinematic activity (e.g. rapid 
cranial motions like those exhibited by other marine 
predators; Kokubun et al. 2011, Iwata et al. 2012, 
Ydesen et al. 2014). Alternatively, the limited con-
nection between jerk peaks and buzzes in our data-
set could suggest either that the sampling rates were 
inadequate to detect these motions or that the accel-
eration transients did not propagate effectively to the 
tag, possibly due to the location of the tag on the 
whale body. Ultimately, the moderate performance 
of the jerk peak detector at identifying buzz times 
showcases the difficulties in balancing true positive 
and false positive detections using a predetermined 
threshold and getting unambiguous signals from a 
target behavior (Sweeney et al. 2019). 

The large dataset available to this study supports 
the picture of a strongly stereotyped diving behavior 
in Cuvier’s beaked whales from southern California; 
most dives can be correctly classified with respect to 
foraging activity by depth and duration alone. How-
ever, the longer tag durations available in this study 
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captured some previously undescribed diving be -
havior. For example, 1 deep dive was recorded in 
which the tagged whale clicked for about 3.5 min 
and performed 2 buzzes during its descent before 
aborting foraging. Shortly thereafter, the whale 
 performed a 4.2 min bottom phase and ascended 
towards the surface. The ascent rate (0.450 m s−1) and 
roll circular variance (0.022 radians) of this dive were 
relatively low compared to other foraging dives, 
whereas the bottom-phase average vertical speed 
(0.323 m s−1) and descent rate (1.52 m s−1) were well 
within the typical ranges for foraging dives. This was 
the only foraging dive with acoustic data that pos-
sessed less than 13.3 min of clicking (average click-
ing duration was 30.6 min). Although classified as a 
foraging dive with a predicted foraging probability of 
0.938 (fifth lowest probability of foraging among for-
aging dives with acoustic data), the entire bottom 
phase of this dive did not contain clicks. Dive dura-
tion was only 44.4 min and maximum depth was 
849 m; were this dive only 5 m shallower, it would 
have been classified as a non-foraging dive. This 
dive provides a specific example of the ability of the 
model to highlight abnormal dives that can be fur-
ther investigated for behavioral state changes. In 
fact, the cessation of foraging in this unusual dive 
coincided with an explosive event in the acoustic 
record of the tag. Had this dive simply been recorded 
as a deep dive and assumed to include normal forag-
ing behavior as in LIMPET tag studies, true foraging 
disruption would have been underestimated. 

This study provides an assessment of the accuracy 
that can be achieved in classifying foraging and non-
foraging dives based on long-duration datasets from 
animals within a population of Cuvier’s beaked 
whales regularly exposed to anthropogenic activi-
ties. These results confirm that dives classified by 
only depth and duration provide reasonable esti-
mates of longer-term patterns in foraging effort, even 
for a population regularly exposed to anthropogenic 
activities. However, our findings also suggest that 
the addition of roll circular variance, bottom-phase 
average vertical speed, and ascent and descent rates 
enhances detections of unusual dives (e.g. long, deep 
dives without foraging effort). This is an important 
outcome because acceleration data could be re corded, 
summarized, and transmitted by small satellite-
linked tags (e.g. LIMPET tags at 16 Hz), whereas 
such tags cannot currently record and process sound. 
The decision tree algorithm from this model can help 
inform future tag designs, potentially suggesting a 
way of summarizing raw accelerometer and depth 
data into reliable metrics that can be transmitted via 

Argos, thus allowing these compact tags to collect 
long-duration datasets with accurate foraging clas -
sifications. Although our model fit is specific to 
Cuvier’s beaked whales in southern California, the 
same methodology could be applied to develop mod-
els for other populations and species using either the 
same or different variables. 
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