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1. INTRODUCTION

Human endeavors are increasingly encroaching on 
marine pelagic habitat. Fishing and shipping have 
long occurred in pelagic waters, and now wind 
energy development is expanding further into off-
shore environments (United States 2017). Constrain-
ing the impacts of these activities on marine life 
requires a thorough understanding of the distribu-
tion, abundance, and habitat use of the animals that 
occupy these waters. Marine mammals are of partic-
ular concern, whether due to their protected status 
under laws such as the US Marine Mammal Protec-

tion Act (MMPA), specific concerns for small and 
endangered populations (Forney et al. 2017), high 
sensitivity to sonar (DeRuiter et al. 2013), or construc-
tion impacts such as those from pile driving (Brandt 
et al. 2011). 

Recent studies modeling coast-wide distributions 
of marine mammals in both the Atlantic and Pacific 
have linked data from visual surveys to environmen-
tal covariates, nearly all of which represented either 
ocean-surface or ocean-floor characteristics (Forney 
et al. 2012, Roberts et al. 2016, Becker et al. 2019, 
Chavez-Rosales et al. 2019). These environmental 
covariates, while proven useful, act as proxies for 
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water column characteristics such as prey concentra-
tions that define oceanic habitats. 

Multiple studies have examined spatial organism 
structure within the water column as it relates to 
marine mammal distribution (e.g. Benoit-Bird & 
McManus 2012, Benoit-Bird et al. 2013, Abecassis et 
al. 2015). However, few studies have attempted to 
apply this approach to large-scale abundance surveys 
involving numerous predator and prey species, and 
these attempts have had limited success, particularly 
in applying echosounding data directly (LaBrecque 
2016, Roberts et al. 2016, Virgili et al. 2021). 

To pursue offshore energy development in the 
USA, companies must comply with the MMPA and 
Endangered Species Act (ESA) and assess potential 
effects on marine mammal habitat and prey. The por-
tion of the northwest Atlantic shelf break south of the 
northeast USA (approximately 41° N and east of 
approximately 73° W) (see Fig. 1) has high densities 
of marine mammals during the summer compared to 
surrounding areas (Chavez-Rosales et al. 2019), yet 
we know little about the distribution of prey re -
sources in this region. Typical fish sampling for man-
agement purposes focuses on the continental shelf 
and benthic habitat, with limited effort focused on 
areas off the continental shelf and pelagic habitat. 
For MMPA strategic stocks (those of particular con-
cern), the MMPA requires an assessment of factors 
that could cause a decline or impede recovery of 
strategic stocks (which, in this region, include right 
whale Eubalaena glacialis, fin whale Balaenoptera 
physalus, sei whale B. borealis, blue whale B. mus -
culus, sperm whale Physeter microcephalus, long-
finned pilot Globicephala melas, and short-finned 
pilot whale G. macrorhynchus). 

Two options to sample the prey field in surveys 
designed to estimate broad-scale abundance include 
net sampling and echosounding. Net-based pelagic 
prey sampling is difficult to accomplish on a marine 
mammal abundance survey where the primary ob -
jective is to visually count cetaceans along a track 
line that requires a consistent ship speed that is faster 
than a net can be towed (e.g. 10 knots versus 3−
4 knots). Net sampling during the day limits marine 
mammal sightings, and sampling at night results in a 
temporal mismatch between sightings of highly 
mobile animals and prey resources in the water col-
umn. An alternative is to examine organismal spatial 
structure in the water column with echosounding 
while simultaneously searching for marine mammals 
at survey speeds. 

Biological acousticians have conducted extensive 
research to distinguish marine organisms using their 

acoustic backscatter (Benoit-Bird & Lawson 2016). 
The principles are founded in mathematical acoustic 
scattering models (Stanton et al. 1998, Stanton & Chu 
2000) and have been validated by both laboratory 
measurements (Wiebe et al. 1990, Stanton et al. 
2004) and field testing (Wiebe et al. 1996, Lawson et 
al. 2001, 2004). Received backscatter depends on the 
acoustic frequency encountering the targets, as well 
as their shape, orientation, and body structures. Fish, 
plankton, or cephalopods can often be categorized 
acoustically by their relative frequency response 
(Korneliussen et al. 2016). This approach uses the 
fact that organisms have a characteristic backscatter-
ing response to particular echo sounding frequen-
cies, allowing researchers to distinguish unique pat-
terns particular to a certain class of nekton or 
plankton. Multi-frequency classification approaches 
using this technique have been em ployed success-
fully numerous times in the field (Korneliussen & 
Ona 2002, Jech & Michaels 2006, Benoit-Bird 2009, 
De Robertis et al. 2010, Trenkel & Berger 2013, Jech 
et al. 2018). 

In this study, we employed the multi-frequency 
organism classification algorithm developed by 
Trenkel & Berger (2013) to quantify the acoustic 
response in the upper 200 m into 4 organism types: 
(1) fish with swimbladders; (2) organisms with small,
en trained resonant gas bubbles such as phyto-
plankton, fish larvae, and siphonophores; (3)  fluid-
like zooplankton such as krill and copepods; and
(4) fish with no swimbladder (which may also
include cephalo pods). We also assessed the fre-
quency response for individual echosounder fre-
quencies and applied a suite of metrics to both the
multi-frequency indicator and individual frequency
responses that characterize the vertical distribution
with measures of density, abundance, location, dis-
persion, occupancy, evenness, and aggregation
(Urmy et al. 2012). We then used these backscatter
variables to model marine mammal distribution
along the track lines. In conducting this analysis,
we assessed the applicability of these various met-
rics to marine mammal modeling.

We hope the results of this study will spur incorpo-
ration of prey and water column structure in future 
marine mammal abundance and distribution esti-
mates. Current abundance and distribution models 
focus on static and remotely sensed environmental 
variables, in part because they are easily measured 
and attainable over large areas. Incorporating meas-
urements of acoustic backscatter into these models 
may require additional modeling to estimate prey 
abundance in areas not surveyed (e.g. Lehodey et al. 
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2015), incorporation of additional acoustic survey 
data from areas not surveyed on the marine mammal 
abundance cruises, redesigning survey track density, 
or a combination of these measures. This study aims 
to serve as a proof of concept that measurements of 
prey and water column structure could provide valu-
able information for modeling marine mammal distri-
bution from abundance surveys, while also exploring 
habitat and prey preferences that could inform future 
use of acoustic data to improve marine mammal 
abundance and distribution modeling. 

2. MATERIALS AND METHODS

2.1.  Survey design 

Marine mammal observations and echosounding 
data used in this study were collected during the 
summers of 2011, 2013, and 2016 as part of the 
Atlantic Marine Assessment Program for Protected 
Species (AMAPPS). AMAPPS is a comprehensive, 
multi-agency research program to assess the abun-
dance, distribution, ecology, and behavior of marine 
mammals, sea turtles, and seabirds throughout the 
US Atlantic Outer Continental Shelf, from Maine to 
the Florida Keys. The AMAPPS program has con-
ducted research that spans taxonomic groups and 
trophic levels and provides an integrative view of 
protected species, placing them in an ecosystem con-
text that can help inform management decisions 
regarding federally protected marine species (NOAA 
Fisheries 2013). 

Data used in this study were collected on 6 ship-
board surveys (2 yr−1) conducted on the NOAA ship 
‘Henry B. Bigelow’ (hereafter referred to as the 
‘Bigelow’) in June and July 2011 and July and 
August 2013 and 2016. The ship ran established 
track lines that were repeated each abundance sur-
vey. The 26 transects included in this study traversed 
the continental shelf break, where each transect was 
a straight line intersecting the shelf break at diagonal 
angles (Fig. 1). Echosounding equipment was set to 
passive mode (listening, not actively pinging) for por-
tions of the survey because of multiple cruise objec-
tives (Cholewiak et al. 2017); these portions were not 
considered in our analysis. Among these 26 tran-
sects, 17 were incorporated from 2011, 22 from 2013, 
and 18 from 2016 (Fig. 1). Occasionally, only portions 
of a transect were sampled due to weather or time 
considerations, and the remainder of a transect was 
sampled the following day when the echosounding 
equipment was recording in passive mode. In all, sur-

vey data from approximately 3500 km of ship tracks 
were used in this study. 

2.2.  Marine mammal observing 

While running these transects, 2 independent 
observing teams visually scanned for cetaceans, 
seals, turtles, and some fish species. Each team con-
sisted of 2 people surveying with high-powered ‘Big 
Eye’ binoculars (magnification power of 25 with a 
150 mm lens), and at least one person recording 
sightings and observing with the naked eye. The 
data were recorded in VisSurvey, a custom NOAA 
software program. Data included species, a best esti-
mate of group size, behavior, location, distance and 
angle from the ship, and sea state, among other vari-
ables. If a species could not be discerned, the sight-
ing was classified into a general taxonomic group. 

For this analysis, the time and geographic loca-
tion of visual sightings along the transect were 
adjusted so that they aligned with the corresponding 
echosounding data. For example, if a sighting was 
recorded at a distance of 1700 m in front of the vessel 
and along the track line, that sighting was assigned a 
time, latitude, and longitude associated with the 
time, latitude, and longitude of the echosounding 
data at which the vessel steamed 1700 m, given its 
mean speed. 

2.3.  Echosounding processing 

Echosounding data were collected using a Simrad 
EK60 system consisting of 18, 38, 70, 120, and 200 kHz 
transducers. The transducers were mounted in a 
retractable centerboard of the ‘Bigelow’ and cali-
brated prior to the cruises using a 38.1 mm diameter 
sphere of tungsten carbide with 6% cobalt binder, for 
all frequencies and following standard calibration 
techniques (Foote et al. 1987, Demer et al. 2015). 
Each transect was processed separately in Echoview 
software (version 11.1; Echoview 2020) using an 
identical set of functions and variables for each tran-
sect. The acoustic outputs were batch-processed and 
exported from Echoview with custom Python (ver-
sion 3.8.5; Python Software Foundation 2020) scripts 
via the Spyder development environment (version 
4.1.5; Raybaut 2009) in Anaconda Navigator (version 
1.10.0; Anaconda Software Distribution 2016). The 
exported data were then analyzed in R (version 4.2.2; 
R Core Team 2022) with RStudio (RStudio Team 
2020). 
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Fig. 1. Estimated density per meter of track line year and feeding guild, where each data point is scaled by density for that par-
ticular guild. Locations shown represent cells with simultaneous marine mammal sightings and echosounding data. Gray 
lines: cells with echosounding data but no marine mammal sightings. (A) Dolphin guild, (B) rorqual guild, (C) deep-divers guild 
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Several steps were taken to clean the data within 
Echoview. The data from each frequency were eval-
uated for noise contamination and attenuation and 
cleaned following the methods proposed by Ryan et 
al. (2015) and implemented in Echoview (version 
11.1; Echoview 2020). Impulse noise removal, atten-
uated signal correction, transient noise removal, and 
background noise removal were evaluated for each 
frequency, and parameters were tuned accordingly. 
The transient noise filter was only applied to the 18 
and 38 kHz frequencies, as its effect was not appar-
ent in the higher frequencies. 

The first 10 m of the water column and areas near 
the sea floor were removed from the analysis. We 
removed the surface 10 m due to the echosounder 
near-field effect, in which detected values close to 
the echosounders are inaccurate, and because of 
potential bubble interference in the surface waters. 
Since we were primarily concerned with pelagic 
structure, specifically those areas above the ocean 
floor, we ensured that echosounding values from the 
sea floor were not interpreted as pelagic marine 
organisms. The ocean bottom line was first drawn 
automatically by Echoview’s best bottom candidate 
algorithm, and then buffered 3−5 m upwards and 
manually adjusted where necessary. The final data 

retained for analysis only included those data col-
lected on the transect when marine mammal survey 
effort was underway. 

After cleaning the data, we created grids of 1000 m 
in length and either 50 or 200 m in depth that were 
used to export summary data. Both the 50 and 200 m 
depth bins were later evaluated for inclusion in each 
marine mammal model. We chose a horizontal bin dis-
tance of 1000 m in an attempt to retain the potential 
fine-scale relationships that have been suggested to 
drive predator−prey interactions. Recent research into 
marine patchiness examining the scales shaping zoo-
plankton, fish, and seabird distributions via acoustics 
found that submesoscale processes from 100 m to 1 km 
play a significant role in shaping the pelagic seascape 
(Bertrand et al. 2014). The 1000 m horizontal bin size 
acknowledges the nature of the survey and the loca-
tions of the animals sighted relative to the ship. At 
this scale, we are attempting to assess submesoscale 
characteristics that may indicate the likelihood of 
prey patches, but we are not attempting to identify a 
particular small prey patch. However, a number of 
the metrics described in the following paragraph are 
intended to capture characteristics within a cell that 
may indicate the likelihood of a small prey patch 
within a particular cell. This 1000 m horizontal scale 
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also strikes a balance among modeling tradeoffs with 
regard to excess zeros and small sample sizes. Use of 
an overly small horizontal scale could also result in 
autocorrelation and artificially inflate explanatory 
power, although generalized additive models (GAMs) 
used in this study limit that possibility since they are 
considered robust to autocorrelation. 

Similar to horizontal bin size choice, vertical bin 
sizes were chosen through a combination of model-
ing practicality and ability to capture the appropriate 
metrics at multiple frequencies. Higher frequencies 
are attenuated faster than lower frequencies with 
increasing depth. Given this fact, we did not feel 
comfortable using the 200 kHz backscatter below 
200 m, which informed our choice of 200 m as one 
depth bin choice. This larger vertical bin size also fit 
larger deep-water characteristics such as the deep 
scattering layer. In addition, we included 50 m depth 
bins that may be informative in the upper water col-
umn and also serve as a test to examine whether this 
vertical scale would be appropriate for particular 
species. As with the horizontal scale, these choices 
were made in an attempt to avoid excess zeros and 
overly segmenting the water column. Overly segment-
ing the water column could add unnecessary speci-

ficity and would have further ballooned an already 
substantial list of covariates to examine. 

We next created metrics to assess water column 
structure and prey distribution. To assess water col-
umn structure, we calculated measures of density, 
abundance, location, dispersion, occupancy, equiva-
lent areas (hereafter referred to as evenness), and ag-
gregation (Table 1) per acoustic bin. Density was rep-
resented by the mean volume-backscattering strength 
(Sv) (dB re 1 m−1), and abundance was represented by 
the area-backscattering coefficient (sa) (m2 m−2) (Echo -
view 2020). Measures of location (center of mass, m), 
dispersion (inertia, m−2), occupied area (proportion oc -
cupied), evenness (m), and aggregation (index of ag-
gregation, m−1) were derived from Urmy et al. (2012) 
as implemented in Echoview 11.1 (Echoview 2020). 

To assess potential prey distribution, data were 
processed with a multi-frequency indicator (MFI) 
algorithm published by Trenkel & Berger (2013). This 
MFI classifies acoustic backscatter into 4 categories: 
(1) large gas bubbles (0.4−1.4 mm), used as a proxy
for fish with swimbladders; (2) small resonant bub-
bles (0.1−0.2 mm), used as a proxy for organisms with
small, entrained bubbles such as larval fish, phyto-
plankton, and gelatinous zooplankton (e.g. siphon -
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Category Metric Description Units 

Prey density (Sv) Sv(f ) Mean volume-backscattering strength       dB re 1 m2 m−3 
Abundance (sa) sa(f ) Area-backscattering strength m2 m−2 

@ f = 18, 38, 70, 120, and 200 kHz       At individual acoustic frequencies

Prey structure Center of mass Location of the center of mass within     m 
(Urmy et al. 2012) a depth bin for a particular cell  

Inertia A weighted and normalized measure m−2 
of dispersion from the center of mass  
within a cell 

Proportion occupied The proportion of a cell occupied    NA 
with an acoustic return 

Evenness (equivalent area) A measure of evenness of the acoustic    m 
return within a cell represented by the  
area that would be occupied if all returns 
within a cell contained the mean density 

Index of aggregation A measure of acoustic return aggregation           m−1 
within a cell that is the reciprocal of  
equivalent area (evenness) 

Multi-frequency               MFI large gas bubbles Index values <0.39 @ f = 38 kHz dB re 1 m−1 (Sv) 
 indicator (MFI)                (fish with swimbladders) or m2 m−2 (sa) 
(Trenkel & Berger 2013)  MFI small resonant bubbles Index values of 0.39−0.58 @ f = 38 kHz 

(larval fish, phytoplankton, and  
gelatinous zooplankton) 
MFI small fluid-like scatterers Index values of 0.7−0.8 @ f = 120 kHz 
(krill and copepods)
MFI large fluid-like scatterers Index values >0.8 @ f = 200 kHz 
(fish without swimbladders)

Table 1. Summary of acoustic metrics used to summarize prey data



Orphanides et al.: Relating marine mammals to prey structure

ophores); (3) small fluid-like scatterers, used as a 
proxy for zooplankton such as krill and copepods 
(hereafter this category will be referred to as describ-
ing krill and copepods); and (4) large fluid-like scat-
terers, used as a proxy for fish with no swimbladder 
(e.g. mackerel) or possibly squid (Table 1). In the MFI 
calculation, a small portion of the backscatter does not 
fall into one of these 4 categories; however, in our ex -
perience, this percentage was typically less than 10%. 

The approach operates on the idea that different 
organisms have unique acoustic responses to a suite 
of acoustic frequencies. By comparing the relative 
responses to different frequencies, the dominant 
organism types in a particular parcel of water can be 
distinguished. This is a foundational characteristic in 
marine acoustics that has been validated both in the 
lab and in the field (Wiebe et al. 1990, 1996, Lawson 
et al. 2001, 2004, Stanton et al. 2004). Similar tech-
niques have been successfully employed numerous 
times in the field (Korneliussen & Ona 2002, Jech & 
Michaels 2006, Benoit-Bird 2009, De Robertis et al. 
2010, Trenkel & Berger 2013), and this MFI should be 
transferable to regions other than that in which it was 
developed. The classification of krill and copepods 
using this MFI in particular has been validated 
directly in the study area region (Jech et al. 2018). 
That said, one goal of incorporating the MFI outputs 
into this modeling process was to test its applicability 
to marine mammal distribution in our region. 

After classifying the backscatter to scattering type, 
Sv (dB re 1 m−1) was extracted from the frequency 
most associated with that particular scattering type 
(Table 1). For example, the Sv from 38 kHz was 
extracted for the areas classified as small resonant 
bubbles because the small bubbles associated with 
these organisms had their peak resonance at 38 kHz. 
We also used the 38 kHz Sv for fish with swimblad-
ders, since this frequency has often been used to rep-
resent these fish in other studies, particularly when 
paired with 120 kHz data (Logerwell & Wilson 2004, 
Simmonds & MacLennan 2005, Jech & Michaels 
2006). The 120 kHz Sv was used for krill and cope-
pods, as this frequency is often used for distinguish-
ing euphausiids (Jech et al. 2018). The 200 kHz was 
used for fish without swimbladders because they are 
weak scatterers, their modeled frequency response 
was highest at 200 kHz, and this frequency was rec-
ommended for mackerel assessments (Trenkel & 
Berger 2013, Scoulding et al. 2017). 

These processing steps resulted in 3 backscatter 
categories at the spatial resolution of the raw data: 
MFI prey classification, prey structure, and individ-
ual frequency responses. The data output of these 

processing steps was binned to cells 1000 m in length 
and either 50 or 200 m in depth to output summary 
values per cell from the raw data. These variables 
were used individually (e.g. 38 kHz frequency 
response in the 400−600 m depth bin) or in combina-
tion (e.g. MFI prey and water column structure rep-
resenting the dispersion of fish with swimbladders in 
the 0−200 m depth layer, or the index of aggregation 
for 38 kHz backscatter in a 0−50 m depth bin). 

Not all variables were used for each depth bin. As 
depth increases, echosounder frequency response is 
increasingly affected by absorption, resulting in 
lower signal-to-noise ratios that are increasingly dif-
ficult to distinguish from background noise. The 
higher the frequency, the more strongly the signal is 
affected. Through examination of echograms and 
background noise calculations, we determined cut-off 
depths for each frequency. In the 50 m depth bins, the 
200 kHz frequency response was limited to 200 m, 
the 120 kHz frequency response was limited to 
300 m, the 70 kHz was limited to 400 m, and only 18 
and 38 kHz frequency responses included data 
deeper than 600 m. For the 200 m depth bins, we 
retained all data from the 18 and 38 kHz frequencies 
down to 2000 m. For the 70, 120, and 200 kHz fre-
quencies, we retained data through the top 600 m, 
recognizing that only the stronger frequency re -
sponses would be reflected in the deeper bins. MFI 
variables were limited to the top 200 m because the 
Trenkel & Berger (2013) MFI incorporates all 5 avail-
able echosounder frequencies on the ‘Bigelow’ (18, 
38, 70, 120, and 200 kHz), and the MFI assumes 
equal relative contributions from each frequency. 

Ocean depths over the course of the transects 
ranged from less than 100 m to over 2000 m, resulting 
in missing values for deeper depth bins. Missing Sv 
values were set to noise values of −105 dB re 1 m−1 
because values used in the analysis were limited to 
those greater than −100 dB re 1 m−1. Index of aggre-
gation, evenness, inertia, proportion occupied, and sa 
were set to zero when missing values were present. 
Center-of-mass variables were set to the center of the 
respective depth bin as a neutral point, although in 
practice these variables were only considered for 
modeling when there were few or no missing values. 

2.4.  Marine mammal modeling 

GAMs (Hastie & Tibshirani 1990, Wood 2017) were 
built to explain the density of marine mammals 
observed along the transects, using the ‘mgcv’ pack-
age (Wood 2011) implemented in the R statistical lan-
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guage (version 4.2.2; R Core Team 2022). We built 
density models for 7 commonly detected species and 
3 guilds. The individual species models included 
short-beaked common dolphins Delphinus delphis 
(hereafter referred to as common dolphins), bottle-
nose dolphins Tursiops truncatus, Risso’s dolphins 
Grampus griseus, pilot whales Globicephala spp., 
sperm whales Physeter macrocephalus, fin whales 
Balaenoptera physalus, and humpback whales Me -
ga ptera novaeangliae. Models for beaked whales 
(Ziphiidae) and individual species models for striped 
dolphins Stenella coeruleoalba were not completed 
because the sample size was not large enough to 
model those species groups accurately. We then built 
models for 3 species guilds based on foraging and 
dive preferences, which allowed us to include addi-
tional species for which the sample size was too small 
to build an individual species model. The 3 guilds 
consisted of (1) dolphins, which included common, 
bottlenose, and striped dolphins; (2) rorquals, which 
included fin, sei, humpback, and minke Balaen -
optera acutorostrata whales; and (3) deep-diving 
squid-focused species, which included Risso’s dol-
phins, pilot whales, and sperm whales. 

We calculated species density estimates using 
mark−recapture distance sampling (Thomas et al. 
2010) as implemented in version 2.2.4 of the ‘mrds’ R 
package. This aligns with previous methods used to 
create abundance estimates and distribution maps 
with AMAPPS data (Chavez-Rosales et al. 2019, 
Palka et al. 2021a,b). We fit marine mammal sight-
ings data used in this study to previously established 
AMAPPS distance models. Model specifications can 
be found in Palka et al. (2021a), and a detailed dis-
cussion of this distance modeling approach can be 
found in Laake & Borchers (2004). Specifically, we 
used distance sampling to estimate the probability of 
detection, p(a), at distance a for each sighting. A 
sighting in this case was defined as either an obser-
vation of one animal of a particular species or a group 
of animals of the same species group that were 
sighted together in roughly the same location. The 
p(a) values for each sighting in a cell were summed 
by species group to obtain a total p(a) value for each 
species group observed in a particular cell. We then 
used this probability to convert counts of sighted 
marine mammals per cell to densities using the fol-
lowing formula: 

              (1) 

where D is the density of a particular marine mam-
mal in a specified cell, the numerator on the right 

side of the equation is the number of observed ani-
mals (S is the number of sightings per cell, G is the 
mean group size per cell), and the denominator is the 
effective area searched (L is the length of the cell 
[1000 m], and the number 2 accounts for 2 sides of 
the ship because p(a) applies to only one side of the 
ship). Estimating p(a) involved applying truncation 
distances specific to each species group such that 
some animals that were sighted were not included in 
the analysis; sighted animals were not included 
when the distance resulted in a probability of detec-
tion that was very small. Density estimation for most 
species applied the AMAPPS models from Palka et 
al. (2021b) to the shelf break transects used in this 
study. We took this approach to best align estab-
lished and validated models with the data used in 
this study. However, we needed to include data from 
the full AMAPPS study area — which also includes 
transects extending further off the shelf break — for 
2 species, humpback whales and common dolphins, 
in order to attain a satisfactory model fit. 

Density models were fit using the restricted maxi-
mum likelihood criterion with the Tweedie family, 
allowing for flexibility among candidate distributions 
and the ability to deal with excess zeros and over -
dispersed data. Plots for individual variables were 
smoothed with thin plate regression splines, in -
cluding an additional null space penalization that 
allowed the smoothed term to reduce to a linear fit, 
which provided additional restraint against overfit-
ting (Wood 2003). 

Model building was conducted in a stepwise fash-
ion whereby the best-fitting single variable was 
selected as the first variable; the remaining subset of 
variables were then assessed for fit with the first vari-
able, and the process was repeated if inclusion of 
additional variables improved the fit. In selecting 
variables for inclusion, we first sorted by ascending 
Akaike’s information criterion (AIC) values and 
model deviance explained, creating a subset of mod-
els to consider. We then examined potential models 
through summary statistics such as p-values (<0.01), 
plots assessing model fit, and whether the relation-
ship of the variable and species density made ecolog-
ical sense based on likely foraging depths, potential 
prey sources, known ocean depth preferences, and 
general knowledge of the species. 

For example, variables representing krill and 
copepod density were considered unlikely for deep-
diving species that often forage on squid but were 
considered reasonable for rorqual models. Indicators 
of deep scattering layers were considered likely for 
deep-diving species but less likely for rorquals. Fish 

D =
S �G

2�L �p(a)
�
�
�

�
�
�
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concentrations were considered for all species, al -
though small resonant bubbles that may represent 
phytoplankton, fish larvae, or siphonophore distribu-
tions were discounted for all models, given that they 
would likely represent a secondary relationship as a 
food source for cetacean prey. Similarly, variables 
representing aggregations of prey were considered 
reasonable candidate variables. In most instances, 
low evenness and low inertia were considered likely 
candidate variables and interpreted as patchiness 
that could represent dense prey aggregations within 
a cell, although high evenness values could repre-
sent the presence of the deep scattering layer, partic-
ularly as the acoustic beam spreads out with depth 
and decreases in resolution. While we used a priori 
knowledge to guide our choice of model variables, if 
a particular relationship was strong and consistent, it 
was considered for inclusion in models even if the 
relationship was not immediately intuitive. 

Fit of potential models was further examined by 
applying k-fold cross-validation with 1000 random 
data subsets to calculate a number of diagnostic 
tests, including relative mean absolute error (rel-
MAE) and mean absolute percentage error (MAPE). 
Concurvity was examined in the candidate models to 
ensure that strongly related terms were not included 
in the same model. GAMs should be robust to corre-
lation and concurvity, but models with worst-case 
concurvity values >0.6 were discarded from consid-
eration (Chavez-Rosales et al. 2019). The estimated 
degree of freedom in relation to the sample size was 
examined to ensure we did not overfit models. We 
did not impose an a priori limit on the number of vari-
ables in each model but instead stopped adding vari-
ables when the improvement of fit was marginal in 
terms of the metrics mentioned above. 

3.  RESULTS 

GAMs built for 7 taxa and 3 species guilds included 
as many as 4 significant acoustic variables per model 
(Table 2). GAM plots of each significant variable pro-
vided for each species model showed 3 types of rela-
tionships: (1) a negative slope, (2) a positive slope, and 
(3) more complex curves (Figs. 2−4, S1–S4 & S6–S8 
in the Supplement at www.int-res.com/articles/suppl/
m711p101_supp.pdf). Values near zero on the y-axis 
suggest a neutral relationship with the predictor vari-
able and values greater than zero indicate positive 
relationships, with larger positive numbers suggest-
ing a stronger relationship; conversely, values less 
than zero indicate negative relationships with the 

predictor variable, with more negative numbers sug-
gesting a stronger negative relationship. For exam-
ple, a de scending slope in a GAM plot from positive 
to negative values on the y-axis indicates a positive 
association between marine mammal abundance at 
low values of the predictor variable and a negative 
association with high values of the predictor variable. 

The best models, defined as those that explained 
the most deviance, combined measures of water col-
umn prey structure and individual frequency re -
sponses and had positive relationships with suspected 
prey (Table 2). Models with the 7 taxa and the 3 spe-
cies guilds generally reflected foraging preference 
through depth and prey preference. Models for 
deeper diving species typically contained variables 
in the region of the deep scattering layer, models for 
shallower diving species such as rorquals contained 
variables depicting the upper water column, and dol-
phins that have a more plastic foraging approach had 
a mix of variables representing different portions of 
the water column. Measures of prey patch aggrega-
tions were a key component in many models, usually 
with negative slopes relative to increasing evenness 
or inertia (Figs. 2, 3, S1, S3 & S6−S8), implying a 
stronger association with patchiness that could rep-
resent dense aggregations of prey. MFI variables 
characterizing prey type also proved important (pre-
sent in 8 out of 10 models), particularly in the form of 
variables that combined prey type with measures of 
prey aggregation (7 of 10 models; e.g. evenness of 
non-swimbladder fish at 10−50 m). Models for shal-
lower diving groups such as rorquals and dolphins fit 
better than those for deeper diving species known to 
forage on squid. 

For the individual taxa models, the pilot whale 
model was fit with only one variable; the sperm whale, 
bottlenose dolphin, and Risso’s dolphin models 
included 2 variables; the humpback whale in cluded 
3 variables; and the fin whale and common dolphin 
models included 4 variables (Table 2, Figs. 2–4 & 
S1−S4). The humpback whale model had the highest 
concurvity (0.57) and the bottlenose dolphin had the 
lowest at 0.06. All but one of the variables used in the 
final models were significant at p < 0.001, with only 
the 38 kHz inertia at 300−350 m in the sperm whale 
model significant at p < 0.01. The explained 
deviance ranged from 8.6% for the deep-diving 
guild to 38.2% for fin whales. Two other individual 
taxa models and one guild model ex plained more 
than 30% of deviance: 32.2% for humpback whales, 
37.7% for common dolphins, and 33.5% for rorquals. 
The relMAE and MAPE model error metric scored in 
the qualitative fair-to-good range for all models (as 
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defined in Chavez-Rosales et al. 2019 and Kinlan et 
al. 2012), with none ranked as poor. 

All 10 models included variables that describe con-
centrations of organisms, including evenness (5 mod-
els), inertia (5 models), index of aggregation (1 model), 
proportion occupied (occupied area) (2 models), and 
center of mass (1 model) (Tables 1 & 2). The best-fit-
ting models were for fin whales, humpback whales, 

rorquals, and common dolphins, which incorporated 
metrics describing water column structure, prey types, 
and either density or abundance. The fin whales, 
Risso’s dolphins, common dolphins, pilot whales, and 
the deep-divers group all had positive associations 
with areas containing low evenness (Figs. 2, 3, S2, S3 
& S8), although the Risso’s dolphin and deep diver 
relationships were more complicated, with positive 
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values in both low and high evenness regions (Figs. S2 
& S8). The fin whale, bottlenose dolphin, and deep-
diver models incorporated measures of abundance 
(i.e. sa), and the humpback whale, common dolphin, 
Risso’s dolphin, dolphin guild, and rorqual guild mod-
els incorporated estimates of density (i.e. Sv) (Table 2). 
Models for fin whales, humpback whales, common 
dolphins, Risso’s dolphins, and all guild models 
included variables that combined prey classification 
and water column structure, and the bottlenose dol-

phin model included prey classification with a meas-
ure of abundance (Table 2). 

The fin, humpback, and rorqual whale models in -
cluded ocean depth, whereas the remaining models 
only incorporated variables derived from echo -
sounding. For all these models, most observations 
occurred on the shelf in waters less than 200 m. The 
initial variable-selection options were too deep to 
make ecological sense and were effectively serving 
as a proxy for ocean depth, so we made the decision 
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to more directly describe this feature and use ocean 
depth as the first variable selected. Variables in sev-
eral models were consistently shallow or deep. Risso’s 
dolphin and sperm whale models included variables 

representing features between 200 and 400 m depth, 
and the 120 kHz evenness variable for pilot whales 
was between 150 and 200 m. Three of the 4 models 
for deep-diving species contained variables in the 
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200−400 m depth range that described a 70 or 120 kHz 
frequency response. All 5 echosounding variables 
in the fin and humpback whale models represented 
variables in the 10−50 m range. The common dol-
phin model included variables representing features 
in both the upper 50 m of the water column and down 
to 250 m, and bottlenose dolphin variables ranged 
from the upper 50 m of the water column down to 
300 m. 

4.  DISCUSSION 

We demonstrate that acoustically derived meas-
ures of prey spatial structure can be used to inter-
pret marine mammal distribution. Acoustically derived 
measures of 2-dimensional prey distribution, used as 
covariates in GAMs, begin to address uncertainty in 
our understanding of how marine mammals use their 
habitat and are spatially organized in this region. 
This study demonstrates that acoustically derived 
prey covariates in abundance surveys can generate 
similar goodness-of-fit as traditional environmental 
covariates (Table 2) (Forney et al. 2012, Palacios et al. 
2013, Becker et al. 2019). 

Most recent attempts to model similar marine 
mammal density data for abundance estimation have 
relied almost entirely on parameters measuring sur-
face or ocean floor characteristics, most of which 
were physical rather than biotic variables (Forney et 
al. 2012, Roberts et al. 2016, Becker et al. 2019, 
Chavez-Rosales et al. 2019). While there have been 
previous attempts to apply acoustically derived prey 
layers to abundance surveys, many of these efforts 
either did not significantly improve model perform-
ance or did not find spatial relationships between the 
acoustic variables and cetacean areas of interest 
(Lehodey et al. 2008, LaBrecque 2016, Roberts et al. 
2016, Virgili et al. 2021). 

Comparison of our models to other marine mammal 
abundance models prepared from the same region 
with overlapping data further validate the potential 
of acoustic prey variables (Chavez-Rosales et al. 
2019). The explained deviance between these 2 stud-
ies was comparable for rorquals and similar but 
somewhat lower for common dolphins, and poorer 
for species known to dive deep to forage on squid 
(Risso’s dolphin, pilot whale, and sperm whale) 
(Table 2). The rorqual guild model explained deviance 
similar to individual rorqual species models. The dol-
phin and deep-diver models explained less deviance 
than individual species models, perhaps due to mod-
eling multiple species with somewhat different habi-

tat preferences, although variable selection for spe-
cies guilds generally reinforced the variable selection 
in individual species models. 

Interpretation of prey distribution variables (Table 1) 
(e.g. Urmy et al. 2012) requires knowledge of each 
predator’s biology, behavior, and possible relation-
ships to prey distribution, as well as the spatial scale 
(i.e. range and resolution) at which we are making 
inferences. We assumed that marine mammal distri-
bution is primarily driven by prey resources that can 
be observed through echosounding and, similarly, 
can be detected by odontocete echolocation. Our 
metrics are able to discern degrees of evenness and 
patchiness of potential foraging resources and infer 
some aspects of their composition. Through the use of 
these variables, we can assess our hypotheses and gain 
insights into how marine mammals interact with prey 
resources and how this shapes cetacean distribution. 

We hypothesized that prey patchiness or consis-
tency would be an important driver of marine mam-
mal distribution and that it may vary by depth and 
individual frequency response; our model results 
bear that out. For shallower diving species, aggre-
gated patches of prey within a portion of an acoustic 
cell may be more discernible than for deep-diving 
species and may denote important foraging areas 
with dense concentrations of prey. This is reflected in 
individual and guild rorqual models that include 
variables representing shallow aggregations of small 
schooling fish or krill, which fits with expected forag-
ing (Table 2, Figs. 2, S4 & S7) (Flinn et al. 2002, Hazen 
et al. 2009, Derville et al. 2020, Jory et al. 2021). 

We surmise that deep-diving species may prefer an 
area depicted as an even distribution of organisms 
encompassing an entire acoustic cell that would rep-
resent the presence of the deep scattering layer. The 
spreading of the acoustic beams with increasing 
depth and the attenuation of higher frequencies with 
depth make it more difficult to discern individual 
prey patches in deeper layers, such that distinct prey 
patches may be smoothed over an acoustic cell. The 
penetration depths of higher frequencies limits indi-
vidual frequency use and also restricts our ability to 
apply the MFI (e.g. Trenkel & Berger 2013) beyond 
200 m depth. However, these classifications would 
likely still be depth-limited given the attenuation of 
high frequencies at depths that are likely needed to 
classify weaker scattering organisms such as squid. 
This highlights the need for echosounding systems 
that can be positioned in and near the deep scatter-
ing layers, rather than from surface-bound ships, to 
improve our classification capabilities (Cotter et al. 
2021). This MFI is also lacking true classification 
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for cephalopods, although the non-swimbladdered 
fish category may encompass squid. Future research 
should aim to include direct classification of cephalo -
pods and deep foraging layers by applying acoustic 
squid models (e.g. Jones et al. 2009). 

Despite these limitations, most of our models for 
deep-diving species reflected either the presumed 
foraging depth of the modeled species (Kawakami 
1980, Gannon et al. 1997a,b, Watwood et al. 2006, 
Aguilar Soto et al. 2008, Smith et al. 2015, Quick et 
al. 2017, Arranz et al. 2019) or the region denoting 
the top part of the deep scattering layer, within 
which marine mammals may forage (Fig. 5). Addi-
tionally, inclusion of 70 and 120 kHz frequency 
response variables in the 150−400 m range in most of 
these deep-diver models suggests the importance of 
higher frequency response values in depths toward 
the end of their useful ranges. At these depths, weak 
signals would not be distinguished from noise and 
may indicate important habitats by only returning 
signals from dense concentrations of organisms or 
strongly reflecting organisms. 

An additional challenge for this modeling ap -
proach involves species that primarily feed at night 
on diel-migrating prey, which could pose a temporal 
mismatch in prey and marine mammal sightings. For 
example, common dolphins feed on both epipelagic 
and mesopelagic schooling fish and squid, with most 
dives less than 100 m (Waring et al. 1990, Overholtz 
& Waring 1991, Lahaye et al. 2005, Pusineri et al. 
2007). A relationship with patchy prey in the top 50 m 
may reflect shallower dives and a diversified daytime 
diet, but much feeding is thought to occur at dusk or 
at night as myctophids migrate upwards in the water 
column to feed (Waring et al. 1990, Lahaye et al. 
2005, Pusineri et al. 2007). In the case of the common 
dolphin and other dolphins, this nighttime foraging 
was potentially accounted for by the positive associa-
tion with deeper concentrations of prey at depth that 
would vertically migrate in the evening (Fig. 3). In -
corporation of passive acoustics and studies that tag 
animals paired with echosounding would help clarify 
some of the relationships described in this paper (e.g. 
Hazen et al. 2009, Abecassis et al. 2015, Burrows et 
al. 2016) and, in particular, could also better assess 
prey relationships at night. Identification of portions 
of the deep scattering layer that migrate upwards in 
the evening could improve predictive models for spe-
cies that appear to take advantage of this resource at 
night. 

Diel migration could also potentially explain the 
lack of a krill variable in the individual humpback 
and fin whale models. Given that these observations 

were collected during the day in oceanic waters, con-
centrations of krill may have been deeper in the 
water column due to diel vertical migration (Gjøsæter 
et al. 2017). However, in this case, this may not have 
been an issue because most of the observations were 
not in deep waters. In addition, other variables under 
consideration for inclusion in the fin whale model did 
show a positive relationship, with an increasing pro-
portion of krill and copepods at 50−100 m (Fig. S5). In 
addition, there was a relationship in the final rorqual 
model that suggests an affinity for dense aggrega-
tions of krill in the top 200 m. The lack of a variable 
representing krill in the individual species models 
may be due to a relatively low sample size for the 
individual species models that was overcome with a 
larger sample size in the rorqual model. 

While most model variables could be explained by 
prey type and dive depth, the inclusion of 18 kHz 
variables in dolphin and rorqual models is more chal-
lenging to explain. These results counterintuitively 
suggest that areas with low 18 kHz returns are favor-
able habitat. These same relationships resurfaced in 
both the individual and guild models for dolphins 
and rorquals (Figs. 2, 3 & S5–S7) and so are not ex -
pected to be a result of sample-size issues. Additional 
model plots of variables that were considered for the 
dolphin guild model suggest that high 18 kHz returns 
may be associated with cells where the area is fully 
occupied by consistent 18 kHz returns, therefore re -
sulting in high mean density and abundance values 
but without indications of dense prey patches that 
could be distinguished within the cell (Fig. S9). Inter-
pretation is complicated because individual frequency 
responses do not allow classification of the commu-
nity of organisms. The returns observed here could 
be indicative of the shelf break oceanography, where 
there is a marked difference between the upper and 
lower water columns that may result in consistent 
areas with low backscatter in the upper water col-
umn, with animals feeding just below the upper layer 
in the more complex bottom half of the water column 
containing internal waves and presumed density dif-
ferences where deep bottom water can be seen 
intruding from off the shelf (Fig. 6). 

In future studies, areas off the shelf break should 
be included to allow for abundance estimations over 
a wider region. The shelf break region was chosen 
for this study because it encompassed a constrained 
area that could serve as a good test case given the 
range of habitats and depths encompassed there, 
although future work should include additional off-
shore regions. Future abundance estimation models 
should also combine acoustically sensed prey layers 
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with more traditional variables, such as sea surface 
temperature and latitude, that could provide struc-
ture within which acoustic variables may become 
more informative, improving accuracy. In order to 
achieve prediction of distribution and abundance in 
areas not on the ship track, prey structure would 
need to be modeled using bathymetry, satellite-
derived oceanographic variables, and ocean models, 
as is done in the SEAPODYM model (Virgili et al. 
2021). 

5.  CONCLUSIONS 

This study demonstrated the application of acoustic 
classifications from echosounding data for use in 
modeling marine mammal abundance and suggests 
that echosounding-derived variables may be power-
ful predictors when paired with more traditional 
variables. We used backscatter from organisms of 
interest to model the fit between marine mammal 
abundance and potential prey characteristics such 
as  prey availability and prey structure within the 
water column. All models incorporated at least one 
variable describing the structure of prey within 
acoustic cells, suggesting an affinity for dense aggre-
gations of prey. Most models included at least one 
variable describing the type of potential prey in 
these cells, usually combined with characteristics 
describing the structure of prey aggregations. These 
models fit best for cetaceans that feed in the photic 
zone, with a poorer fit for species that forage heavily 
on cephalopods and those that feed deeper than 
200  m, although overall depth preferences were 
reflected for these deeper diving species. Application 
of acoustically sensed prey layers could improve 
abundance models so that they are more responsive 
to changing ocean conditions and result in higher 
accuracy by directly modeling prey abundance. 
Improved abundance models should assist in man-
aging human impacts on marine mammals as 
the  changing climate shifts preferred habitats, and 
human demand for ocean-based energy resources 
increases. 
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