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1.  INTRODUCTION 

People and communities worldwide depend strong -
ly on the services oceans provide. Livelihoods are 
built upon the provision of food, the cultural benefits 
of tourism and the trade of marine commodities. The 
awareness that these goods are under enormous an-
thropogenic pressures is increasing and efforts are 
being made to recover those losses (Palmer et al. 
2004, Ingeman et al. 2019). Recovery of deteriorated 
marine ecosystems is defined differently depending 
on who is involved, what is being assessed and which 

goals are being formulated (Lotze et al. 2011). Defini-
tions of recovery comprise the restoration of under -
lying ecosystem functions and processes, recovery 
goals such as system stability (Ingeman et al. 2019) or 
the recuperation of marine populations and their 
habitats (Duarte et al. 2020). In fisheries management, 
recovery is considered to be achieved if biomass 
levels reach a level consistent with the maximum sus-
tainable yield concept (BMSY), which enables sustain-
able fishing (Duarte et al. 2020). The European Union 
(EU) applies the MSY approach through the common 
fisheries policy. Achieving MSY is considered recov-
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ABSTRACT: Marine ecosystems worldwide experience abrupt changes and regime shifts in struc-
ture and functioning due to the interacting effects of multiple stressors. North Sea cod Gadus 
morhua is a key example of a species being strongly overexploited for decades, causing an abrupt 
stock decrease below scientifically advised sustainable levels. Despite reductions in fishing pres-
sure in recent years, populations of North Sea cod have not yet recovered. Why recovery is hin-
dered and especially how ecosystem dynamics interacted with fishing to create a stable low cod 
stock is an open question. Here, we sequentially apply change point and principle component 
analyses as well as stochastic cusp modelling to a long-term time series (1963−2018) to show that 
North Sea cod recovery is limited due to an interaction of fishing pressure, internal stock dyna -
mics and external environmental changes. We found that cod biomass experienced nonlinear, dis-
continuous dynamics, given the interaction of fishing pressure and climate change-induced 
increases in temperatures, wind magnitude and the North Atlantic Oscillation. Our results further 
demonstrate discontinuity in cod biomass due to low recruitment caused by a discontinuous rela-
tionship between stock biomass and environmental changes characterized by climate and zoo-
plankton variables. Our study indicates that climate-induced changes in the environment have 
trapped North Sea cod in a depleted state, limiting the probability that the population will regain 
its role as a main target species for fisheries. Hence, we highlight the importance of incorporating 
discontinuous dynamics in fisheries management approaches to achieve sustainable exploitation 
levels and to identify thresholds of drivers to favour policies to prevent regime shifts.  
 
KEY WORDS:  Recovery · Collapse · Regime shift · Stochastic cusp model 

OPENPEN
 ACCESSCCESS

https://crossmark.crossref.org/dialog/?doi=10.3354/meps14342&amp;domain=pdf&amp;date_stamp=2023-06-29


Mar Ecol Prog Ser 713: 133–149, 2023

ery, where management implements reference levels 
with respect to fishing mortality and biomass (i.e. 
FMSY and MSY B trigger; ICES 2012a). FMSY is the rate of 
F at which the long-term average catch corresponds 
to MSY and the long-term average biomass to BMSY 
(the expected biomass if F is at FMSY). MSY B trigger re-
lates to a threshold at which F is advised to be re -
duced relative to FMSY (ICES 2022b). 

Ecosystems can recover from different levels of dis-
turbance, where (1) a complete recovery restores the 
system to its initial state or (2) a partial recovery re -
sults in an alternative state. However, if the system 
remains damaged in the long term, its state may be -
come irreversible (Lotze et al. 2011, Duarte et al. 
2020). Limited recovery is theoretically enforced if 
drivers are not reversed and may be associated with 
the appearance of abrupt shifts in system dynamics; 
so-called ‘regime shifts’. Regime shifts occur if the 
resilience of a system (or population) is low and its 
structure and functioning are being altered (Beisner 
et al. 2003, Conversi et al. 2015). The underlying the-
ory of regime shifts involves the characteristics of 
abrupt changes and alternative stable states (Schef-
fer et al. 2001, Beisner et al. 2003). However, the 
detection of abrupt changes by itself does not neces-
sarily imply discontinuous dynamics. Additional ana -
lyses are required to detect underlying drivers, alter-
native states and hysteresis (Sguotti et al. 2022). 
De pending on the relationship between a pressure 
and the response variable, a shift can occur logisti-
cally or discontinuously. Discontinuity implies the oc -
currence of hysteresis, where the path of reaching a 
new alternative stable state differs from the path of 
returning to the original state (Scheffer et al. 2001, 
Conversi et al. 2015, Sguotti et al. 2019). 

Regime shifts are a well-documented phenomenon 
in the marine realm, in particular within the North 
Sea ecosystem, and have been observed over several 
trophic levels (Weijerman et al. 2005, Kenny et al. 
2009). Regime changes were mainly reported for 
phytoplankton and zooplankton and related hydro-
climatic changes such as the North Atlantic Oscilla-
tion (NAO) and the Atlantic Multidecadal Oscillation 
(AMO) (Fromentin & Planque 1996, Reid & Edwards 
2001, Edwards et al. 2013) as well as local tempera-
ture (Capuzzo et al. 2018, Edwards et al. 2020, Nohe 
et al. 2020). A major regime shift was detected during 
the 1980s, including pronounced changes in phyto-
plankton due to increasing temperature (Beaugrand 
& Reid 2003, Beaugrand 2004, Lynam et al. 2017). 
Phytoplankton biomass has increased steadily in re -
cent decades (McQuatters-Gollop et al. 2011), and a 
change in the ratio between diatoms and dinoflagel-

lates has been observed (Hinder et al. 2012). Re -
cently, further warming, combined with a de crease 
in eutrophication since the 1990s, has caused a 
change in bloom patterns and an increase in diatom 
and dinoflagellate biomass (Nohe et al. 2020). 
Changes in primary production have been further re -
lated to shifts in the zooplankton community affect-
ing the productivity of fish populations (Kenny et al. 
2009, Lynam et al. 2017), in particular where changes 
in secondary production may increase stress on 
already depleted fish stocks (Edwards et al. 2020). 

An instructive case for studying recovery and re -
gime shift dynamics is Atlantic cod Gadus morhua. 
Atlantic cod populations are key examples of over-
fishing, and many collapsed cod stocks have not 
recovered even though fishing pressure has often 
been greatly reduced (Rose 2019, Sguotti et al. 2019). 
In the North Sea, cod increased dramatically during 
the so-called ‘gadoid outburst’, characterized by 
favorable feeding conditions for gadoid species in 
the North Atlantic during the 1960s (Cushing 1980). 
Subsequently, fishing pressure was increased to very 
high levels, causing the stock to decline sharply 
(Cook et al. 1997). This decrease, combined with the 
reduced production of young cod and a decrease in 
optimal thermal habitat due to increased warming of 
the North Sea (O’Brien et al. 2000, Blanchard et al. 
2005, Rindorf & Andersen 2008), resulted in the stock 
collapsing and falling below scientifically advised 
safety levels in the late 1980s (ICES 2022a). Further-
more, the decrease in thermal range combined with 
fishing pressure led to a northward shift of the cod 
stock (Engelhard et al. 2014). Since the North Sea 
stock consists of 3 distinct populations centered 
around the Viking bank, the Dogger bank (the South 
proper) and the north-west (Romagnoni et al. 2020), 
it can be assumed that the southern population is 
affected most by these stressors. A recovery plan was 
established in the 1990s to stop cod from declining 
and to enhance recovery (ICES 2012b). Still, the 
North Sea cod stock has not recovered and recruit-
ment has remained at historically low levels since 
1998 (ICES 2022a). This failed recovery, despite a 
strong reduction in fishing pressure, points to hys-
teresis in cod dynamics, a typical sign of a regime 
shift in the fish stock or its supporting ecosystem 
(Sguotti et al. 2019). 

In this study, we examined whether regime changes 
in the North Sea ecosystem can be linked to the failed 
cod recovery. We explored cod−ecosystem links using 
stochastic cusp modelling (Grasman et al. 2009), a 
modelling approach based on catastrophe theory. 
 Catastrophe theory became popular in the 1970s 
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(Zee man 1979) but was largely ignored afterwards 
(Sguotti et al. 2019). However, recently, stochastic 
cusp modelling has been increasingly applied in di-
verse scientific fields such as economics (Diks & Wang 
2016), sociology and psychology (Guastello et al. 2012, 
Sideridis et al. 2016), as well as in fisheries (Sguotti et 
al. 2019, 2020, Möllmann et al. 2021). The theory’s 
scope comprises investigating sudden changes in 
 dynamic systems in response to multiple interactions 
of external drivers (Poston & Stewart 1978, Grasman 
et al. 2009, Sguotti et al. 2019). Importantly, the sto-
chastic cusp modelling approach allows for (1) evalu-
ating discontinuity in system dynamics implying hys-
teresis in response to external drivers and (2) testing 
for stability of system states at any point in time (Zee-
man 1979, Grasman et al. 2009). Even though regime 
shifts in North Sea cod stocks are being intensively 
studied, the drivers of these shifts are not fully under-
stood (Sguotti et al. 2019). 

Therefore, the main goal of our study was to inves-
tigate the potential existence of discontinuous dyna -
mics in North Sea cod and to understand the under-
lying mechanisms limiting cod stock recovery. Our 

study provides evidence for non-linear discontinuous 
population dynamics in North Sea cod, im plying hys-
teresis in the recovery of the fish stock to reduced F. 
We relate the failed cod recovery to low recruitment 
in response to changes in phytoplankton and zoo-
plankton productivity in the North Sea ecosystem as 
a result of climate-induced temperature rise. Our 
study demonstrates how climate-induced eco system 
dynamics can limit the recovery of a depleted fish 
stock, which is important information for ecosystem-
based fisheries management. 

2.  METHODS 

2.1.  Data 

We gathered a wide range of biotic and abiotic 
data (1963−2018) to obtain a more comprehensive 
picture of ecosystem dynamics and to identify poten-
tial external pressures on the stock. The data were 
selected based on their known effects on cod stock 
dynamics (Table 1). 
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Variable                Rationale                                                                                                       Reference(s)  
 
NAO                      Reflects strong westerly winds causing variabilities in seasonal             Hurrell (1995), Reid & Edwards (2001),  
                              phytoplankton production and zooplankton, hence, changes                 Drinkwater et al. (2003),  
                              in lower trophic levels, altering the food web of cod                                Alvarez-Fernandez et al. (2012) 
AMO                     Long-term dynamics and variability in temperature affects                    Edwards et al. (2013),  
                              phytoplankton and zooplankton abundances, hence, changes in           Alheit et al. (2014) 
                              lower trophic levels, altering the food web of cod 
SST (°C)                Increasing SST affects recruitment negatively through changes            Drinkwater (2005), Righton et al. (2010),  
                              in prey abundances and distribution, and changes the                           Engelhard et al. (2014),  
                              distribution of adult North Sea cod                                                            Baudron et al. (2020) 
SBT (°C)                Increasing SBT affects demersal, cold-water-preferring cod,                 Drinkwater (2005),  
                              causing, e.g. faster growth, decreasing age of maturity                           Righton & Metcalfe (2019) 
Inflow (Sv)            Zooplankton (e.g. Calanus finmarchicus)-rich water and                        Hjøllo et al. (2009),  
                              changes in deep water temperatures affects cod recruitment.                Alvarez-Fernandez et al. (2012),  
                              The inflow is also positively related to the NAO during winter               Akimova et al. (2016), Gao et al. (2021)  
Wind (m s−1)          Wind speed; see NAO                                                                                 Hurrell (1995), Drinkwater et al. (2003) 
Current (m s−1)     The direction and strength is influenced by the inflow                            Reid & Edwards (2001) 
Phytoplankton     Food web at trophic level 1                                                                         Alheit et al. (2005),  
 (phytoplankton                                                                                                                         Alvarez-Fernandez et al. (2012) 
 colour index) 
Diatoms                 Food web at trophic level 1                                                                         Alheit et al. (2005),  
                                                                                                                                                     Alvarez-Fernandez et al. (2012) 
Dinoflagellates     Food web at trophic level 1                                                                         Alheit et al. (2005),  
                                                                                                                                                     Alvarez-Fernandez et al. (2012) 
Small copepods    Food web at trophic level 2 and important food source for cod larvae   Alheit et al. (2005),  
                                                                                                                                                     Alvarez-Fernandez et al. (2012) 
Large copepods    Food web at trophic level 2 and important food source for cod larvae   Beaugrand et al. (2003)

Table 1. Relevance of abiotic and biotic variables for North Sea cod stock dynamics. As the North Atlantic Oscillation (NAO) is only an 
index for wind, we additionally included both wind and current speeds to include direct yearly changes in the environment of North  

Sea cod. AMO: Atlantic Multidecadal Oscillation; SBT: sea bottom temperature; SST: sea surface temperature; Sv: Sverdrup
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To analyze stock dynamics, we retrieved estimates 
of North Sea cod spawning stock biomass (SSB), re -
cruitment (R) at age 1 and F from the International 
Council for the Exploration of the Sea (ICES) Stock 
Assessment Database (ICES 2019). We investigated 
climate effects on cod using indices of the NAO 
(Climate Prediction Center 2020) and the AMO 
(Enfield et al. 2001), provided in monthly values 
from the Climate Prediction Center of the National 
Oce anic and Atmospheric Administration (NOAA). 
Both NAO and AMO are hydro-climatic indices 
known to be related to oceanographic changes in 
the North Sea (Drink water et al. 2003, Knight et al. 
2006). The NAO index is based on atmospheric 
pressure differences at sea level between the 
Azores High and the Icelandic Low (Drinkwater et 
al. 2003), whereas the AMO in dex builds upon 
Atlan tic sea surface temperature (SST) variations in 
the Northern Hemisphere (Knight et al. 2005). We 
used the NAO winter index, which is computed 
based on the mean pressure difference from De -
cember to March. Mechanisms related to the NAO 
are considered to have their greatest effect on the 
boreal environment during these months, where a 
positive NAO reflects high westerly winds (Hurrell 
1995, Drinkwater et al. 2003). The AMO has been 
identified as a coherent mode of natural variability 
occurring in the North Atlantic Ocean with an esti-
mated period of 60−80 yr, and it is based on SST 
ano malies in the North Atlan tic basin, typically 
averaged over 0−80° N. In general, the AMO is an 
index for the climate of the Northern Hemisphere 
and is connected to the variability in rainfall and 
SST in northwestern Europe (Knight et al. 2006, 
Edwards et al. 2013, Alheit et al. 2014). We used the 
yearly mean of the AMO. 

Since local temperature greatly affects the ecosys-
tem, we also gathered annual SST (°C) and sea bottom 
temperature (SBT; °C) data (Nunez-Riboni & Aki mova 
2015). We further explored the effect of the North 
Sea Inflow (in Sverdrup [Sv]) on cod dynamics. The 
inflow of zooplankton-rich water and simultaneous 
changes in the temperatures of deep waters are 
expected to affect North Sea cod R (Akimova et al. 
2016). Monthly inflow data were derived from simu-
lations with the NORWECOM model (Hjøllo et al. 
2009). These inflow data cover the longitudinal 
Orkney-Utsir transect along 59.17° N over the entire 
water column (Hjøllo et al. 2009). As NAO and AMO 
are also related to local changes in winds and cur-
rents, we also obtained the latter data from NOAA 
and the Integrated Climate Data Center, University 
of Hamburg. We calculated annual mean wind mag-

nitude from daily u- and v-wind data at a level of 
10 m (Kalnay et al. 1996), and yearly mean current 
magnitude from daily u- and v-current data (Mogen -
sen et al. 2012, Balmaseda et al. 2013), ag gre gated 
across the whole North Sea, using the following 
Pytha  go  rean equation: 

                                                                               (1) 

where magnitude is the overall wind or current 
speed (m s−1), and u and v are its eastward and south-
ward components, respectively. The wind and cur-
rents come from the west if u is positive and from the 
east if u is negative, and from the south if v is positive 
and from the north if v is negative. 

We furthermore used phytoplankton and zoo-
plankton abundance indicators derived from the con-
tinuous plankton recorder (CPR) survey (Johns 2019) 
to characterize North Sea ecosystem changes, specif-
ically the phytoplankton colour index, the abun-
dance of diatoms and dinoflagellates and the abun-
dance of small and large copepods (Capuzzo et al. 
2018, Bedford et al. 2020). We used annual means for 
the complete North Sea from spatially resolved 
monthly data across the entire North Sea for each of 
the biotic variables. 

All data were combined into a data matrix, with 
annual values covering the entire North Sea for the 
period 1963−2018; i.e. the period covered by the cod 
stock assessment data we used. 

2.2.  Statistical analyses 

We applied a combination of statistical modelling 
approaches to analyze the potential effects of biotic 
and abiotic variables on the recovery of the North 
Sea cod stock. We first applied statistical change 
point analyses to the SSB time series to identify the 
first regime shift characteristic: abrupt changes. For 
subsequent analyses, we checked for possible col -
linearity among variables by applying the Pearson 
cor relation and a variance inflation factor (VIF) ana -
lysis, using a VIF value threshold of ≤3 (Zuur et al. 
2010). To further understand common trends in abio -
tic, biotic and cod stock dynamics, we conducted a 
principal component analysis (PCA) (Kassambra 
2017) and constrained clustering (Diekmann et al. 
2012, Juggins 2020). 

Finally, we used the stochastic cusp model, an ap -
proach that identifies the effect of 2 external drivers 
and their interactions on a state variable (in our case, 
SSB or R) in causing discontinuous dynamics (Gras-
man et al. 2009). 

magnitude =  u2 + v 2
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2.2.1.  Change point analyses 

We identified abrupt changes in North Sea cod stock 
dynamics using statistical change point analyses ap-
plied to the time series of SSB. Different change point 
approaches exist that encompass distinct statistical 
concepts and, hence, often the change points identified 
in a time series vary slightly. Therefore, we applied 2 
common methods and only ac cepted change points if 
both methods detected a change point at approxi-
mately the same time (±1 yr). The Bayesian change 
point analysis (Erdman & Emerson 2007) uses a Baye -
sian approach to estimate the probability of change in 
a specific year of a time series. The ‘bcp’ function (Erd-
man & Emerson 2007) uses the Markov chain Monte 
Carlo approach to calculate the posterior probability 
that the posterior means before and after the change 
point differ significantly (Erdman & Emerson 2007). 
Given large yearly oscillations in the SSB time series, 
we define years with a posterior probability >0.7 to be 
a significant change point. Secondly, we used the 
‘cpt.mean’ function (Killick & Eckley 2014) using the 
‘BinSeg’ method (Scott & Knott 1974). ‘BinSeg’ 
searches for a maximum number of change points us-
ing a multiple change point search. A statistical single 
change point test is then performed for the entire data 
series. The method encompasses splitting the time 
 series into 2 at the detected change point. The proce-
dure is repeated until no further change points are 
found in the time series (Killick & Eckley 2014). 

2.2.2.  PCA and constrained clustering 

We performed a PCA to understand how the biotic 
community and abiotic variables changed over time, 
which variables are most strongly associated with 
these changes and to identify the main mode of vari-
ability for these changes. A PCA extracts the main 
modes of variability from a multivariate data set by 
creating new variables, the so-called principal com-
ponents, which represent a linear combination of the 
original variables (Kassambra 2017). Here, we first 
scaled the data for normalizing and then applied the 
PCA on 3 data matrices: (1) all abiotic and biotic vari-
ables combined, (2) abiotic variables only and (3) 
biotic variables only. Cod SSB and R were treated as 
supplementary quantitative variables in the analy-
ses, meaning they were not included in the PCA cal-
culations but are still shown in the results. For each 
case, we extracted principal components 1 (PC1) and 
PC2 to represent general abiotic and biotic trends 
over time. To determine clusters of years with similar 

patterns in abiotic and biotic variables, we applied 
constrained hierarchical clustering (Diekmann et al. 
2012, Juggins 2020) to the time series, using pairwise 
Euclidean distances among years. Clusters were dis-
tinguished using graphical interpretation of con-
strained incremental sum of squares clustering 
(CONISS) broken stick and CONISS cluster plots. 

2.2.3.  Stochastic cusp modelling 

As a focus of our analysis, we used the stochastic 
cusp model to test for discontinuous dynamics in 
North Sea cod. The model is based on catastrophe 
theory implying a canonical cusp form and describes 
abrupt changes between equilibria of a state variable 
(zt) due to changes in 2 control parameters (α, β). In 
this way, the cusp is efficient in finding abrupt 
changes despite continuous and small changes in 
these control para meters. Parameter α is the so-
called asymmetry para meter and affects the dimen-
sion of the state variable (e.g. SSB) directly and can 
be managed through policy; e.g. F  (Fig. 1) (Grasman 
et al. 2009, Sguotti et al. 2019). The control parameter 
β, the so-called bifurcation variable or splitting factor 
(e.g. R or SST), determines the path of the relation-
ship between the state variable and the asymmetry 
para meter, which can change from linear to non-lin-
ear continuous (logistic) to discontinuous (Fig. 1a) 
(Grasman et al. 2009, Sguotti et al. 2019). Hence, by 
using the stochastic cusp model, the interactive effect 
of 2 simultaneous or cumulative drivers on the state 
variable can be determined (Diks & Wang 2016, 
Sguotti et al. 2019). 

The rate of change of this relationship is repre-
sented by the following cubic equation: 

                                                                             (2) 

where V(zt;α,β) is a potential function with the 2 con-
trol parameters (α, β) affecting the system state (zt). 
The function provides a scalar for each state of zt and 
vector of the control variables (Wagenmakers et al. 
2005). The function’s slope represents the rate of 
change of the system zt depending on α and β (Gras-
man et al. 2009, Sguotti et al. 2019). 

Given stochasticity in empirical data and natural 
processes (Sguotti et al. 2020), white noise in the 
form of a Wiener process is added to transform Eq. (2) 
into a stochastic differential equation. It is assumed 
that Eq. (2) governs the state variable (zt) and that the 
driving noise includes the variance σ2

z. If the derivate 
of Eq. (2) equals 0, the system is at equilibrium: 

V zt ;�,�( ) = 1
4

zt
4 � 1

2
�zt

2 – �zt
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                                                                             (3) 

The left-hand side represents the drift term, σz is the 
diffusion parameter and Wt is the Wiener process 
(Grasman et al. 2009, Diks & Wang 2016, Sguotti et 
al. 2019). 

Here, we applied the model twice, using SSB and R 
as the state variable, respectively. To analyze changes 
in SSB, SSB was lagged by 1 to obtain R at age 0, as 
the SSB in a given year directly affects the number 
of recruits in that year. The manageable asym metry 
parameter α was either represented by fishing pres-
sure for SSB, or by SSB for R. The splitting factor β 
was represented by the abiotic and biotic parameters 
as well as trends of the full community given by PC1s 
and PC2s. In addition, the splitting factor was pre-
dicted by a combination of abiotic and biotic PCs to 
investigate the effects of combined abiotic and bio tic 

changes on the relationship be tween the state vari-
able and the asymmetry parameter. 

Using a likelihood approach, the canonical state 
variable (zt) and parameters α and β are estimated as 
linear functions of one or more observable state vari-
ables (Eq. 4a) or independent variables (Eqs. 4b and 
4c), respectively (Grasman et al. 2009, Diks & Wang 
2016): 

                              zt = w0 + w1 SSB                        (4a) 

                    α = α0 + α1 Fishing pressure              (4b) 

            β = β0 + β1 Abiotic and/or Biotic Driver     (4c) 

where w0, α0 and β0 are the intercepts and w1, α1 and 
β1 are the slopes of the models. 

These estimated parameters were substituted into 
Eq. (3). The canonical form of the cusp function con-
tains equilibrium points, which are defined by a 

� �V z,�,�( )
�z

= �zt
3 + �zt   +�( )dt + �zdWt = 0
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Fig. 1. Stochastic cusp model representation. (a) 3D representation of the cusp model where North Sea Cod spawning stock 
biomass (SSB; state variable) depends on the 2 variables fishing mortality set by management (α) and recruitment (β), with the 
latter controlling the path of SSB (A: the linear path, B: the logistic path, or C: the discontinuous path; dashed arrow represents 
unstable equilibria). (b,c) 2D representation of the cusp model. Light blue area: the bifurcation area under folded 3D plane;  

size of points: size of SSB, with the radius scaled relative to stock size
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function of the control parameters (Grasman et al. 
2009, Sguotti et al. 2019): 

                                                                             (5) 

Eq. (5) has one solution if: 

                                 δ = 27α2 – 4β3                             (6) 

δ is Cardan’s discriminant, which distinguishes the 
different possible solutions in the number of equilib-
ria, i.e. one equilibrium if δ > 0 and 3 if δ < 0 (Grasman 
et al. 2009, Diks & Wang 2016, Sguotti et al. 2019). 

The ‘cusp’ model R package computes linear, logis-
tic and cusp models simultaneously. For the linear 
model, a simple linear regression is performed (Gras-
man et al. 2009): 

        zt = β0 + β1 Abiotic and/or Biotic Driver + εt    (7) 

where zt and β are as defined in Eqs. (4a) and (4c) 
and ε reflects the statistical noise. 

The logistic curve is fitted to the data using the 
maximum likelihood under the assumption of normal 
errors (Grasman et al. 2009), using the following 
equation: 

                                          (8) 

where zt, α and β are defined as in Eqs. (4a), (4b) and 
(4c), and ε represents the statistical noise. 

The ‘cusp’ model R package produces a 3D surface 
as an outcome, which shows linear, logistic and dis-
continuous relationships between the state variable 
and the control parameters (Fig. 1). These 3 relation-
ships are tested statistically against each other. In 
addition, the discontinuous path includes a folded 
area, the so-called bifurcation set (Grasman et al. 
2009, Sguotti et al. 2019). The 3D surface can be visu-
alized in 2D, where the bifurcation set (area of insta-
bility) is highlighted in blue and the α and β parame-
ters are on the x- and y-axis, respectively (Fig. 1b,c). 
Points within the bifurcation area represent the un -
stable state of the system (δ > 0). At the boundary of 
the bifurcation set, Cardan’s discriminant (δ) equals 
zero. Points outside of the bifurcation area indicate 
the stable alternate states and high resilience to pres-
sures. If the relationship is indeed discontinuous, the 
path runs through the bifurcation area and might 
indicate the presence of hysteresis (Diks & Wang 
2016, Petraitis & Dudgeon 2016). 

Given the high number of covariates and their 
combinations representing β, we performed a model-
selection procedure using a combination of an infor-

mation-theoretic approach (Burnham & Anderson 
2002) and the classical stepwise model selection. 
Five models each were specified a priori for SSB and 
R and then modified using backward and forward 
selection. A total of 14 and 13 models for SSB and R 
were tested, respectively (see Table S1 for all model 
outcomes). 

We validated the cusp model outcomes according 
to criteria recommended by Grasman et al. (2009) 
and developed by Cobb (1998). First, we assessed 
whether the cusp fit is superior to a linear or a logistic 
regression based on the goodness of fit, using Cobb’s 
pseudo-R2 and Akaike’s information criterion (AIC). 
Secondly, we determined the significance of the state 
variable slope coefficient, which should be signifi-
cantly different from zero. Thirdly, the percentage of 
observations (α and β pairs) within the bifurcation 
area should at least be 10% (Cobb 1998, Grasman et 
al. 2009). In addition, we looked at the diagnostic 
plots, which show a residual versus fitted plot, and 
density estimates of the state variable in the 2D plane 
(Grasman et al. 2009). Eventually, we chose the best-
fitting cusp models based on the highest R2 value and 
based on our focus on discontinuity and hysteresis 
presence in the state variables SSB and R to detect 
the occurrence of true regime shifts. 

We performed all analyses within the statistical 
and programming environment of R (R Core Team 
2018). The change point analyses were performed 
with the packages ‘bcp’ (Erdman & Emerson 2007) 
and ‘changepoint’ (Killick & Eckley 2014). The PCA 
was conducted using the packages ‘stats’ (R Core 
Team 2018) and ‘factoextra’ (Kassambra & Mundt 
2019), the constrained clustering method was sup-
ported by the packages ‘vegan’ (Oksanen et al. 2020) 
and ‘rioja’ (Juggins 2020) and the stochastic cusp 
modelling was implemented with the package ‘cusp’ 
(Grasman et al. 2009). 

3.  RESULTS 

3.1.  North Sea cod stock dynamics 

North Sea cod stock experienced a strong decline 
in SSB and R beginning the early 1970s (Fig. 2). We 
determined major abrupt changes in SSB in 1975 and 
2006 using statistical change point analysis, indica-
ting 3 regime periods (Fig. 2a). The first regime was 
characterized by a steep increase in SSB followed by 
a decline. The initial regime was the only period 
within the study period where the SSB was above all 
biomass management reference points, indicating a 
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sustainable stock size. Within the second regime, 
SSB declined continuously until 2005, crossing all re -
ference points. After 2006, SSB increased slightly but 
did not recover above MSY B trigger. R showed a simi-
lar development as SSB until the end of the second 
regime but remained low during the third re gime 
(Fig. 2b). F was above the reference point FMSY dur-
ing the whole assessment period (Fig. 2c). Fishing 
pressure constantly increased until the late 1990s 
and subsequently declined in the early 2000s, but 
never reached the present management target of 
FMSY. In recent years, F has increased again. 

3.2.  North Sea ecosystem changes 

A major question in our study was how cod stock 
dynamics are embedded in overall ecosystem devel-
opments in the North Sea. We divided the ecosystem 
into biotic (Fig. 3) and abiotic (Fig. 4) dynamics. 
Major changes in large and small copepods took 
place around the 1980s, implying a strong decrease 
in their abundance (Fig. 3a,c). A strong increase in 
phytoplankton (Fig. 3b) in the late 1980s was fol-
lowed by a strong decline and increase in dinoflagel-
lates (Fig. 3d) and diatoms (Fig. 3e), respectively, 
from the 2000s onwards. 

Similar developments with major changes in the 
1980s and 2000s took place in the abiotic environment 
(Fig. 4). The NAO, the inflow and overall wind and 
current speeds increased steadily from 1980 on wards, 
shown by a switch from a negative to a positive anom-
aly (Fig. 4a,c,e,g). The AMO, SBT and SST (Fig. 4b,d,f) 
showed increases later in time, around 2000. 

For an overall understanding of the ecosystem de -
velopments, we conducted a comprehensive assess-
ment of North Sea ecosystem changes using PCA 
based on these biotic and climatic variables (Fig. 5). 
Our correlation and VIF analyses revealed that SST 
and AMO could be removed from the analysis. The 
analysis, including all relevant biotic and abiotic 
variables (Fig. 5), revealed a main ecosystem compo-
nent (PC1) that increased continuously over the 
entire study period (Fig. 5a, see Fig. S1 & S2 in the 
Supplement at www.int-res.com/articles/suppl/m713
p133_supp.pdf for distinct biotic and abiotic PCA). 
The main variables contributing to PC1 were phyto-
plankton (represented by the phytoplankton colour 
index), the North Sea inflow and the NAO. Both 
phytoplankton and the inflow showed an abrupt 
increase in the early 1980s and the 1990s, respec-
tively (Fig. 4). PC2 remained relatively stable until 
the late 1990s and subsequently experienced an 
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abrupt change to a lower level (Fig. 5b). Variables 
mainly associated with PC2 were climatic and lower 
trophic level variables like SBT, diatoms and small 
copepods. In particular, the temperature variables 
were negatively correlated with PC2. 

We separated 3 main periods in the North Sea eco-
system using constrained clustering on these PCA 
results (Fig. 5c,d). These periods coincided with the 
major changes in the abiotic and biotic variables. A 
first (1963−1984) and a third cluster (2001−2017) 
demonstrated opposite configurations in the ecosys-
tem. A large and productive cod stock (high SSB and 
strong R) and high abundances of copepods were 
characteristic of the first period, but all variables 
have recently shown low values. The recent period 
was characterized by increased AMO, wind and cur-
rent magnitudes, inflow and temperatures in the 
North Sea, while the initial period could be described 
as a cold regime. The second cluster (1985−2000) re -
presented the transition between the 2 more extreme 
periods. 

3.3.  Discontinuous cod stock dynamics 

The main aim of our study was to understand North 
Sea cod SSB and R dynamics and detect potential 

regime shift dynamics. We modelled the interactive 
effects of biotic and abiotic changes with (1) F on SSB 
and (2) SSB on R. We used the stochastic cusp model 
approach to investigate the effect of the interactions 
between these drivers on SSB and R and also to test 
for regime stability and potential irreversibility or 
hysteresis of the system. Our model-selection proce-
dure revealed for SSB, 5 and for R, 2 relevant cusp 
models, implying discontinuous dynamics (Table 2). 
All models display heterogeneous distributions of the 
residuals and have a low AIC compared to the linear 
and logistic models. The discontinuous dynamics in 
the models with SSB as the state variable were strong 
since the R2 values of the cusp models were much 
larger than those of the logistic models. In contrast, 
the cusp models with R have R2 values that were only 
slightly larger than those of the logistic models 
(Table 2, Cobb’s pseudo-R2). 

First, we analyzed the dynamics of SSB as a 
function of the interaction between R and F (Fig. 6a). 
At the beginning of the time series, R was high, F was 
low and SSB was high and within the unstable area. 
Afterwards, the cod stock reached a stable state (out-
side the bifurcation or cusp area) characterized by 
high SSB values and high R and F. During the last pe-
riod, F decreased, R reached constant low levels and 
SSB entered the unstable area where 3 equilibria are 
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Fig. 3. Biotic North Sea ecosystem changes. Anomalies in the 
biotic community of (a) small copepods (counts), (b) phyto 
plankton (phytoplankton colour index), (c) large copepods  

(counts), (d) dinoflagellates (counts), (e) diatoms (counts)
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possible. These results show that SSB went through 
discontinuous dynamics, implying  hysteresis. 

In the next set of stochastic cusp models, we used 
indicators of abiotic and biotic variables as splitting 
factors to test how these indirectly interact with F 
to steer SSB dynamics (Fig. 6b−d). We identified 3 
cusp models that show a similar pattern and high-
light the importance of climatic influences such as 
wind magnitude and temperature through the over-
all PC2 (Fig. 6b) and SBT (Fig. 6d), which are strongly 
related to changes in NAO (Fig. 6c). In the first period, 
F and the climatic variables (overall wind speed, 
temperature, NAO) were low and SSB was high. 
Subsequently, F and the temperature, overall wind 
speed and the NAO index, representing stronger 
westerly winds, increased, whereas SSB reached 
slightly lower levels. Initially, the climatic variables 
continued to increase, F decreased and SSB resided 
in an unstable low state. 

Our next model incorporated the interaction of 
large copepods (as important prey for cod develop-

ment) and F and their effect on SSB (Fig. 6e). During 
the first 2 periods, F increased, the levels of copepods 
remained high and SSB remained outside the cusp 
area. Subsequently, large copepods declined, F was 
re duced and SSB entered the cusp area. Here, again, 
SSB was trapped in an unstable state in the last 
period. All these models showed that SSB is 
presently in a low state and trapped in the unstable 
area. 

Our first 4 models suggest that environmental driv-
ers are important for the dynamics of North Sea cod 
and that low levels of R hinder the recovery of SSB. 
Thus, in a second set of models, we studied how en-
vironmental drivers affect R to determine the under-
lying causes that are keeping R low. First, we investi-
gated the additional effect of PC1 (phytoplankton, 
inflow, NAO, large copepods) and PC2 (SBT, overall 
wind magnitude, SST) resulting from the common 
PCA of biotic and abiotic variables and SSB on R 
(Fig. 6f). The model showed an initial de crease of 
high SSB coupled with increases of the environmen-
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Fig. 4. Abiotic North Sea ecosystem changes. Anomalies in 
the abiotic variables (a) North Atlantic oscillation (NAO), 
(b) Atlantic Multidecadal Oscillation (AMO), (c) inflow (Sv), 
(d) sea bottom temperature (SBT; °C), (e) wind speed (m 
s−1), (f) sea surface temperature (SST; °C), and (g) current  

speed (m s−1)
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tal variables, and decreasing R switching from out-
side the bifurcation area into the unstable bifurcation 
area. Within the last period, SSB levels in creased 
slightly, whereas the PC variables in creased further 
and R remained in the instability area. 

The previous model highlighted that the interac-
tion of abiotic and biotic variables caused changes in 
R dynamics. Subsequently, we studied the effect of 
changes in small copepods as possible effects on cod 
R since they are important prey items (Fig. 6g). At the 
beginning of the time series, small copepods were 
highly abundant, SSB was high and R was in the 
unstable area but was high as well. In the next 
period, both SSB and the abundance of small cope-
pods decreased and R entered the stable area. In the 
last period, SSB increased slightly, the abundance of 
small copepods remained low and R was in the 
unstable area, close to the border of tipping towards 

stability. This supports the results of the previous 
model and highlights that biotic and abiotic variables 
are relevant to model R, which underwent hysteresis 
and is, at present, in a very low state and inside the 
instability area. 

4.  DISCUSSION 

In our study, we demonstrated that North Sea cod 
experienced regime shifts in SSB and R, including 
hysteresis, despite reduced F. Low cod R together 
with unsustainable fishing pressure caused a failed 
cod recovery. Our results also suggest that low R was 
the result of North Sea ecosystem changes at lower 
trophic levels, e.g. in phytoplankton and zooplank-
ton productivity, due to climate-induced temperature 
rise and global changes. We demonstrated how 
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changes in the ecosystem context can limit the recov-
ery of an already depleted fish stock, impeding man-
agement measures, which is important information 
for ecosystem-based fisheries management. 

Our analyses of the ecosystem components (envi-
ronment and lower trophic levels, i.e. phytoplankton 
and zooplankton) confirmed the major regime shift 
identified in the North Sea during the 1980s (Fro-
mentin & Planque 1996, Reid & Edwards 2001, Alheit 
et al. 2005, Edwards et al. 2013, Reid et al. 2016). The 
regime shift was caused by an increase in water tem-
perature, also reflected by positive changes in the 
global climate indices NAO and AMO (Beaugrand et 
al. 2002). These changes affected and increased the 
overall wind magnitude from the west and the North 
Atlantic inflow, which influence the lower trophic 
levels such as phytoplankton and zooplankton in the 
North Sea (Fromentin & Planque 1996, Reid et al. 
2001, 2003). Phytoplankton biomass increased sub-
stantially and changed from a diatom-dominated to a 
dinoflagellate-dominated assemblage (Beaugrand & 

Reid 2003, Beaugrand 2004, Alheit et 
al. 2005, Reid et al. 2016). Shifts in 
phytoplankton combined with the in-
crease in water temperature induced 
changes in the zooplankton com -
munity. Specifically, a temperature-
induced increase in warm-water spe-
cies and a decrease in cold-water 
species took place, and the phyto-
plankton increase induced a reduc-
tion in Calanus finmarchicus and an 
in crease in C. helgo landicus abun-
dance. The former is a major prey 
species for young cod, wherefore the 
regime shift in the 1980s was the first 
to be recognized as being related to 
Atlantic cod survival in the North Sea 
(Beaugrand et al. 2002, 2003). How-
ever, the association between the 
NAO and changes in Calanus species 
in the North Sea were only detected 
for the shift in the 1980s (Fromentin & 
Planque 1996). After the shift, a 
space−time decoupling took place for 
C. finmarchicus and the effect of in-
creasing temperatures overshadowed 
the effects of the NAO, leading to fa-
vourable conditions for C. helgolandi-
cus (Montero et al. 2021). 

Our results add to earlier studies re -
vealing regime shifts and hysteresis 
in North Atlantic cod stocks re lated to 

the interaction of fishing pressure and temperature 
changes (Sguotti et al. 2019, 2020, Möll mann et al. 
2021). In addition to temperature as a proxy for cli-
matic changes, we used distinct environmental and 
biological drivers in the models to understand why 
the North Sea cod remained in a low state. We found 
that SSB recovery is limited by the inter action of F 
and external abiotic and biotic dynamics such as in -
creasing temperature and decreasing abundance of 
large copepods. Increasing temperatures play an im -
portant role for the life history traits of cod, causing 
faster growth rates and a decrease in age of maturity 
(Drinkwater 2005, Righton & Metcalfe 2019). In addi-
tion, fecundity and cod condition in crease with 
increasing bottom temperature (Rose 2019). The SSB 
is currently trapped in a low state and, given ex -
pected further increases in external drivers such as 
water temperatures (IPCC 2022), the recovery poten-
tial of SSB is low. 

We have also shown that cod SSB recovery de -
pends strongly on R. R has been at low levels within 
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zt         α              β              Model       AIC        Δ AIC     Cobb’s       % within  
                                                                                        pseudo-R2   bifurcation  
                                                                                                                  area 
 
SSB     F     Recruitment     Linear    1350.29   1228.75      0.36             36.36 
                                           Logist     1346.54      1225         0.43                   
                                           Cusp       121.54          0            0.50                   

SSB     F            PC2           Linear    1371.17   1249.63      0.06                   
                    biotic and      Logist     1366.35   1244.81      0.17             50.91 
                      abiotic         Cusp       143.03      21.49        0.54                   

SSB     F           NAO           Linear    1367.10   1245.54      0.13             45.45 
                                           Logist     1365.46   1243.92      0.19                   
                                           Cusp       144.76      23.22        0.56                   

SSB     F            SST            Linear    1365.23   1243.69      0.16             40.00 
                                           Logist     1364.09   1242.55      0.21                   
                                           Cusp       142.67      21.13        0.46                   

SSB     F            SBT           Linear    1364.50   1242.96      0.17             36.36 
                                           Logist     1365.67   1244.13      0.18                   
                                           Cusp       138.46      16.92        0.35                   

SSB     F          Large         Linear    1359.96   1238.42      0.24             52.72 
                    copepods       Logist     1361.59   1240.05      0.29                   
                                           Cusp       132.90     Nov 36       0.40                   

R       SSB    PC1 + PC2      Linear    1552.08   1453.61      0.43             83.33 
                    biotic and      Logist     1547.09   1448.62      0.50                   
                      abiotic         Cusp        98.47           0            0.58                   

R       SSB        Small          Linear    1560.96   1462.49      0.31             50.00 
                    copepods       Logist     1550.31   1451.81      0.45                   
                                           Cusp       166.80      68.33        0.49

Table 2. Stochastic cusp model outcomes. Statistical results of selected cusp 
analyses; zt: state variable; α: asymmetry parameter; β: bifurcation parameter; 
AIC: Akaike’s information criterion; SSB: spawning stock biomass; R: recruit-
ment; F: fishing mortality. The number of parameters were 4, 5 and 6 for all linear,  

logistic and cusp models, respectively



Blöcker et al.: Discontinuous Atlantic cod dynamics

the unstable cusp area for 20 yr due to interactions 
between low SSB and increasing climate change ef-
fects. We found that not only did changes such as in-
creases in wind speed (Stige et al. 2006) and sea tem-
perature (Planque & Frédou 1999, Rindorf et al. 2020) 
related to the regime shift in the 1980s result in main-
taining R in the low state, but also that an ecosystem 
shift in the 2000s hindered R recovery. The shift oc-
curred due to warmer sea temperatures and an asso-
ciated change from a dinoflagellate-dominated to a 
diatom-dominated phytoplankton community. In con-

trast to Lynam et al. (2017), who re ported a decrease 
in diatoms given in creased phytoplankton and de-
creased large copepods, we saw that an increase in 
diatoms is associated with in creasing positive tem-
peratures (AMO) and decreasing abundances of 
small copepods. The decrease primarily reflects a re-
duction in dinoflagellates, which are an important 
food source for small copepods (Alvarez-Fernandez 
et al. 2012). These changes in lower trophic levels 
have severe consequences for cod R. Given cascading 
effects through the food web, increased temperatures 
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Fig. 6. Abrupt changes in Atlantic cod 
stock dynamics. Results of stochastic 
cusp modelling with spawning stock 
biomass (SSB, a−e) and recruitment (R, 
f−g) as the state variables. (a) cusp 
model with fishing mortality (F) and R, 
(b) cusp model with F and overall PC2, 
(c) cusp model with F and North Atlan -
tic Oscillation (NAO), (d) cusp model 
with F and sea bottom temperature 
(SBT), (e) cusp model with F and large 
copepods, (f) cusp model with SSB and 
PC1 plus PC2 abiotic variables, (g) 
cusp model with SSB and small cope-
pods; size of points represents the size 
of SSB (a−e) and recruitment (f,g); 
light blue area indicates the bifurca-
tion area; colours show re gimes identi-
fied in SSB by statistical change points 
analyses (Fig. 2); crosses highlight last  

16 yr period
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not only cause a prey mismatch between prey size 
and young cod (Beaugrand et al. 2003) but also 
changes in the distribution and the abundance of 
prey (Righton et al. 2010). Hence, increasing temper-
atures affect cod larvae indirectly through changes in 
prey abundance and directly through reduced egg 
survival and reduced larval growth (Rose 2019). 

Under more favourable environmental conditions, 
such as lower temperatures, these cascading effects 
could reverse, and R could increase to favour a recov-
ery of the stock. In addition, the chance for recovery 
can be enhanced by further decreases in F. Environ-
mental stressors have strong bottom-up effects in 
open ecosystems (Conversi et al. 2015), but the top-
down impact of fisheries is stronger in benthic sys-
tems where cod are abundant (Kenny et al. 2009). 
Hence, reducing fishing further or even implement-
ing a fishing ban for cod may push SSB into a stable 
area with higher SSB levels, and further declines in 
the stock could be prevented. 

We have demonstrated the potential of the stochas-
tic cusp model approach to consider interactions be -
tween abiotic and biotic drivers and hence broaden 
the understanding of underlying reasons causing 
limited recovery of North Sea cod. Our study has lim-
itations, given known uncertainties within the stock 
assessment data we used (Sguotti et al. 2019). The 
stochastic cusp model approach is increasingly being 
applied in various scientific disciplines (Grasman et 
al. 2009, Diks & Wang 2016). It has only re cently 
been used in ecology and, even more recently, ap -
plied in fisheries science (Sguotti et al. 2019, 2020, 
2022, Möllmann et al. 2021). The ap proach requires 
improvement to account for autocorrelation in time 
series data, which is difficult due to the nature of the 
stochastic cusp model, which initially fits external 
variables to the asymmetry parameter, splitting and 
state variable before the potential function is fitted 
(Grasman et al. 2009). Furthermore, model com -
parison given uncertainties using AIC and Cobb’s 
pseudo-R2 needs to be improved (Sguotti et al. 2019). 
In our case, AIC and Cobb’s pseudo-R2 were always 
best for the cusp model outcome. 

Here, we studied Atlantic cod in the North Sea as 
one stock and did not distinguish between the 3 sub-
populations (Romagnoni et al. 2020). However, North 
Sea cod populations are affected differently in the 
different areas. In particular, the cod population in 
the southern North Sea is more negatively affected 
by changing temperatures given different prefer-
ences in the thermal niches between southern and 
northern cod (Righton et al. 2010). The increases in 
temperature result in a northward shift of the south-

ern boundary of cod and hence a decrease in its dis-
tribution area (Baudron et al. 2020). The combined 
effect of fishing pressure and temperature led to 
changes in the fish community’s functionality in gen-
eral, supporting an increase of functionally distinct 
species mainly in the south and an increase of func-
tionally common species in the north (Murgier et al. 
2021). The study of discontinuous dynamics in the 
spatial sphere of cod is novel and, hence, a useful 
approach to improve the understanding of North Sea 
cod dynamics and the North Sea fish community. 

Finally, our study indicates that North Sea cod ex -
perienced non-linear discontinuous population dyna -
mics. Despite decreased fishing pressure, climate-
change-induced, long-term impacts have en hanced 
the effects of abiotic and biotic drivers on the stock 
and increased the likelihood that the stock will not 
re cover. SSB and R underwent regime-shift-like, 
non-linear discontinuous dynamics and will likely 
stay in a state with low SSB and R and low re silience 
(Lotze et al. 2011). The definition of cod recovery in -
cludes an ‘increase towards a specific target’, corre-
sponding to the MSY level in EU waters (Lotze et al. 
2011). To reach the MSY, management at the EU level, 
which incorporates sustainable fishing at ICES refer-
ence levels, is required (ICES 2012b). Additionally, it 
is fundamental to understand discontinuous dynamics 
in fisheries management to prevent abrupt failures 
given linear management ap proaches.  Decision-
makers need to decide whether the newly reached 
state and its implications are desirable for the whole 
socio-ecological system de pending on North Sea cod. 
Knowing that a new state is potentially irreversible, 
policies sustaining the new state should be put in 
place, rather than trying to restore it (Sguotti et al. 
2022). Moreover, management is re quired to con-
sider abrupt changes re lated to climate change, 
especially given the steady in crease in ocean warm-
ing in the North Sea (IPCC 2022). Identifying regime 
shifts and tipping points indicate thresholds of driver 
effects, e.g. sea temperature, which could favour the 
implementation of policies avoiding shifts (Sguotti et 
al. 2022). Even though F was reduced greatly, cod 
did not recover due to profound and abrupt eco -
system changes and probably changes in prey spe-
cies composition. 

Management goals to ‘increase towards a specified 
target’, such as biomass towards an MSY level, 
should be implemented to enhance the restoration of 
a system to a more natural, robust or pristine struc-
ture (Lotze et al. 2011). Similar to cod, other North 
Sea species might experience abrupt discontinuous 
dynamics due to overfishing and climate change. 
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Hence, we highlight the importance of incorporating 
discontinuous dynamics in fisheries management ap -
proaches to achieve sustainable exploitation levels 
and to identify thresholds of drivers to favour policies 
that prevent regime shifts. 
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