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1.  INTRODUCTION 

Trophic relationships drive the function of commu-
nities, flow of energy through ecosystems, and bio-
geochemical cycles integral to the earth system 
(Lindeman 1942). Predator–prey relationships both 
re sult from and control the distribution of species, 
causing feedback loops on species’ behavior, genetics, 
and evolution (Barbosa & Castellanos 2005). Across 
diverse environments, ecological studies have re -

vealed how distributions of prey structure those of 
predators, from the inverse and cyclical population 
dynamics of lynx and snowshoe hare across Canada 
(Elton & Nicholson 1942), to multiscale distributions 
of murres and capelin in the Barents Sea (Fauchald et 
al. 2000), to penguins foraging for fish in shallow east-
ern Australian waters (Carroll et al. 2017). 

Prey in many ecosystems exist within a hierarchical 
framework of patches that contain nested spatiotem-
poral scales (Kotliar & Wiens 1990). Ecological rela-
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aging ground for humpback (Megaptera novaengliae) and other rorqual whales, but it is also an 
area that presents diverse anthropogenic threats. Clarifying the most meaningful spatial scale to 
analyze relationships between whales and krill, a key prey item, is important to understanding eco-
system function and informing research and management efforts. To examine spatially explicit 
relationships between humpback whales and krill in the NCC, we analyzed concurrent whale sight-
ings and acoustically detected krill abundance estimates collected in May and September between 
2018 and 2022. We used generalized additive mixed models to predict humpback whale occurrence 
at a series of ecologically relevant nested spatial scales: 1, 2, 5, and 20 km. We found that relative 
krill abundance at a spatial scale of 5 km had the greatest influence on humpback whale occur-
rence. Our results suggest that whale and krill relationships at the 5 km scale may be both energet-
ically profitable for whales to optimize foraging efficiency and also most detectable using our tra-
ditional methodological approaches (paired observer and echosounder surveys). We recommend 
that zooplankton prey data at the 5 km scale be incorporated into future humpback whale distribu-
tion models and considered for management applications in this region.  
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tionships between predators and prey differ depend-
ing on the scale of observation; thus, identifying the 
most relevant scales at which to observe, understand, 
and manage these relationships is complex. Ecosys-
tems are characterized by variability across a range of 
spatial and temporal scales, and the act of observation 
intrinsically biases the relationships perceived (Levin 
1992). The issue of scale is particularly pertinent in 
marine environments, which are highly dynamic and 
characterized by resource patchiness. This inherent 
complexity is evident in the divergent results of 
studies that seek to link predator and prey distribu-
tions in the marine environment. For example, incor-
porating prey data into fine-scale species distribution 
models did not improve predictions of bottlenose dol-
phin Tursiops truncatus occurrence in Florida Bay in 
the southeastern USA (Torres et al. 2008). By contrast, 
metrics of krill Nyctiphanes australis abundance im -
proved predictions of the fine-scale distribution of 
blue whales Balaenoptera musculus brevicauda in 
New Zealand’s South Taranaki Bight (Barlow et al. 
2020), and acoustic data describing the Western Ant-
arctic Peninsula preyscape improved predictions of 
relative humpback Megaptera novaeangliae and 
minke B. acutorstrata whale abundance at fine spatial 
scales (Friedlaender et al. 2006). Thus, the spatial 
scale at which prey is sampled relative to predators 
influences ecological conclusions, and proxy envi-
ronmental data may yield more informative predic-
tions when prey data at an appropriate scale are 
unavailable (Torres et al. 2008). Other studies have 
used satellite tracking and multiple descriptors of 
prey quantity to document positive relationships be -
tween fine-scale prey patches and individual whales, 
seals, and seabirds (e.g. Benoit-Bird et al. 2013, Ryan 
et al. 2022). 

Appreciating scale-dependent variability in eco-
logical relationships is essential to developing a 
sound understanding of ecosystems, and to managing 
them (Levin 1992). Such efforts may be particularly 
crucial based on the life history traits of the animals 
concerned. Humpback whales are capital breeders, 
relying on stored energy reserves to complete their 
migrations between foraging and breeding grounds, 
and to reproduce (Dawbin 1966). Exploiting prey re -
sources efficiently during the limited time spent on 
foraging grounds is key for humpback migration tim-
ing, survivorship, and reproductive success. Every 
spring, several populations of humpback whales 
(Central American, Mexican, and Hawaiian distinct 
population segments; NOAA 2016) migrate from 
low-latitude calving grounds to important foraging 
grounds in the Northern California Current (NCC) 

region off the US west coast. One of the globe’s 4 east-
ern boundary current systems, the California Current 
extends from the transition zone separating the North 
Pacific and Alaska gyres in the northern Pacific 
Ocean to Baja California, Mexico, in the south (Check-
ley & Barth 2009). Wind-driven upwelling drives sea-
sonal nutrient input and high biological productivity 
both along the continental shelf and offshore, sup-
porting krill and other zooplankton as well as pred-
atory fish, seabirds, cetaceans, and pinnipeds (Check-
ley & Barth 2009). Two species of krill, Euphausia 
pacifica and Thysanoessa spinifera, are abundant in 
this region and are targeted by foraging rorqual 
whales, including humpback whales (Brinton 1962). 

Krill are patchily distributed and undergo diel verti-
cal migration, taking refuge from predators at depth 
during the day and moving to the surface to feed at 
night (Brinton 1967). Humpback whales are capable 
of prey-switching in response to changes in prey com-
position and availability driven by oceanographic and 
environmental conditions. Humpback whales target 
krill during positive phases of the North Pacific Deca-
dal Oscillation (PDO) and switch to foraging on 
schooling fish during negative phases of the PDO 
(Fleming et al. 2016). This ability to prey-switch can 
create complex predator–prey dynamics and in -
crease the risk of whale–fishery interactions. For 
example, anomalously low krill abundance in the cen-
tral California Current region during a 2014–2015 
marine heatwave led humpback whales to target 
inshore anchovy schools, resulting in an increase in 
fisheries entanglement events (Santora et al. 2020). 
Humpback whales also change the depth at which 
they forage based on vertical prey availability. In 
particular, they may target shallower prey when 
available to reduce the additional energetic costs of 
feeding at depth, which requires longer dives and ex -
tended breath holding (Goldbogen et al. 2012, Fried-
laender et al. 2013, Tyson et al. 2016, Nichols et al. 
2022). 

Recent work has examined humpback–prey rela-
tionships at multiple scales in the broader California 
Current large marine ecosystem (CCLME), with the 
aim to enhance understanding of ecosystem function 
and inform ecosystem-based management (e.g. Flem-
ing et al. 2016, Rockwood et al. 2020, Santora et al. 
2020). A multiscale study utilized telescoping spatial 
scales (25, 50, and 100 km) and incorporated multiple 
prey types (herring, anchovy, krill) to describe rela-
tionships between humpback whales and prey across 
the CCLME (Szesciorka et al. 2023). While whale 
abundance was not strongly correlated with prey bio-
mass, models based on the number of proximate prey 
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hotspots had stronger predictive capacity (Szesciorka 
et al. 2023). Clarifying the most meaningful spatial 
scale at which to analyze humpback–prey relation-
ships in this region is important to understanding 
ecosystem function, anticipating humpback whale re -
sponse to climate change, and informing research 
and management. 

Whales throughout the CCLME are threatened by 
diverse anthropogenic impacts, including entangle-
ment, ship strikes, noise, water quality, and marine 
debris (Oldach et al. 2022). Hence, there is a direct 
management need to understand the impactful scales 
of relationships between whales and prey in the NCC 
region (Derville et al. 2023). Krill is abundant relative 
to other prey types in the NCC region (Szesciorka et 
al. 2023), and E. pacifica and T. spinifera (hereafter 
‘krill’) are considered the main component of the 
preyscape for humpback whales. In this study, we 
explore humpback–krill relationships and clarify the 
meaningful spatial scales at which these relationships 
operate in the NCC region. We use a data set of con-
current daytime humpback whale visual observations 
and acoustically derived krill abundance estimates 
collected during May and September over 4 years 
(2018–2022) to model relationships across multiple 
spatial scales, with the objective of identifying the 
most relevant scale of prey driving humpback whale 
distributions. We also conducted a parallel analysis 
using additional fin whale and unidentified rorqual 
whale observations to learn about the stability of 
these predator–prey relationships for all rorqual spe-
cies in the NCC (see the Appendix). By using data 
from standardized surveys that are repeated both intra- 
and interannually, we can quantify these predator–
prey relationships in the NCC region at broader spa-
tiotemporal scales than previous studies and charac-
terize variability to enable predictions of future change. 
Using data collected through a time series of long-
term standardized repeated surveys offers the oppor-
tunity to identify trends in predator–prey interac-
tions that short-term studies cannot provide. 

As humpback whales visit our study area to feed, we 
expected predator–prey overlap to become more 
congruent as spatial scales reduce. Therefore, we 
hypothesized that associations between whales and 
krill during the day are strongest at the finest spa-
tial scales and decline at increasing scales (1 > 2 > 5 > 
20 km). As no common definition of scale resolution 
from fine to coarse exists across the fields of oceanog-
raphy and spatial ecology (e.g. Stommel 1963, Man-
nocci et al. 2017, Torres 2017), we refer to 1 and 2 km 
as very fine scale, 5 km as fine scale, and 20 km as 
mesoscale. 

2.  MATERIALS AND METHODS 

2.1.  Whale data collection and processing 

From 2018 to 2022, marine mammal observers col-
lected cetacean distribution data during research 
cruises aboard the NOAA Ship ‘Bell M. Shimada’. 
These cruises were conducted in May and September, 
and they transited between La Push, WA, to Crescent 
City, Trinidad, or San Francisco, CA, USA, sampling 
oceanographic stations up to 200 nautical miles (nmi) 
offshore (Fig. 1). Observers collected data during 
transits between oceanographic stations, following a 
distance sampling protocol (Buckland et al. 2015). A 
handheld GPS was used to record the trackline of the 
ship, which was subsequently interpolated to 1 posi-
tion every 30 s to ensure consistency across surveys. 
Survey speed averaged 10 knots, with occasional 
periods of 5 knot travel due to other research needs. 
Observers (typically 2) were positioned on either side 
of the vessel’s flying bridge, 13 m above the waterline; 
during poor survey conditions, they would transition 
to the bridge, 10.5 m above the waterline. During on-
effort survey periods, observers constantly scanned 
from the ship to the horizon for animals, using bin-
oculars at least 30% of the time. Individual whales 
were identified to species if a positive visual ID was 
possible and were recorded as unidentified if not. 
Group sizes were estimated conservatively based on 
the number of simultaneous observations of whales 
within a sighting. In addition, the angle of the animal 
to the trackline at the point of first observation was 
estimated and recorded. Radial distance was esti-
mated visually for animals within 1 km and by using 
binocular reticles for those farther away (Fujinon 7 × 
50s). These data were used to trigonometrically de -
rive geographic coordinates of the sighted whales 
using the ‘geosphere’ R package (version 1.5-14). 
Whale groups that included either humpback whales 
or unidentified rorqual whales were considered for 
further analysis (see Table 1, Fig. 1). 

2.2.  Acoustic data collection and processing 

Acoustic data were collected via hull-mounted, 
downward-looking Simrad EK60 (in 2018) and EK80 
(in 2019–2022) narrow-band split-beam echosounders 
operating at multiple frequencies (18, 38, 70, 120, and 
200 kHz). Data were recorded continuously from the 
surface to a depth of 750 or 1000 m using a 1.024 ms 
narrow-band pulse at rates ranging between 1 ping s–1 
to 1 ping per 8 s, depending on bottom depth. 
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Acoustic data were processed using Echoview (ver-
sion 13.1; Echoview) following the workflow de scribed 
in Phillips et al. (2022). Background noise was esti-
mated based on the mean volume backscattering 
strength (MVBS or Sv; dB re 1 m–1) in 40 ping × 10 m 
cells and was removed by subtracting estimated back-
ground noise from the original signal using a maximum 
noise threshold of –125 dB and a 10 dB signal-to-noise 
ratio threshold (De Robertis & Higginbottom 2007). 
Impulse noise spikes were re moved using a ded-
icated Echoview operator. The bottom was detected 

acoustically and corrected manually as needed to omit 
seafloor echoes and bottom intrusion, which was mini-
mized by a 2 m offset. In addition, data within 30 m 
of  the water surface were omitted to remove surface 
noise and bubbles and to account for the near-field 
range of the 38 kHz echosounder. Though this ex -
clusion may omit krill backscatter near the sea surface 
and seafloor, our study focused on daytime distribu-
tions of adult krill, which have been shown to primarily 
occur between approximately 100 and 250 m (Mackas 
et al. 1997, Phillips et al. 2022). Data from below a 
depth of 300 m were excluded to account for a de-
creased signal-to-noise ratio with depth, especially for 
the 120  kHz frequency. Acoustic data were also 
omitted when vessel speeds dropped below 5 knots. 
Data are reported as nautical area scattering coeffi-
cient (NASC; m2 nmi–2), which is a relative index of 
abundance and a proxy for biomass. Because the data 
were collected using uncalibrated echosounders, we 
did not attempt to compare overall abundance of krill 
between years but instead focused on relationships 
between relative krill abundance and whales within 
each survey. 

2.3.  Krill identification and quantification 

We used frequency differencing to classify krill in 
the acoustic data, based on published ranges for krill 
in the North Pacific (De Robertis et al. 2010) and pre-
vious efforts in the region (Phillips et al. 2022). We 
first aligned our data in Echoview by matching 120 
kHz cells to 38 kHz cells in space and time using ping 
times and sample geometry, and we used a ΔMVBS120-38 
range of 10.0–16.3 dB to classify krill from other 
backscatter. We then used an integration threshold of 
–70 dB to export georeferenced volumetric Sv and 
NASC at 120 kHz, integrated in 10 × 10 m bins. 

These data were scrutinized for possible contami-
nation by noise spikes or inclusion of targets like 
small fish with swim bladders by visually examining 
cells with mean Sv values between –35 and –45 dB 
and removing noise manually if needed. Cells with an 
Sv value of –80 dB or below were then set to 0 to omit 
weak signals that represented less than 3–4 krill m–3 
(Phillips et al. 2022). Due to zero inflation, we logged 
the krill NASC data for further analyses. 

2.4.  Whale–krill analysis 

To examine in situ relationships, georeferenced 
whale and krill data were matched in space and time. 
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Fig. 1. Concurrent echosounder data and whale surveys 
(gray lines) in the Northern California Current region off 
northern California, Oregon, and Washington (US West 
Coast). Red dots: humpback whale groups included in 
Models 1–4; light blue dots: additional humpback whale 
groups included in the final model (Model 5); gray dots: 
other rorqual whale observations (see Appendix for results 
of rorqual–krill models). Isobaths (50, 100, 500, 1000, and 
1500 m) are represented by gray lines (deeper isobaths are  

shown in progressively lighter colors)
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Krill data were restricted to daytime (1 h after sunrise 
to sunset) on-effort periods of concurrent whale 
observations. Due to sample size limitations, only 
humpback whale observations associated with con-
current krill data were included in our hierarchical 
scale analysis. All analyses were conducted in R 4.2.3 
(R Core Team 2023). The data were projected in 
the Universal Transverse Mercator system, and con-
centric circles (hereafter referred to as buffers) with 
radii of 1, 2, 5, and 20 km were drawn around all ror-
qual whale observations (Fig. 2; ‘sf’ R package, ver-
sion 1.0-8). Given that only humpback whales were 
included in this analysis, krill data in the vicinity of 
other rorqual whales (e.g. blue, fin, or unidentified 
whales) that also target krill patches were removed in 
order to ensure the preyscape surrounding our spe-
cies of interest (humpback whales) was compared to 
control conditions when no whales were present. Krill 
data were assigned as being within or outside the area 
of each buffer, and we plotted the vertical distribution 
of relative krill abundance within each of the 4 buffer 
sizes. Based on these vertical distribution plots, NASC 

was averaged within 30–50, 50–100, 100–200, and 
200–300 m depth bins calculated within each buffer 
for further comparisons to humpback whale observa-
tions. We checked for cross-correlation between 
depth bins and found a maximum Pearson’s pairwise 
correlation of 0.36, indicating that we could retain 
all  4 depth bins for modeling purposes (‘corrplot’ 
R  package, version 0.92). Be cause whales were lo -
cated at varying distances from the trackline, the 
amount of underway acoustic data included within 
each buffer varied across sightings but always ex -
ceeded 100 m of on-effort horizontal trackline (e.g. at 
the 1 km scale, between 18 and 215 bins of 10 m NASC 
data points were included). 

To compare and quantify the relationships between 
krill and humpback whales at 4 spatial scales, we gen-
erated generalized additive mixed models (GAMMs, 
‘mgcv’ R package version 1.8-42; Wood 2011) quanti-
fying the probability of humpback whale occurrence 
(a presence–absence binomial response) in relation 
to krill relative abundance measured at 1, 2, 5, and 
20  km. GAMMs use data-defined smoothing ele-
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Fig. 2. Schematic representation of the inputs to the hierarchical scale and final models. The distance thresholds for included 
observations (coarse dashed lines) are illustrated around the ship’s trackline (fine dashed line). Echosounder data along the 
trackline may be inside the buffers (black) or outside (gray), depending on model spatial scale. Buffer radii drawn at increasing 
spatial scales (circles color-coded from 1 to 20 km) are drawn around humpback whale observations (black stars). The leftmost 
panel represents the data included in the 1 km ‘very fine scale’ model; model spatial scale increases moving right. The right- 

most panel represents the inputs for the final, fine scale model. This schematic is not drawn to scale
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ments to model non-linear responses to a set of pre-
dictors (Elith & Leathwick 2009). We selected GAMMs 
for their capacity to adeptly represent realistic eco-
logical relationships and accommodate complex inter-
actions between species distributions and environ-
mental variability (Torres et al. 2008), which makes 
them useful for modeling marine mammal distribu-
tions (Derville et al. 2018, Orphanides et al. 2023, Sze-
sciorka et al. 2023). Cruise ID was included as a ran-
dom effect in the models to account for variability in 
effort and environmental conditions between sur-
veys. The influence of krill vertical distribution was 
included using an interaction term between krill 
NASC and depth bin. Whale group size was ac -
counted for through weights equal to the number of 
individuals comprising a whale group within a given 
spatial scale so that fitted trends would be more 
strongly driven by large groups of foraging whales 
than by singletons. GAMMs were fitted with a bino-
mial response distribution using a logit link function 
and a restricted maximum likelihood method (‘bam’ 
and ‘fREML’, ‘mgcv’ R package, version 1.8-42). The 
effect of krill relative abundance on humpback whale 
occurrence was modeled with penalized thin-plate 
regression splines with basis size limited to 5 to pre-
vent overfitting (Wood 2017). Variable selection was 
conducted with a shrinkage approach implemented 
in the ‘mgcv’ R package, which adds an extra penalty 
to each smoother and penalizes non-significant vari-
ables to zero (Marra & Wood 2011). Model fit was 
evaluated based on the percent deviance explained, 
as calculated and reported by ‘mgcv’ for a binomial 
error distribution (Wood 2011). 

Our 4 hierarchical scale models were generated 
with krill data collected across all whale survey tran-
sects, and designated as falling within 
or outside buffers (1, 2, 5, 20 km) drawn 
around a subset of humpback whale 
groups observed within 1 km of the 
trackline (n = 29 humpback whale 
groups; see Table 2). This set of hierar-
chical scale models consists of Model 1 
(1 km scale), Model 2 (2 km scale), 
Model 3 (5 km scale), and Model 4 
(20  km scale). We generated a final 
model using 5 km buffers drawn around 
a subset of humpback whale groups 
found within 5 km of the trackline (n = 
79 humpback whale groups) and krill 
data collected along the transect that 
fell within or outside these 5 km buffers 
(see Fig. 2 for a schematic representa-
tion). In addition, we also replicated 

this same approach in a supplementary analysis using 
all rorqual whale observations, which included fin 
whales, humpback whales, and unidentified rorqual 
whales (n = 235 individuals in 178 groups; Table A1, 
Figs. A1 & A2 in the Appendix; Models A1–A4) and 
their associated acoustic data in order to characterize 
these relationships more broadly for baleen whales in 
the NCC. 

3.  RESULTS 

A total of 670 rorqual whales (1–10 individuals per 
group) were sighted during 19 288 km of survey effort 
during 8 cruises between 2018 and 2022 (Table 1). 
Krill were detected throughout our study area during 
each survey (mean log-NASC over n = 580 710 bins: 
2.45 m2 nmi–2; 10.55 m2 nmi–2 unlogged), and the rel-
ative abundance of krill in the vicinity of whales 
increased with the spatial scale of observation (i.e. 
with buffer size; 1-way ANOVA, F = 3.8, df = 3, p = 
0.011; Fig. 3). Relative to concurrently observed 
whales, less krill (log NASC m2 nmi–2) was detected 
at a 1 km very fine scale (mean ± SD: 13.83 ± 0.66), 
compared to the 20 km mesoscale (28.80 ± 0.86; post 
hoc Tukey test, adjusted p-value [padj] = 0.018), and 
there was no significant difference between krill rel-
ative abundance detected at the 20 km mesoscale and 
the 5 km fine scale (post hoc Tukey test, padj = 0.541). 

The subset of humpback whale observations (n = 29 
groups of 37 individuals) made within 1 km of the 
ship’s trackline was used in Model 1 (1 km scale), 
Model 2 (2 km scale), Model 3 (5 km scale), and 
Model 4 (20 km scale). Model deviance explained 
increased with buffer size from 14.1% at 1 km, to 
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Year        Month         Effort     Effort         Humpback            All rorqual whale 
                                       (km)     (days)      whale groups          groups / average  
                                                                   used in this study     group size used in 
                                                                   (Models 1–4 / 5)    rorqual-krill models 
                                                                                                         (see the Appendix) 
 
2018         May          3516.9        9                  6 / 10                           21 / 1.9 
            September    2561.2        9                   1 / 3                             9 / 1.1 
2019         May          3015.0       10                      0                                      0 
            September    1952.5        9                   3 / 9                            22 / 2.4 
2020   September    3030.3       11                 8 / 34                           73 / 1.2 
2021         May           257.6        10                      0                                 5 / 1.7 
2022         May          3562.1       12                18 / 47                         102 / 1.2 
            September    1392.4        5                   1 / 2                               3 / 1

Table 1. Concurrent active acoustics and whale observation data collection 
(km and days) per cruise, and all rorqual whale and humpback whale groups  

observed and included in models
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18.7% at 2 km, to 25.2% at 5 km, to a maximum of 
36.0% at the 20 km scale (Table 2). However, marginal 
deviance explained, which describes the contribution 
of krill NASC to the explanatory power of the model, 
increased with scale to a maximum at the 5 km scale 
(3.8%; Model 3) and then de clined at the 20 km meso-
scale (2.5 %; Model 4). We use the amplitude of 
the  fitted response on the y-axis as an indicator 
of  variable influence, which shows that overall, krill 
positively influenced whale occurrence at all spatial 
scales and depth bins, and relationships were gen-
erally stronger at smaller scales and shallower depth 

bins (Fig. 4). In the shallowest layer (30–50 m), the 
relationship peaks for all scales at high log-trans-
formed NASC values (>5 m2 nmi–2; Fig. 4). In the 
100–200 m bin, the response curves at all scales first 
peak at a log-transformed NASC value of 2 m2 nmi–2 
and either remain generally uniform after (1 and 
20 km) or continue to increase (2 and 5 km). In the 
50–100 and 200–300 m depth bins, the in fluence of 
krill on whale presence was strongest at 5 and 20 km. 
Across all depth layers and all spatial scales, the re -
sponse curves illustrating the effect of krill on whale 
presence crossed the zero line to become positive 
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Fig. 3. Average depth distribution of krill relative abundance (nautical area scattering coefficient [NASC], m2 nmi–2) at each 
buffer radius scale surrounding the sighted humpback whales. Standard deviations are shown as horizontal bars across each  

point. Note that mean NASC values below 1 appear as zeroes on the log-transformed x-axis

Scale              Model    Buffer     Nwh           N             Conditional          Marginal          NASC              NASC               NASC               NASC              Survey 
                                          radius                (absence,        deviance             deviance        30–50 m        50–100 m      100–200 m     200–300 m                 
                                           (km)                 presence)   explained (%)    explained (%)             
 
Very fine            1              1           29        604849               14.1                       1.34          edf = 2.264,   edf = 1.002,    edf = 3.918,    edf = 2.652,    edf = 6.711, 
                                                                       (594477,                                                                   F = 236            F = 265            F = 782             F = 330           F = 1573 
                                                                         10372) 
Very fine            2              2           29        593845               18.7                       2.22          edf = 2.787,   edf = 1.230,    edf = 3.955,    edf = 3.686,    edf = 6.743, 
                                                                       (569424,                                                                  F = 2625         F = 2767          F = 4225          F = 1649          F = 3501 
                                                                         24421) 
Fine                      3              5           29        565945               25.2                       3.82          edf = 2.894,   edf = 2.948,    edf = 3.891,    edf = 3.708,    edf = 6.769, 
                                                                       (508332,                                                                  F = 3077         F = 3007          F = 8926          F = 6964          F = 7541 
                                                                         57613) 
Meso                   4             20          29        580710               36.0                       2.50          edf = 2.961,   edf = 2.980,    edf = 2.995,    edf = 2.983,    edf = 6.790, 
                                                                       (386409,                                                                  F = 2399         F = 2350          F = 3606         F = 20990       F = 20986 
                                                                        194301) 
Fine                     5              5           79        649376               26.7                       3.36          edf = 3.908,   edf = 3.577,    edf = 3.882,    edf = 3.680,    edf = 6.787, 
(final model)                                              (508332,                                                                  F = 2838         F = 2761          F = 9401          F = 9063         F = 14624 
                                                                        141044)

Table 2. Summary of humpback whale–krill association models at each spatial scale (buffer radius). For each model, we report 
conditional and marginal deviance explained, the number of humpback whale groups included (Nwh), and the absence, pres-
ence, and total number of data points in each model (N). For each smooth term (e.g. NASC 30–50 m, NASC 50–100 m, etc.) and 
the random effect (survey), we report estimated degrees of freedom (edf) and F-statistics. NASC (Nautical Area Scattering 
Coefficient, m2 nmi–2) is a relative abundance metric for krill. All approximate significance of smooth terms showed p < 0.0001
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around a mean log-transformed NASC value of 4 m2 
nmi–2 (54.60 m2 nmi–2 unlogged; note the confidence 
intervals indicating variability around the mean). 

Given that relationships between whales and krill 
were strongest at the 5 km scale based on model mar-
ginal deviance explained (Table 2), an additional 
model was run at this scale using all humpback whale 
observations that had associated krill data within 
5 km of the trackline (Model 5, n = 79 whale groups 
containing 105 individuals). We found that Model 5 
had 26.7% conditional deviance explained and 3.4% 
marginal deviance explained, showing relatively sim-
ilar performance to Model 3. In the 100–200 and 
200–300 m depth bins, partial response to krill NASC 
was similar to Model 3, while the response was 
stronger in the 30–50 m depth bin and weaker in the 
50–100 m depth bin than in Model 3 (Fig. 5). In 
models run across a larger set of all rorqual whales 
(see the Appendix), deviance ex plained increased 
from 15.6% at 1 km to 33.9% at 20 km, with a maxi-
mum marginal deviance explained of 2.6% at 5 km. 

4.  DISCUSSION 

Our study illuminates the scale-dependent rela-
tionships that exist between humpback whales and 
krill, one of their key prey items. We found that krill 
relative abundance at a spatial scale of 5 km has the 
greatest correlation with humpback whale occur-

rence in the NCC region. This result 
speaks to both meaningful scales of 
observation and ecological relation-
ships between humpback whales and 
their euphausiid prey, and it supports 
results from other modeling efforts in 
this region (Derville et al. 2022). A spa-
tial scale of 5 km is likely optimal for 
analyzing the dynamic relationships 
between humpback whales and krill, 
and it can be used to develop and 
apply spatial management regulations, 
such as state efforts to mitigate entan-
glement risk to humpback and other 
protected whale species (e.g. ODFW 
2021, 2022). 

Contrary to our hypothesis, the 
models at very fine scales (1 and 2 km) 
did not perform as well as those at fine 
and meso scales (5 and 20 km). This 
result may indicate that acoustic prey 
data at very fine scales do not fully 
contextualize the foraging environ-

ment of a  humpback whale. While the 20 km scale 
model (Model 4) had higher explanatory capacity 
than the 5 km scale model (Model 3), the influence of 
krill on whale presence was weaker, indicating that 
the 20 km scale may describe a prey environment that 
is less relevant or immediately perceptible to foraging 
whales. Mean krill NASC was not significantly greater 
at the 20 km scale than the 5 km scale, and the patch-
iness of the marine environment and tendency of krill 
to form discrete swarms (Brinton 1962) makes it likely 
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that areas of high NASC within a 20 km area are sep-
arated by more waters with minimal krill. Although a 
foraging whale may detect distant prey through che-
moreception and audition (Torres 2017), faraway prey 
patches may not be as readily perceivable to a whale 
or they may simply not be worth the energy expendi-
ture of increased travel and searching — particularly 
if the near environment remains favorable. From an 
observational standpoint, the 5 km scale may be 
coarse enough to average out fine-scale variation in 
prey density and describe the prey environment the 
whale can ‘observe’ (Levin 1992), while also being nar-
row enough that it is perceptible to a whale sensing the 
environment to locate patchy food resources (Torres 
2017). We hypothesize that a 5 km area containing 
numerous and profitable prey patches offers whales 
an opportunity to minimize interpatch travel time and 
spend more time foraging to maximize energetic gain. 

Ecologically speaking, these scale-dependent rela-
tionships between humpbacks and krill contextualize 
the landscape of choice that a humpback whale must 
navigate on the feeding grounds. Prey density must 
reach a certain threshold to elicit whale foraging 
effort and aggregation, activities which become un -
profitable below this threshold (Piatt & Methven 
1992). Optimal foraging theory predicts that an ani-
mal will choose to either maximize gained energy or 
minimize the time spent pursuing a given amount of 
energy (MacArthur & Pianka 1966). This ‘time saving’ 
approach is assumed to be adopted in favor of risk 
mitigation or the pursuit of other behaviors like re -
production (MacArthur & Pianka 1966). As hump-
back whales in our study area are on their foraging 
grounds, we assume individuals are attempting to 
maximize their gained energy by targeting the most 
advantageous krill patches. In our models, the steep 
functional response at intermediate krill relative 
abundances observed across spatial scales (i.e. near a 
log-transformed NASC value of 4 m2 nmi–2) may rep-
resent a threshold of profitability for foraging hump-
backs. At some point during foraging, any individual 
prey patch will drop below the threshold of profitabil-
ity, whether from exploitation or predator-avoidance 
behaviors by the prey, and the predator will move on 
to find a new patch (Charnov 1976). Marginal value 
theorem predicts that a predator acting to maximize 
its energetic gain will depart a prey patch when the 
marginal capture rate in the patch drops to the aver-
age for the broader environment (Charnov 1976). For 
baleen whales, which must balance the demands of 
prey capture and breath holding in a given foraging 
bout, even a prey patch above the environmental 
average may be insufficient (Hazen et al. 2015), and 

the additional costs of searching for and digesting 
prey necessitate efficient prey capture during the lim-
ited time humpback whales spend on the foraging 
grounds (Videsen et al. 2023). Areas that are profit-
able at the 5 km scale may offer the right balance 
between effort and reward, sustaining a whale above 
the threshold of foraging profitability. 

In addition, the depth of krill patches may drive for-
aging habitat selection. At very fine spatial scales, the 
30–50 m depth bin stands out as a strong predictor of 
whale presence (Fig. 4). Be cause this depth bin repre-
sents acoustic backscatter from a smaller area than 
the others due to the narrower vertical bin (20 m vs. 50 
or 100 m) and exclusion of data shallower than 30 m, 
this result may be a conservative representation of 
the influence of shallow krill patches. Foraging hump-
back whales in the Western Antarctic Peninsula pref-
erentially target shallow prey (Nichols et al. 2022), 
and feeding on near-surface krill Euphausia superba 
may allow a whale to maximize its energetic gain 
(Friedlaender et al. 2016, Tyson et al. 2016). Through-
out the period of this study, the depth of maximum 
krill abundance was centered around 170 m (Fig. 3), 
which aligns with the findings from previous studies 
in the region (Brinton 1962, Phillips et al. 2022). 
Interestingly, whale presence as predicted by the 100–
200 m depth bin exhibits a variable distribution across 
all models, likely reflecting the patchy distribution of 
krill at depth. Humpback whales can dive deeper than 
400 m (Derville et al. 2020), but they may dive more 
shallowly during the night and based on season 
(Nichols et al. 2022). While krill undergo a diel verti-
cal migration that takes them from deeper waters dur-
ing the day to the sea surface at night, our study used 
daytime visual surveys that precluded us from asses-
sing nighttime whale–krill relationships. Therefore, 
the daytime depth-based relationships we identified 
may differ from nighttime patterns. 

Overall, these findings echo previous research illus-
trating the scale dependency of predator–prey spa-
tiotemporal co-occurrence. Model outcomes depend 
upon the scales at which data are collected and ana-
lyzed (Wiens 1989), highlighting the role of method-
ology in ecological interpretation. A positive predic-
tive relationship between blue whales and acoustically 
detected krill was found in New Zealand at a 4 km 
scale (Barlow et al. 2020), similar to our study. Find-
ings from both studies contrast with Torres et al. 
(2008), who found that environmental predictors far 
outperformed prey metrics derived from net tows 
when modeling bottlenose dolphin distributions in 
Florida. Though these studies focused on different 
ecosystems and species, part of this discrepancy is 

227



Mar Ecol Prog Ser 729: 219–232, 2024

likely driven by the difference in methods for quanti-
fying prey: discrete net tows versus continuous hydro -
acoustic surveys that are more spatially comprehen-
sive and enable concurrent observation of the prey 
field in the vicinity of predators. Moreover, while sev-
eral studies using tag data with high spatial and tem-
poral resolution have shown strong relationships 
between prey and bulk-filter feeding predators (e.g. 
right whales, Baumgartner & Mate 2003; blue whales, 
Goldbogen et al. 2015), it is difficult to describe such 
fine-scale relationships based on visual survey data, 
which constitute a snapshot of predator distributions. 
The marginal deviance explained values characteriz-
ing our models are in line with other studies that use a 
visual detection approach (Lambert et al. 2019, Rece-
veur et al. 2022, Szesciorka et al. 2023). Despite the 
lack of behavioral information within our data com-
pared to that obtained by tracking studies (e.g. travel 
versus foraging states), our approach revealed rel-
evant scales of predator–prey relationships. 

Prey quality, as well as quantity, is crucial to ener-
getic gain, and humpback whales may target larger 
and reproductive krill with higher energetic value, if 
available (Cade et al. 2022). For the purposes of this 
study, all krill were considered of equal quality, and 
we relied on NASC as a proxy for krill biomass as the 
sole prey metric. However, krill quality, aggregation 
structure, and biomass density have been shown to 
shape whale foraging behaviors and patch selection 
(Friedlaender et al. 2016, Miller et al. 2019, Cade et al. 
2021). Differences between the nutritional value of 
krill species and developmental stages can have sig-
nificant consequences for the foraging success and 
distributions of humpback whales, which may prefer-
entially target the larger, more lipid-rich Thysanoessa 
spinifera, like other whale species (Fiedler et al. 
1998). Krill nutritional quality, swarm structure, and 
the impact of changing ocean conditions on preferen-
tial foraging warrant further investigation. In addition 
to humpback whales, blue Balaenoptera musculus and 
fin B. physalus whales also forage on krill in the region 
(Fiedler et al. 1998). While our sample size of blue and 
fin whales was too small to perform the same hierar-
chical scale analysis, a model of all rorquals at the 
5 km scale showed overall similar trends as seen for 
humpback whales, though differences in the shal-
lower depth bins indicate interesting variability in 
these relationships, particularly at the 5 and 20 km 
spatial scales (see the Appendix). Future work should 
investigate whether these species show similar spatial 
relationships. Fin and blue whales are larger, and 
increased body size both facilitates and requires 
increased prey capture (Goldbogen et al. 2019). Thus, 

blue and fin whales foraging in the NCC may require 
larger-scale prey patches than humpbacks, and higher 
prey densities within them to meet their energetic 
needs. 

These findings are salient to ecological relation-
ships in the NCC ecosystem and to management 
efforts across the CCLME. Just as prey distributions 
are dynamic, so too are the responses of their pred-
ators and the needs of adaptive ecosystem manage-
ment. Increased awareness of humpback–krill rela-
tionships can support tools and resources that benefit 
marine resource management (Rockwood et al. 2020, 
Santora et al. 2020). Incorporating fine-scale prey 
data may improve modeling efforts and predictions of 
how these animals and ecosystems will respond to 
ongoing and future ocean changes (Derville et al. 
2022). As the 5 km model yielded the strongest rela-
tionship between humpback whales and krill relative 
abundance, we recommend that prey data at that 
scale be incorporated into future models and consid-
ered for management applications in the NCC, such 
as entanglement mitigation efforts and fisheries plan-
ning. Considering predator–prey relationships at 
methodologically and ecologically informed scales 
can allow us, as ecosystem observers, to find a com-
promise to the problem of scale, bridging the distance 
between what an animal experiences in the en -
vironment and what we can accurately describe and 
manage. 
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Appendix

Scale              Model    Buffer     Nwh           N             Conditional          Marginal          NASC              NASC               NASC               NASC              Survey 
                                          radius                (absence,        deviance             deviance        30–50 m        50–100 m      100–200 m     200–300 m                 
                                           (km)                 presence)   explained (%)    explained (%)             
 
Very fine          A1            1          46       609261              15.6                     1.05        edf = 2.277,   edf =1.851,    edf = 3.909,   edf = 3.137,   edf =6.884, 
                                                                   (594477,                                                              F = 232           F = 343          F = 568.3         F = 277         F = 1951 
                                                                    14784) 
Very fine          A2            2          80       620041              21.2                     1.80        edf = 2.872,  edf = 1.967,    edf = 2.998,   edf = 3.914,   edf =6.903, 
                                                                   (569424,                                                             F = 5118        F = 7943         F = 5284         F = 5304        F = 6972 
                                                                    50617) 
Fine                   A3            5         134      723978              27.9                     2.59         edf=3.923,   edf = 2.975,    edf = 3.612,   edf = 3.541,   edf =6.917, 
                                                                   (508332,                                                             F = 3414        F = 5323        F = 12799       F = 14544      F = 18117 
                                                                   215646) 
Meso                 A4          20        178    1302550             33.9                     1.60        edf = 3.829,   edf=3.944,     edf = 2.997,   edf = 2.985,   edf =6.927, 
                                                                   (386409,                                                             F = 1897       F = 21315        F = 2462        F = 18754      F = 47413 
                                                                   916141)

Table A1. Summary of rorqual whale–krill association models at each spatial scale (buffer radius). For each model, we report 
conditional and marginal deviance explained, the number of whale groups included (Nwh), and the absence, presence, and total 
number of data points in each model (N). For each smooth term (e.g. NASC 30–50 m, NASC 50–100 m, etc.), and the random 
effect (survey), we report estimated degrees of freedom (edf) and F-statistics. NASC (nautical area scattering coefficient;  

m2 nmi–2) is a relative abundance metric for krill. All approximate significance of smooth terms showed p < 0.0001

MesoscaleFine scaleVery fine scaleVery fine scale

Increasing scale

1 km 1 km 1 km

1 km

1 km

2 km

2 km

5 km

5 km

1 km

20 km

20 km

Fig. A1. Schematic representation of the inputs to the hierarchical scale and final models. The distance thresholds for included 
observations (coarse gray dashed lines) are illustrated around the ship’s trackline (fine dashed line). Echosounder data along 
the trackline may be inside the buffers (black) or outside (gray), depending on model spatial scale. Buffer radii drawn at 
increasing spatial scales (circles color-coded from 1 to 20 km) are drawn around humpback whale observations (black stars) and 
fin or unidentified rorqual whale observations (black hexagons). The leftmost panel represents the data included in the 1 km 
‘very fine scale’ model; model spatial scale increases moving right. The rightmost panel represents the inputs for the final, fine  

scale model. This schematic is not drawn to scale
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Fig. A2. All rorqual whale–krill relationships modeled across multiple depth 
bins and spatial scales. Response curves represent the effect of the smooth 
function upon the trend in rorqual whale presence, with higher values indica-
ting higher predicted probability of occurrence. Shaded ribbons: 95% confi-
dence intervals, colored per fitted trend. Log-transformed nautical area scat-
tering coefficient (NASC, m2 nmi–2; a relative abundance metric for krill) is 
shown on the x-axis, limited to the 5th–95th percentiles of its distribution. All  

variables have significant p-values (p < 0.0001)
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